
Submitted 5 July 2022
Accepted 26 October 2022
Published 1 December 2022

Corresponding author
Wulfrano Arturo Luna-Ramírez,
wluna@correo.cua.uam.mx

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.1162

Copyright
2022 Ortiz-Hernández et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modularization in Belief-Desire-Intention
agent programming and artifact-based
environments
Gustavo Ortiz-Hernández1, Alejandro Guerra-Hernández2, Jomi F. Hübner3 and
Wulfrano Arturo Luna-Ramírez4

1 Facultad de Ciencias Agrícolas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
2 Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Veracruz, Mexico
3Department of Automation and Systems, Federal University of Santa Catarina, Florianópolis, Brazil
4Departamento de Tecnologías de la Información, División de Ciencias de la Comunicación y Diseño,
Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, México

ABSTRACT
This article proposes an extension for the Agents and Artifacts meta-model to enable
modularization. We adopt the Belief-Desire-Intention (BDI) model of agency to
represent independent and reusable units of code by means of modules. The key
idea behind our proposal is to take advantage of the syntactic notion of namespace,
i.e., a unique symbol identifier to organize a set of programming elements. On this
basis, agents can decide in BDI terms which beliefs, goals, events, percepts and actions
will be independently handled by a particular module. The practical feasibility of
this approach is demonstrated by developing an auction scenario, where source code
enhances scores of coupling, cohesion and complexity metrics, when compared against
a non-modular version of the scenario. Our solution allows to address the name-
collision issue, provides a use interface for modules that follows the information hiding
principle, and promotes software engineering principles related tomodularization such
as reusability, extensibility and maintainability. Differently from others, our solution
allows to encapsulate environment components intomodules as it remains independent
from a particular BDI agent-oriented programming language.

Subjects Agents and Multi-Agent Systems, Programming Languages, Software Engineering
Keywords Modularization, Multi-agent systems, Agents and artifacts, BDI agents, Agent-oriented
programming, Namespaces, Jason, CArtAgO

INTRODUCTION
The increasing complexity of software demands tools andmodels allowing the development
of such systems in a simpler way, while reducing the effort invested in maintaining
and extending them. Several programming paradigms have been proposed with
this purpose, e.g., structured, declarative, object-oriented, and component-oriented
programming. All of them have promoted engineering principles in response to the
software requirements prevailing at their time; including maintainability, extensibility and
reusability, among others. These principles have became desiderata when designing and
developing software systems (Abran et al., 2001).

How to cite this article Ortiz-Hernández G, Guerra-Hernández A, Hübner JF, Luna-Ramírez WA. 2022. Modularization in Belief-
Desire-Intention agent programming and artifact-based environments. PeerJ Comput. Sci. 8:e1162 http://doi.org/10.7717/peerj-cs.1162

https://peerj.com/computer-science
mailto:wluna@correo.cua.uam.mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1162

However, new software requirements have arisen during the so-called Internet
revolution, demanding systems able to exhibit some degree of autonomy, reactivity and
pro-activity for facing highly dynamic, distributed and heterogeneous scenarios. The agent
oriented programming (AOP) paradigm (Shoham, 1993) copes naturally with such
requirements, reducing user intervention (Maamar & Moulin, 1997) and promoting famed
methods for facing complexity: decomposition, abstraction and hierarchy (Jennings, 1999;
Cuesta, Gomez & Gonzalez, 2008; Federico Bergenti & Zambonelli, 2004). Additionally,
the agents and artifacts (A&A) meta-model (Weyns, Omicini & Odell, 2007; Ricci, Piunti
& Viroli, 2011) promotes a modular approach for programming the environment where
agents are situated, providing a suitable model to externalize (Ricci, Piunti & Viroli, 2009)
the functionality required by agents to act and perceive. Unfortunately, current AOP
proposals usually address this complexity taking the multi-agent system (MAS) as a whole,
disregarding the individual agent level, despite an agent is intrinsically a complex system as
well. Therefore, we state that the strategies for dealing with complexity must be enforced
also when designing and developing individual agents.

Modularization can significantly facilitate and improve such vision. Its adoption in the
context of BDI-AOP has been widely discussed and developed in the literature (Zanbar &
Kaminka, 2019; da Rocha Costa, 2018; Ricci et al., 2019; Aschermann, Kraus & Müller, 2017;
Busetta et al., 1999; Braubach, Pokahr & Lamersdorf, 2006; Dastani & Steunebrink, 2009;
Cap, Dastani & Harbers, 2011; Dastani, Mol & Steunebrink, 2009; Madden & Logan, 2010;
Ortiz-Hernandez, Guerra-Hernandez & Hoyos-Rivera, 2013; Hindriks, 2008; Van Riemsdijk
et al., 2006; Ricci, Piunti & Viroli, 2009). As stated by Suryanarayana, Samarthyam
& Sharma (2015), modularization can be understood as ‘‘the logical partitioning of a
software design so that the design becomes easy to understand and maintain’’. Accordingly,
the process of modularization must be achieved by reducing the degree of interaction and
dependency between modules(coupling), while increasing the level of coherence between
the elements composing a module (cohesion); in order to help maintaining tasks such as
extension and scalability. Based on that, we hold that encapsulation (information hiding)
enables high cohesion, and a well-defined interface allows low coupling. Then by solving
encapsulation and interface we pursue modularization in such terms.

This article proposes an extension of the A&A meta-model, enabling modularization at
the agent level. In this context, the Belief-Desire-Intention (BDI) agency model is adopted.
Therefore, modules are intended to encapsulate functionality into independent and
reusable units of code which can be dynamically loaded by agents. We identify four major
issues need to be faced to support modularization of BDI agents in such terms: (i) Avoiding
name-collision, (ii) satisfying the principle of information hiding, (iii) interfacing modules,
and (iv) integrating environment components. We present a generic proposal, suitable for
agent oriented programming languages adopting the agents and artifacts meta-model; and
also a concrete implementation in JaCa–an integration of Jason and CArtAgO, an AOP
language and an infrastructure for programming artifact-based environments, respectively.

The main idea of our approach is to take advantage from namespace, a syntactic
notion to address these four issues. Thus, every component of a module has an associated
namespace which makes it possible to resolve name-collision issues. Namespaces can

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 2/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

be private or public, so that components can be encapsulated to fulfill the information
hiding principle. Module components may be associated with an abstract namespace to be
concretized at runtime, once the module has been loaded. An abstract namespace notion
provides both a bidirectional use interface for modules and a mechanism to load a module
as many times as needed in different concrete namespaces, enabling a behavior close to that
of the class/instance relationship proper to object-oriented programming (OOP). Adding
namespaces to the bridge, i.e., the component that mediates between agents and artifacts
by translating operations and properties to actions and events, respectively, results in a
modules system which transparently integrates environment components for both AOP
languages and the artifacts infrastructure.

Our proposal is based on the approach followed in Ortiz-Hernández et al. (2016).
The main novelty is that beyond composing modules with only elements inherent to agent
programs, e.g., beliefs, objectives, intentions, we also consider components related to the
environment, such as perceptions and actions. By including the environment components
in the definition of module, agents can decide the particular set of perceptions and actions
that will be independently handled by modules. In other words, a module handles only the
actions and perceptions related to its functionality while the rest remain transparent.

This article is organized as follows: Given thatmodularization has been actively discussed
in AOP, ‘Related Work’ reviews and compares different approaches reported in the
literature and our current proposal. We intend such a review to be useful for establishing
the contribution and novelty of our approach (encapsulating environment components
into modules). ‘The A&A Meta-Model’ gives a description of the A&A meta-model,
focusing on the elements involved in modularization.

For the sake of conciseness and clarity, we assumed AgentSpeak(L) (Rao, 1996) as the
model of agency, but the ideas presented in this article can be generalized to other BDI
programming languages.

Our proposal for introducing modularization in the A&A meta-model is exposed in
‘Modularization in the Agents and Artifacts Meta-Model’. To prove how feasible our
approach is, an implementation has been done in JaCa, the integration of Jason (Bordini,
Hübner & Wooldridge, 2007) and CArtAgO (Ricci et al., 2009). This implementation is
briefly discussed in ‘Implementation’. Then, a case study inspired on an auction scenario
for building a house is introduced in ‘Case Study’. The case study is positively evaluated by
coupling, cohesion and the Halstead complexity metrics (Halstead, 1977), when compared
against a non-modular solution. ‘Evaluation’ offers the details of the evaluation. Finally,
‘Discussion’ discusses the suitability of the proposed approach to construct association,
composition, generalization and cardinality relationships among modules (Nunes, 2014),
so that it is possible to extend and build complex functionalities while promoting code
reuse. It also mentions the way some OOP concepts, such as multi-inheritance, can be
modeled using our approach. Finally, our conclusions and future work are offered in
‘Conclusion and Future Work’.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 3/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

RELATED WORK
The diversity of approaches for adoptingmodularization in the BDImodel of agency reveals
the relevance of this subject for the AOP community. Below is a summary of works that
propose various strategies to deal with the problems related tomodularization in BDI-AOP.

Busetta et al. (1999) use modules to encapsulate beliefs, plans and goals related to
a specific functionally, within a shared scope known as capability. Based on that,
programmers indicate through scoping rules which elements can be accessed by other
capabilities. A concrete implementation in JACK (Howden et al., 2001) is provided.
Further, Braubach, Pokahr & Lamersdorf (2006) extend the concept of capability to ensure
that all elements remain hidden from outside and that they form part of only one capability,
assuring the fulfilment of the information hiding principle by preventing it for being
violated. They provide a mechanism for configuring capabilities with some initial mental
state, and an implementation in JADEX (Braubach, Pokahr & Lamersdorf, 2005) is also
available. Both approaches propound an interface based on an explicit import/export
statement as part of the capability header.

An association between modules and a specific goal is proposed by Van Riemsdijk et al.
(2006). In this proposal, goals are intended to be handled by a particular module. In other
words, modules are constructed for being executed just for achieving those goals they are
associated with. Within a module, every plan is executed one-by-one till either the goal
is achieved or all plans has been tried. This work is conceived in the 3APL (Dastani et al.,
2004) context.

Hindriks (2008) use an approach inspired in policy-based intentions, as described
for GOAL (Hindriks, 2009). A condition representing a specific agent’s mental state is
associated with modules. When this condition is met, the module associated with it
turns into the focus of the execution, while dismissing any other goal. The use interface
of modules is given by the condition that triggers the activation, and which is defined
declaratively. This strategy focuses on avoiding the pursuit of contradictory goals by means
of the isolation of events and goals.

Dastani & Steunebrink (2009) propose modules as independent mental states on which
agents can start reasoning, one at the time until a predefined condition holds. Such
mental states are instantiated, executed, tested and updated applying a set of predefined
operations. In other words, once the agent executes a module, control is transferred and
returns to the agent’s main program until themodule ends its execution. These concepts are
introduced in the context of 2APL (Dastani, 2008) by extending its operational semantics.
Its corresponding implementation is also described by Dastani, Mol & Steunebrink (2009).

Madden & Logan (2010) encapsulate capabilities through modularization. Their ap-
proach follows the XML’s definition of namespaces (Bray et al., 2006). Each module is
treated as a unique and separate namespace attached to a URI to be clearly identified.
A distinct local goals-base, belief-base and events-queue are instantiated per module,
then it is possible for programmers to specify, using an explicit export/import statement,
the particular goals, beliefs and events that will remain visible and accessible to other
modules. In this modules system, a module can be instantiated only once, therefore

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 4/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

references and changes to the exported part of the module are visible and accessible to
every other module that imports it.

In Cap, Dastani & Harbers (2011), an extension of Dastani & Steunebrink (2009) is
presented to mainly enhance the interface by incorporating the concept of sharing scopes.
They allowmodules posting events, so they are available to othermodules within a common
scope. Initially, each agent contains one predefined sharing scope to contain the agent’s
main module instance. Thenmodules are activated by means of ‘inclusion’, i.e., the module
instance is added to the existing sharing scope; and deactivated by ‘seclusion’, that is to
create a new sharing scope for adding the module.

Ortiz-Hernandez, Guerra-Hernandez & Hoyos-Rivera (2013) deal with modularization
challenges by defining modules in the context of AOP, a set of beliefs and plans, but with
the inclusion of a header with an import/export list referring to module components.
Then, name-collision problem is tackled by using annotation mechanism to identify the
module to which each belief and plan belongs. They also define a common and unique
initial-module which components are accessible to every other module. A library for
supporting their approach is available for Jason (Bordini, Hübner & Wooldridge, 2007)

These approaches are compared in Table 1. All of them provide diverse interfaces among
modules and solve the name collision problem (NameCol), providing an instrument to
manage the visibility of goals and events. However, some of them fails to fulfill the
information hiding principle (InfoHid). Excepting our current and previous proposals, all
the reviewed approaches are not independent (Indep) of the AOP language (Lang) used
to conceive and implement them, probably preventing its reuse in other languages. Except
for our current proposal, all of them miss a suitable mechanism to consider environment
related components (Env).

THE A&A META-MODEL
The A&A meta-model (Weyns, Omicini & Odell, 2007; Ricci, Piunti & Viroli, 2011)
promotes a view of MAS where both the agents and the environment are first-class
abstractions. Figure 1 introduces the meta-model. Such a view conceives environment as a
set of artifacts that the agents can create, focus and dispose for pursuing their goals. In the
A&A meta-model a MAS is modeled as a tuple 〈Ags,Bdg ,Env〉, composed of a set of agents
(Ags), an environment (Env), and a bridge (Bdg) between them. A full list of symbols used
in the A&A model and in this work is shown in Table 2.

Given the generic nature of the meta-model, different AOP languages and artifact
infrastructures can be adopted as shown in Fig. 2. The artifact infrastructure provides an
abstraction of the environment that works as an agent interface among each other and
their real environment. Agents and artifacts interact in BDI terms: Artifacts are the source
of some of the beliefs of the agents, and the actions executed by the agents are indeed
artifact’s operations. Artifacts and environment interact in more traditional terms, e.g.,
OOP. Any object can be encapsulated in an artifact, contributing in this way to what
Shoham (1993) called ‘‘agentification’’, i.e., the transformation of an arbitrary device into a
programmable agent. The bridge is an ad hoc component that mediates between the agents

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

Table 1 Different approaches for agents modularization in the BDImodel of agency, compared regarding: their implementation language
(Lang); their independence (Indep) with respect to the implementation language; the integration of environment components (Env); the fulfill-
ing of the information hiding principle (InfoHid); the resolution of name collisions (NameCol); and the interface provided for the modules.

Modularization approach Lang Indep Env InfoHid NameCol Interface

Busetta et al. (1999) JACK × × X X Explicit import/export
Braubach, Pokahr & Lamersdorf (2006) JADEX × × X X Explicit import/export
Van Riemsdijk et al. (2006) 3APL × × × X Goal dispatching
Hindriks (2008) GOAL × × × X Mental-state condition
Dastani & Steunebrink (2009) 2APL × × X X Set of predefined operations
Madden & Logan (2010) Jason+ × × X X Explicit import/export
Cap, Dastani & Harbers (2011) 2APL × × X X Sharing scopes
Ortiz-Hernandez, Guerra-Hernandez &
Hoyos-Rivera (2013)

Jason × × × X Unique-common scope

Ortiz-Hernández et al. (2016) Jason X × X X Global/abstract namespaces
Our current proposal JaCa X X X X Global/abstract namespaces

Agent

Environment

Artifact
*

1 make
focus
dispose
stopFocus

*

1

Belief Plan Goal
* * *

1

Property

Operation

Signal

*

1

Event

Action

act

perceive

Br
id

ge

perceive

body *

*

trigger *

Conceptual mapping

*

*

Figure 1 The A&Ameta-model, adapted from Ricci et al. (2009).
Full-size DOI: 10.7717/peerjcs.1162/fig-1

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 6/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-1
http://dx.doi.org/10.7717/peerj-cs.1162

Table 2 List of symbols used in the A&Ameta-model and in this work.

Symbol Description Symbol Description Symbol Description

Env Environment art Artifact id Unique identifier
Pr Set of artifact properties Sg Set of artifact signals Op Set of artifact operations
ag Agent bs Set of beliefs b Believe
at Predicate t Term ps Plan library
p Plan te Triggering event ct Plan context
h Plan body a Action gs Set of goals
g Goal u Belief update C Agent circumstance
s Agent state I Set of intentions E Set of events
A Set of actions Brg Bridge interface AO Actions to operations mapping
F Artifacts focused by agent nid Namespace identifier

Environment

Network’s node

art2

Artifact
art1

art3

art4 art5

art6 art7

Abstraction of the
environment

Agent

Agents

ag1

ag2 ag3

AO
P

La
ng

ua
ge

Ar
tif

ac
t i

nf
ra

st
ru

ct
ur

e Actions

Speech acts

Linkage

Beliefs

Java methods

create/focus

ObsPropName(Args)

...

Signals

◯ OperationName(Params)

◯ ...

Observable
properties

Operations

Id
Artifact Name

Figure 2 AMAS under the A&Ameta-model, adapted from Ricci et al. (2009).
Full-size DOI: 10.7717/peerjcs.1162/fig-2

and the artifacts, translating actions and events. A detailed description of artifacts, agents,
and the bridge is provided in the next subsection.

Artifacts
Artifacts, as shown in Fig. 2, are tools that provide operations able of being executed
as actions by agents. When focusing on an artifact, an agent can perceive its observable
properties and its emitted signals. Observable properties can be seen as state variables of
the artifacts, that agents perceive as persistent beliefs. Signals are produced when executing
operations, being perceived as non persistent beliefs.

The notation to denote the components of the artifact infrastructure is described as
follows:

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 7/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-2
http://dx.doi.org/10.7717/peerj-cs.1162

• Environment. A set of artifacts, Env ={art1,...,artn}.
• Artifact. Each artifact is a tuple 〈id,Pr,Sg ,Op〉, composed of:

– A unique identifier id , provided by the agent that created the artifact. It is used to
denote the artifact when used by the agents.

– A set of observable properties Pr ={p1,...,pn};
– A set of signals Sg ={s1,...,sn};
– A set of operations Op={o1,...,on}.

• Auxiliary functions. A set of functions to access the components of the artifacts are
assumed, e.g., id(art) returns the identifier of the artifact art ; art (id) returns the artifact
denoted by the identifier id ; and so on.

Agents
Although any AOP language can be adopted in the A&A meta-model, usually a BDI model
of agency is assumed. This kind of models have strong philosophical foundations on
three aspects of Intentionality, allowing for: (i) Representations based on the intentional
stance (Dennett, 1987, reprinted 2002), where the behavior of the agents is modeled and
interpreted in terms of beliefs, desires, intentions, and other intentional attitudes; (ii)
reasoning methods based on the principles of practical reasoning (Bratman, 1987), where
intentions are seen as plans; and (iii) communication based on speech acts (Searle, 1969).
This model has been formally studied under different logics (van der Hoek & Wooldridge,
2012; Meyer, Broersen & Herzig, 2015) and implemented in different AOP languages
(Bordini et al., 2005; Bordini et al., 2006).

Then, a particular concept is the agent program that can be described through an alphabet
consisting of a finite set of symbols for variables (Var), constants (Const), functions (Func),
predicates (Pred), and actions (Actn). The syntax of ag , defined in Table 3, includes:

• Beliefs (bs). Beliefs are a possibly empty set of ground first-order atoms, as those used
in Prolog to represent facts. An atom (at) is a predicate applied to a certain number
of terms. A term is a variable, a constant, or a function applied to a certain number of
terms.
• Plans (ps). A non empty set of plans is assumed. Each plan p has a trigger event te
expressing for which event the plan is relevant. Trigger events include adding or deleting
a belief, and adding or deleting a goal; a context ct expressing the conditions that make
the plan applicable, as a logical formula; and a body h. The body is conformed by a
sequence of actions (a), goals (g), and updates (u), i.e., belief addition and deletion.
• Goals (gs). The agent program can include initial goals (gs), although this is not
mandatory. Achievable goals (!at) are solved through practical reasoning, forming
intentions with the plans of the agent to solve the goal. Test goals (?at) are solved
through logical consequence from the beliefs of the agent.

We also focus on the components of the AgentSpeak(L) BDI model (Rao, 1996), that are
relevant for modularization. This model is based on the concept of agent configuration,
denoted by a tuple Ag = 〈ag ,C,s〉, where ag = 〈bs,ps,gs〉 is an agentprogram composed

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 8/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

Table 3 The syntax of an agent program ag , defined in BNF notation.

ag ::= bs ps gs
bs ::= b1 ...bn | > (n≥ 1)
b ::= at (ground(at))
at ::= p | p(t1,...,tn) (p∈ Pred,n≥ 1)
t ::= v | c | f (t1,...,tn) (v ∈Var,c ∈Const ,f ∈ Func,n≥ 1)
ps ::= p1 ...pn (n≥ 1)
p ::= te : ct← h
te ::= +at | −at | +g | −g
ct ::= ct1 | >
ct1 ::= at | ¬at | ct1∧ ct1
h ::= h1;> | >
h1 ::= a | g | u | h1;h1
a ::= a | a(t1,...,tn) (a∈Actn,n≥ 1)
gs ::= g1 ...gn | > (n≥ 1)
g ::= !at | ?at
u ::= +b | −at

of beliefs agbs, plans agps, and goals aggs; and the circumstance of an agent C = 〈I ,E,A〉
includes the intentions of the agent (CI), the events perceived by the agent(CE), and the
actions to be executed (CA). The label s indicates the state of the agent in the reasoning
cycle induced by the operational semantics of the model.

The reasoning cycle of the agent is formally presented as a state transition system
defined in Bordini, Hübner & Wooldridge (2007), where the agent’s configuration changes
accordingly with a set of transition rules described as follows: The transition system of the
operational semantics of AgentSpeak(L) includes ProcMsg for updating of those events CE

perceived by agents; SelEv selects from CE one event to be processed. If there are no events,
SelInt proceeds; RelPl computes the set of relevantplans, i.e., the subset of agps useful to
cope with the selected event. If there are no relevantplans, SelEv proceeds again; ApplPl
computes the set of applicableplans, i.e., the subset of relevantplans that can be executed
accordingly to agbs. If there are no applicableplans, SelInt proceeds; SelAppl selects an
applicableplan; AddIM adds the selected applicableplan to CI ; SelInt selects one intention
from CI to be executed. If there are no intentions, ProcMsg proceeds; ExecInt executes
the selected intention, i.e., takes the plan in the top of the intention and processes the
first element of its body. If this is an action, it is added to CA; Finally, ClrInt clears C as
pertinent.

The transition system of the operational semantics is shown in Fig. 3.

Bridge
Given the generic nature of the A&A meta-model, different models and implementations
for the AOP language and the agent infrastructure can be adopted. It is necessary to define
a bridge between them, for mapping the actions of the agents to the operations of the
artifacts; and the observable properties and signals of the artifacts to the corresponding
events and beliefs of the agents. The bridge can be defined as tuple Brg =〈E,AO,F〉, where:

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 9/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

ProcMsg SelEv RelPl ApplPl

ClrInt ExecInt SelInt AddIM

SelAppl

Figure 3 Transition system of the operational semantics of AgentSpeak (L). It describes the full
agent reasoning cycle from processing events to executing intentions, adapted from Bordini, Hübner &
Wooldridge (2007).

Full-size DOI: 10.7717/peerjcs.1162/fig-3

• The observable events E = {e1,...,en} is a set of observable properties and signals
generated by the artifacts. Each event ei = 〈id,p|s,type〉 is composed by the identifier
of the artifact generating the event (id); the content of the event can be an observable
property (p) or a signal (s); and the type of event. Three types of events can be generated
by the artifacts: emitting a signal; and adding and removing an observable property.
• A mapping from actions to operations is required. The function AO(ac)= op | ∃ art ∈
Env∧ac = op∈ op(art) returns the operation op of an artifact art in the environment
Env , corresponding the action ac executed by an agent.
• A focus register F = 〈(ag ,Art),...〉 storing couples denoting which artifacts Art are
focused by an agent ag .

Additionally, a set of functions to access the components of the bridge are assumed, e.g.,
focus(ag) returns the set of artifacts being focused by the agent ag ; type(e) returns the type
of the event e; and so on. The bridge is an ad hoc component, strongly dependent of the
AOP language and artifacts infrastructure. Different definitions are possible for the bridge,
as long as they provide the functionality described here.

MODULARIZATION IN THE AGENTS AND ARTIFACTS
META-MODEL
Modularization in the A&A meta-model is enabled through the extension shown in Fig. 4.
An agent program is now an aggregate of modules, resulting from loading at least an initial
module. Each module has the same components of an agent program, i.e., beliefs, plans,
and goals, but every component is now associated with a namespace.

Namespaces
The syntax proposed for the modules (see Table 4) adds a namespace declaration (ns),
which is a list of atoms, possibly empty, of the form namespace(nid,scp), where nid is a
namespace identifier and scp∈ {local,global} indicates the scope of the namespace. A set
of namespaces Nid is assumed. The proposed syntax allows the members of the alphabet
(Var ∪Const ∪Func ∪Actn) to be prefixed with a namespace identifier, and because of
they account for beliefs, goals and actions, such prefixes allow these components to be
associated with a defined namespace. Plans are also associated with namespaces due to
their triggering events depend on beliefs or goals.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 10/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-3
http://dx.doi.org/10.7717/peerj-cs.1162

Module

Belief Plan Goal

Namespace

Local Global

* * 1
assoc

dispose

1..*

Component1

load

Agent

Artifact

Event

Action

Signal

Operation

Property

*

*

*

*

trigger

body

*

*

Conceptual mapping

make
focus

1

default

1

<<instanceOf>>

perceive

act

stopFocus

Br
id
ge

perceive

*

*

1

1

assoc

Legend

Figure 4 The A&Ameta-model extended for supporting modularization.
Full-size DOI: 10.7717/peerjcs.1162/fig-4

Table 4 The syntax of a module, defined in BNF notation.

mod ::= ns bs ps gs
ns ::= n1,...,nj | > (j ≥ 1)
n ::= namespace(nid,scp) (nid ∈Nid,scp∈ {global,local})
bs ::= b1 ...bn | > (n≥ 1)
b ::= at (ground(at))
at ::= p | p(t1,...,tn) (p∈ Pred,n≥ 1)

| nid :: p | nid :: p(t1,...,tn) (nid :: p∈ Pred,nid ∈Nid,n≥ 1)
t ::= v | c | f (t1,...,tn) (v ∈Var,c ∈Const ,f ∈ Func,n≥ 1)

| nid :: v | nid :: c | nid :: f (t1,...,tn) (nid :: v ∈Var,nid :: c ∈Const ,nid :: f ∈ Func,)
(nid ∈Nid,n≥ 1)

ps ::= p1 ...pn (n≥ 1)
p ::= te : ct← h
te ::= +at | −at | +g | −g
ct ::= ct1 | >
ct1 ::= at | ¬at | ct1∧ ct1
h ::= h1;> | >
h1 ::= a | g | u | h1;h1
a ::= a | a(t1,...,tn) (a∈Actn≥ 1)
a ::= nid :: a | nid :: a(t1,...,tn) (nid :: a∈Actn≥ 1)
gs ::= g1 ...gn | > (n≥ 1)
g ::= !at | ?at
u ::= +b | −at

Therefore, every component of a module may, or may not, have the namespace
identifier as a prefix. For instance, the beliefs price(50), fixTV::price(50), and
fixPC::price(50) are all different, since they are associated with different namespaces,
as denoted by their prefixes. The same strategy is followed for other components of the
modules, e.g., plans, goals, actions. In this way, namespaces provide a syntactic solution

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 11/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-4
http://dx.doi.org/10.7717/peerj-cs.1162

to the name-collision problem. The fact that the first belief in the previous example is
not explicitly prefixed, means its namespace is abstract. Sometimes the namespace of a
component is intended to be defined at run-time, after loading the module. In such case, it
is said that the component has an abstract namespace, and it is not prefixed. Explicit prefixes
indicate concrete namespaces. Abstract and concrete namespaces allow loading modules
using different concrete namespaces, enabling a behavior close to the class/instance relation
in OOP. In this way, namespaces contribute to enhance abstraction and hierarchization.

A namespace can be either local or global. Components associated with global
namespaces can be accessed anywhere in the agent program. Those associated with a
local namespace are only accessible in the module declaring the namespace. In this way,
namespaces provide a syntactic solution to the information hiding principle and interfacing.
Some auxiliary functions to work with namespaces include:

• ids(mod)={id | id ∈ {modVar ∪modConst ∪modFunc ∪modActn}}, returns the set of all the
identifiers used in the definition of the module mod .
• ns(id)= ns returns the namespace of an identifier ns :: id .
• local(id)= true, iff ns(id)= ns∧namespace(ns,local)∈modns, otherwise it is false.
• global(id)=¬local(id).
• abstract (id)= true, iff ns(id)=>, otherwise it is false.

Loading modules
In this proposal, an agent program ag is the result of loading at least one module, which
is not expressible at the syntactic level. The extended meta-model proposes a loading
action for the modules. When a module is loaded, all its components associated with the
abstract namespace are concretized. For this, a concrete namespace identifier (nid) must
be specified when loading a module. Then, the module components are added to the agent
program components. The following semantic rule, defines the loading operation as an
action of the agent:

(Load)
S(CA)= load(mod,nid)

〈ag ,C,ExecInt 〉→ 〈ag ′,C ′,ClearInt 〉

where: mod ′ = mangling (mod,nid)
ag ′bs = agbs∪mod ′bs
ag ′ps = agps∪mod ′ps
ag ′gs = aggs∪mod ′gs

The function S(CA) denotes the action that has been chosen to be executed by the
agent. The mangling function decorates the code of the loaded module accordingly to
Algorithm 1. Basically, it replaces all the abstract namespaces in the loaded module mod ,
with the concrete namespace nid ; it also decorates every local namespace with an internally
auto-generated prefix denoted by # to make local namespaces inaccessible from other
modules: Since the id becomes syntactically incorrect for the parser, but still valid for
the interpreter, it can only be used locally by the mangled module. For instance, the
belief priv::price(99) is replaced by #priv::price(99), if priv is declared as a local

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 12/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

namespace. Since #priv::price is a syntactically invalid identifier, no developer can code
the access to this belief; it is only accessible in the mangled module declaring its namespace.

Algorithm 1:mangling (mod,nid) replaces every abstract namespace inmod with the
concrete namespace nid ; and decorates every local namespace with a prefix #, to make
them inaccessible from other modules.
1 begin

Input:mod : a module
Input: nid : a concrete namespace

2 mod ′ = parse(mod)
3 foreach id ∈ ids(mod ′) do
4 if abstract (id) then
5 replace id by nid ::id

6 if local(id) then
7 replace id by #nid ::id

8 returnmod’

Loading the initial module of an agent is a special case. The first thing an agent
program does is loading its initial module, assuming nid = default . The initial module
program dispose for the agent its initial belief base and plan library and its set of goals. All
components of the agent are empty before initialization.

Observe that, since the agent program is initialized loading a module, the namespaces
provide an interface between two modules when loading. Figure 5 illustrates this: When
a module mod1 loads a module mod2, interactions are bidirectional. The components of
both modules associated with local namespaces are kept separate in each module. The
components of mod2, associated with an abstract namespace, are imported by mod1,
concretizing their abstract namespace; the concrete namespace, provided by mod1, is used
to extendmod2. The components ofmod2, associated with a concrete global namespace, are
imported by mod1; those of mod1 extends mod2. This enables a relation close to the OOP,
where the loaded module mod2 source code can be seen as a template, and each load as
an instantiation referred by the concrete namespace provided at loading time. This allows
dynamically extending the functionality of modules in two ways. (i) by adding components
to the concrete namespace used to load a module (instantiate), it is possible to extend the
functionality for only such module instance; and (ii) to extend the functionality effecting
all the instances of the same module, by adding components to the global namespaces of
such module. In this way, namespaces provide a syntactic approach for interfacing.

Although load is a semantic rule, it is indeed a case of the rule for executing actions
defined in AgentSpeak(L). The result of executing load is strictly syntactical, an agent
program ag decorated with namespaces. This means that the semantics of AgentSpeak(L)
and its interpreter do not require further intervention.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 13/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

mod1 mod2

extends
for mod2

local
namespace

global
namespace

module

Legend
defined by mod1

imported
by mod1

extends
for mod2

defined by mod2

imported
by mod1

abstract
namespace

Figure 5 The interface whenmodulemod1 loads the modulemod2.
Full-size DOI: 10.7717/peerjcs.1162/fig-5

Artifacts and namespaces
Namespaces provide a syntactic solution for integrating the perceptions and the actions of
agents intomodules. For this, the bridge (Brg) needs to be extended to support namespaces.
The bridge includes:

• A focus register F = 〈(ag ,Art),...〉 storing couples denoting which artifacts Art are
focused by an agent ag . However, in this version of the register, each art ∈Art has the
form (art ,Nid), expressing that the artifact art is focused by the agent using namespaces
Nid .
• A set of functions to access the components of the focus register are assumed, e.g.,
focus(ag ,art)=Nid returns the namespaces used by agent ag to focus on artifact art .

This simple syntactic arrangement, allows a definition of modularization able of actions
for creating, focusing, perceiving, using, and disposing artifacts. In what follows, the
transition rules for these actions will be defined. Observe that these are transitions between
states of a MAS under the A&Ameta-model, i.e., states have the form 〈Ags,Brg ,Env〉. Most
of the time, a single agent perspective is adopted, replacing the set of agents in the system
Ags, with a single agent configuration Ag =〈ag ,C,s〉.

Creating artifacts
Creating artifacts does not involve namespaces. An agent can create an artifact artid of type
artType, by executing the action makeArtifact, provided by the environment (Env). We
use function makeArtifact/2 to denote the low-level process of instantiating an artifact. A
unique identifier (id) generated through the function newUniqueId() is used to refer the
artifact, which is added to the environment:

(MakeArt)
S(CA)=makeArtifact (artType)

〈〈ag ,C,ExecInt 〉,Brg ,Env〉→ 〈〈ag ,C,ClearInt 〉,Brg ,Env ′〉

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 14/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-5
http://dx.doi.org/10.7717/peerj-cs.1162

where: id = newUniqueId()
art = makeArtifact (id,artType)
Env ′ = Env∪{art }

Focusing on artifacts
An agent starts perceiving an artifact art ∈ Env , by executing the action focus, provided
by the environment. In this approach, a namespace must be provided when focusing:

(Focus)
S(CA)= nid :: focus(art)

〈〈ag ,C,ExecInt 〉,〈E,AO,F〉,Env〉→ 〈〈ag ′,C ′,ClearInt 〉,〈E,AO,F ′〉,Env〉

where: F ′ = F ∪{(ag ,(art ,{nid}))}
ag ′bs = agbs∪{nid :: p | p∈ pr(art)}
C ′E = CE ∪{+nid :: p | p∈ pr(art)}

For example, suppose an agent focus on an artifact auctionTool with an associated
namespace auc1. If the artifact includes an observable property currentBid(9), then as
a result of focusing, the belief auc1::currentBid(9) is added to the beliefs of the agent.
A corresponding event to the belief addition is placed in the agent’s events queue too.
Observe that an agent can focus on the same artifact with different associated namespaces,
replicating perception from an artifact in multiple modules.

Observable events
The artifacts produce observable events that are perceived by the agents focusing on them.
This means that some events in CE comes from the bridge, generated by some artifact
in the environment. Since there are three types of observable events, the same number
of transition rules are required. Observe that these ‘‘actions’’ are not actually executed
intentionally by the agent. Observe that they are executed at s= ProcMsg to update the
events and beliefs of the agent. They are as follows:

• Signals. The events generated from artifact signals are also associated with a
corresponding namespace. Signals from artifacts are placed as events in every namespace
used to focus the artifact. For instance, a signal tick produced from artifact tool,
focused by some agent using namespaces ns1 and ns2, produces events +ns1::tick
and +ns2::tick to be processed by the reasoning cycle of the agent. Since signals stand
for non persistent events, the agent’s belief base is not updated:

(Signal)
S(E)=〈id,s,signal〉

〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ,C ′,ProcMsg 〉,〈E ′,AO,F〉,Env〉

where: C ′E = CE ∪{+nid :: s} — nid ∈ focus(ag ,art (id))}
E ′ = E \{〈id,s,signal〉}

• Observable property addition. This type of percept is produced when an observable
property is added in some artifact being observed by the agent. The observable property
is added to the agent’s belief base, in every namespace used to focus the artifact. An event
reflecting this is added too. The percept is removed after being processed:

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 15/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

(ObsPropAdded)
S(E)=〈id,p,obsPropAdded〉

〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ′,C ′,ProcMsg 〉,〈E ′,AO,F〉,Env〉

where: ag ′bs agbs∪{nid :: p} | nid ∈ focus(ag ,art (id))}
C ′E CE ∪{+nid :: p} | nid ∈ focus(ag ,art (id))}
E ′ E \{〈id,p,obsPropAdded〉}

• Observable property deletion. When an observable property has been deleted from
some artifact being focused, such observable property is removed from every namespace
used to focus the artifact. An event to notify the belief deletion is generated, and the
percept is removed:

(ObsPropDel)
S(E)=〈id,p,obsPropDel〉

〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ,C ′,ProcMsg 〉,〈E ′,AO,F〉,Env〉

where: ag ′bs = agbs \{nid :: p} | nid ∈ focus(ag ,art (id))}
C ′E = CE ∪{−nid :: p} | nid ∈ focus(ag ,art (id))}
E ′ = E \{〈id,p,obsPropDel〉}

Observable property updates can be handled as a sequence of rules (ObsPropAdded)
and (ObsPropDel). However, at implementation level a fourth type of observable event,
standing for an artifact observable property update, is considered for practical reasons.

Stop focusing artifacts
Agents can stop focusing artifacts by executing the action stopFocus. This causes that the
percepts and operations of a specific artifact cease to be mapped to the agent:

(StopFocus)
S(CA)= nid :: StopFocus(id)

〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ′,C ′,ProcMsg 〉,〈E,AO,F ′〉,Env〉

where: F ′ = F \{(ag ,(art (id),nid))}
ag ′bs = agbs \{nid :: p | p∈ pr(art (id))}
C ′E = CE ∪{−nid :: p | p∈ pr(art (id))}

Artifacts disposal
Artifact disposal complements the artifact creation. When an artifact is disposed, every
belief and action related to the artifact is removed, and the artifact is not longer eligible
to be focused, because it is also removed from the environment. Events to notify and
reflect belief deletions are produced to be processed if necessary. Agents can use the action
dispose to eliminate artifacts:

(Dispose)
S(CA)= nid :: dispose(id)

〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ′,C ′,ProcMsg 〉,〈E,AO,F ′〉,Env ′〉

where: F ′ = F \{(ag ,(art (id),nid))}
ag ′bs = agbs \{nid :: p | p∈ pr(art (id))}
C ′E = CE ∪{−nid :: p | p∈ pr(art (id))}
Env ′ = Env \{art (id)}

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 16/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

Operation execution
The execution of an action ac associated with some namespace denoted by nid , is processed
as follows:

(ExecAct)
S(CA)= nid :: ac∧OA(ac)= op∧nid ∈ focus(ag ,art (op))∧exec(op)
〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉→ 〈〈ag ,C,ProcMsg 〉,〈E,AO,F〉,Env〉

where: C ′A = CA \{nid :: ac}
The rule results in matching an action ac with a corresponding operation op, with the

restriction that the namespace nid associated with action ac must be currently used to focus
on the artifact implementing op. In other words, the action ac is successfully executed only
if a corresponding operation op to ac is available in namespace nid . The execution of
operation is carried on by function exec(...). Finally, it must be highlighted that default
artifact operations, e.g., makeArtifact, focus, etc., are available in any namespace.

IMPLEMENTATION
To evaluate our proposal, it has been implemented in JaCa –the integration of JasonBordini,
Hübner & Wooldridge (2007), an extended interpreter for AgentSpeak(L) Rao (1996),
implemented in Java; and CArtAgO Ricci et al. (2009), an infrastructure grounded on the
A&Ameta-model, also implemented in that language. Some general implementation issues
are discussed here, before introducing a case study in the next section. The implementation
consists basically in extending Jason for allowing namespaces and providing two ways of
loading modules; and extending the bridge with CArtAgO for allowing the artifacts to
exploit namespaces too. Both extensions are merely syntactical, i.e., the interpreter of Jason
and the CArtAgO implementation do not change, warranting in this way, full backward
compatibility with non-modular MAS written in JaCa. The implementation as described
here is part of the official distribution of Jason 2.0, and both the platform and source code
are available online (Hübner & Bordini, 2016).

Jason is extended exploiting its facilities to adopt user defined pre-processing directives. A
pre-processing directive namespace/2 is added for allowing the declaration of namespaces.
The first argument of the directive is the identifier of the namespace, and the second one is
its scope (local or global). The identifiers of the expressions enclosed within this directive
are associated with the specified namespace. Other identifiers can be associated with the
namespace by prefixing them with the corresponding namespace identifier.

The pre-processing directive include, and the internal action .include, are extended to
take a second parameter for supporting namespaces. Both implement the rule load defined
in Section ‘Loading Modules’. The name of file containing the source code of the module
is their first argument, and the second one is its associated namespace. If a free variable is
passed as the second argument of .include, an unique namespace identifier is internally
auto-generated, it is bounded to the variable, and then, it is used to load the module. The
internal action and directive can be used for dynamically and statically loading modules,
respectively.

For practical reasons, the identifiers used for terms are associated with the default
namespace when a module is loaded, as long as they are not explicitly prefixed.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 17/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

However, a prefix :: in a term denotes its association with the abstract namespace, e.g.,
instartedAuct(::tool), the term tool is related to the abstract namespace. In Jason,
the keywords, strings, lists, and numbers terms cannot be associated with namespaces.
Jason defines two types of actions: The environment is modified by an external action, on
the contrary, an internal action is fired internally to the agent. Internal actions cannot be
associated with namespaces, while external actions can.

The bridge between Jason and CArtAgO is also customized to deal with namespaces.
Jason implements this bridge as an agent architecture class, defining how percepts and
actions are handled. This class is extended to implement the rules introduced in Section
‘Artifacts and Namespaces’.

Artifacts are instances of the Java class Artifact, provided by CArtAgO. They can be
denoted by an identifier, as defined in Section ‘Artifacts’, and by a name defined by the
programmer. Names are implemented as a Jason term, allowing then the use of namespaces
to avoid name clashes when using them inmodules. If a namespace is not explicitly specified
when creating an artifact, the default namespace is adopted, because terms are associated
with such namespace by default.

Observe that the operations provided by the artifacts are invoked by the agents through
their external actions. These actions can be annotated to indicate the artifact preferred by
the agent when executing an action. Such annotations have precedence over the namespace
prefix. The predefined operations, excepting focus and focusWhenAvailable, which have
a different semantic regarding namespaces, omit the prefix because they are available in
every module.

CASE STUDY
This section offers a detailed portrait of our proposal, presenting a MAS for running
auctions to contract services. The complete JaCa project source code of the case study is
available for download atOrtíz-Hernq́ndez (2020a). Additionally, a more complex example
of the contract-net-protocol (both modular and non-modular versions) is distributed with
the Jason 2.1 release (Hübner & Bordini, 2020).

The modules auction and participant (Codes 6 and 7) encapsulate the functionality
to create and taking part of an auction, respectively. The MAS compounds bob and alice,
the auctioneer agents, whose initial modules are showed in Codes 2 and 3 respectively; and
the participants companyA and companyB (Codes 4 and 5). In this implementation, every
instance of module auction isolates the beliefs and events of each negotiation, so that they
do not interfere with other negotiations or even other module components. Our case study
shows how the percepts and actions from observed artifacts are independently handled by
multiple modules for their own purposes.

Artifacts of type AuctArt (Code 1) are used by auctioneers and participants to manage
their auctions. These artifacts are created and initialized by the auctioneers, using a task
description and the initial price as parameter, e.g., line 9 of Code 6. They provide an
operation bid for placing an offer, e.g., lines 19–26; and an operation close for closing
an auction. When an auction finalizes the corresponding artifact signals the final winner

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 18/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

(c.f. line 16 of Code 1). Agents focusing the artifact can perceive through the artifact’s
observable properties and signals, the task being auctioned, current bid, current winner
and the final winner. Our case study shows how the percepts and actions from observed
artifacts are independently handled by multiple modules for their own purposes.
1 public class AuctArt extends Artifact {
2

3 private boolean open=true;
4

5 public void init(String taskDesc , double maxPrice) {
6 defineObsProperty("task", taskDesc);
7 defineObsProperty("currentBid", maxPrice);
8 defineObsProperty("currentWinner", "no_winner");
9 }
10

11 @OPERATION
12 public void close() {
13 ObsProperty opCurrentWinner = getObsProperty("currentWinner");
14 if(getOpUserName (). equals(getCreatorId (). getAgentName ()))
15 open=false;
16 signal("won", opCurrentWinner.stringValue ());
17 }
18

19 @OPERATION
20 public void bid(double bidValue) {
21 ObsProperty opCurrentValue = getObsProperty("currentBid");
22 ObsProperty opCurrentWinner = getObsProperty("currentWinner");
23 if (open & bidValue < opCurrentValue.doubleValue ()) {
24 opCurrentValue.updateValue(bidValue);
25 opCurrentWinner.updateValue(getOpUserName ());
26 }
27 }

Code 1: AuctArt.java

1 // an initial goal
2 !contract ([site ,wall ,floor ,roof ,pool]).
3

4 +! contract ([])
5 <- .wait (2500); // a deadline
6 // close auctions and notify winners
7 for(A:: instanceOf(auction)){
8 !!A::close
9 }.
10

11 +! contract ([T|Ts])
12 <- // var A is bounded to a unique nsp id
13 // one instance for each auction
14 .include("auction.asl",A);
15 // starts auction for task T,
16 // no maximum price
17 // !! posts a sub -goal with new focus
18 !!A::start(T ,9999);
19 !contract(Ts).
20

Code 2: bob.asl

1 {include("logger.asl",log)} // static load
2

3 {begin namespace(priv ,local)}
4 max_price(floor ,1200).
5 max_price(plumbing ,600).
6 max_price(pool ,1000).
7 {end}
8

9 !contract ([floor ,plumbing ,pool]).
10

11 +! contract ([])
12 <- .wait (4500);
13 for(A:: instanceOf(auction)){
14 A::close
15 }.
16 +! contract ([T|Ts]): priv:: max_price(T,P)

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 19/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

17 <- .include("auction.asl",A);
18 !!A::start(T,P);
19 log:: focusWhenAvailable(A::tool)
20 !contract(Ts).

Code 3: alice.asl

1 {include("participant.asl",p)}
2

3 my_price (1650). // minimum plus ~150
4

5 // acceptable tasks
6 p:: accept ([site ,wall ,roof]).
7

8 p::trust([alice]). // trusted agents
9

10 // I can improve a bid if
11 p:: improve(Bid ,T,Bid -150): - my_price(P) & P <= Bid.

Code 4: companyA.asl

1 {include("participant.asl",p)}
2

3 my_name("company_B").
4

5 overworked:- my_name(Me)
6 & .count(A:: currentWinner(Me),C) & C >= 3.
7

8 p:: acceptable(_).
9 p::trust(All):- .all_names(All).
10 p:: improve(Bid ,_,math.random (999)+800)
11 :- not overworked.

Code 5: companyB.asl

1 instanceOf(auction).
2

3 {namespace(priv ,local)} // forward definition
4

5 @p1[atomic]
6 +!start(Task ,MaxPrice)
7 <- //:: associates a term with abstract nsp
8 makeArtifact (::tool ,
9 "jcm.AuctArt",[Task ,MaxPrice],Aid);
10 +priv::state(open);
11 .broadcast(tell ,::started(Task));
12 // percepts from Aid go to abstract nsp
13 focus(Aid).
14

15 // operator -+ updates beliefs
16 @p2 +!close <- -+priv::state(closed); close.
17

18 // allow other modules get the state of auction
19 @p3 +?state(S) <- ?priv::state(S).
20 @p4 -?state(none).

Code 6: auction.asl

1 acceptable(T):- accept(Ts) & .member(T,Ts).
2 trusted(Ag):- trust(Ags) & .member(Ag,Ags).
3

4 @p[atomic]
5 +A:: started(Task)[source(Ag)]
6 : trusted(Ag) & acceptable(Task)
7 <- .include("bidder.asl",A);
8 +{A:: improve(Bid ,MyBid)
9 :- improve(Bid ,Task ,MyBid)
10 };
11 // used here to focus by name
12 A:: focusWhenAvailable(A::tool).
13

14 // auction artifact produces a signal
15 // to notify the final winner ,

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 20/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

16 // react if it is me!
17

18 +A::won(MeS)
19 : .my_name(Me) & .term2string(Me,MeS)
20 <- println("I Won Auction",A,"!").

Code 7: participant.asl

The agent bob creates multiple auctions. It applies the internal action .include/2 for
dynamically loading module auction (line 14) and to start an auction for each element in a
defined list of tasks (initial goal at line 2). It uses dynamic definition of namespaces (second
parameter of action include is a variable) to encapsulate the internal state of each auction
it creates, such that each namespace used to load the module can be seen as an auction
instance from the auctioneer’s point of view. Posting the sub-goal start in namespace A
launches the auction (line 18). Next, the agent bob waits until a fixed deadline has expired
to close all auctions (lines 4–9). The agents participating in those auctions can observe the
corresponding artifacts to find out the final winners.

Agent alice runs auctions for building a pool and setting up the floor and plumbing of
its house (line 9). It statically defines local namespace priv for hiding its maximum price
for each task from other modules (line 3). The identifiers without an explicit namespace
between lines 4 and 6 will be placed in the local namespace priv. Artifacts are created
at line 9 of Code 6, and the beliefs, events and actions mapped from them are handled
by the instances of module auction. The line 1 loads module logger, which provides
functionality for informing the progress of specific auctions. A pre-processing directive
include/2 is used to perform a static loading of logger. Agent alice also places the
percepts from the auction artifacts into namespace log (line 19; in this way, the events
produced from them can be independently used by module logger for printing out
information about the progress of auctions.

Dynamic loading and namespaces allow bob and alice to encapsulate the components
related to a particular auction, e.g., observe how auctioneer agents can initialize an auction
using an identical name for a task, without producing a name-collision.

The companyA is interested in auctions for tasks site, wall and roof. It participates
only in auctions executed by alice. When an auction starts under these conditions, the
directive .include/2 is used for loading the module participant (line 1). This agent
extends the functionality of the module instance by adding beliefs to the namespace where
the module was loaded (p); namely, it adds beliefs about tasks of interest and trusted agents
(lines 6 and 8). The agent sets up its strategy for participating in auctions at line 11. The
module participant uses the beliefs added to the namespace where it was loaded to decide
what tasks can be accepted, what agents are trusted and to know how much and when to
bid (cf. lines 6, 8 and 9 of Code 7). A different strategy is adopted by the companyB, who
accepts all auctions but never commits to a new task if it is overworked, i.e., it abstains
from participating in an auction if it is already winning more than three (lines 5 and 6 of
Code 5). The companyB bids a bounded random quantity (line 11).

The auction module encapsulates the functionality to create and manage an auction.
It starts with a belief used to identify the module instances, specifically, those namespaces
used as an instance of module auction, e.g., lines 7 and 13 of Codes 2 and 3, respectively.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 21/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- …
propose/2

refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- …

propose

refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns3::
instanceOf/1

propose/2
refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …
propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- …

propose
refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns2::
instanceOf/1
propose/2

refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- …
refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …
propose/2

refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- …

propose

refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns1::
instanceOf/1

tool/0

currentBid/1

+!start/2 <- ...

currentWinner/1

owner/1

+!close/0<- ...

+?state/1<- ...

-?state/1<- ...

close/0

ns4::

ns5::

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- … propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- … propose

refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns3::
instanceOf/1
propose/2
refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- … propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- … propose

refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns2::
instanceOf/1
propose/2

refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- …
refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …
propose/2

refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- …

propose

refuse

+!startCNP <- ...

+?cnp_state <- ...

+winner <- …

ns1::
instanceOf/1
tool/0

!start/2

+!start/2 <- ...

currentWinner/1
owner/1

+!close/0<- ...
+?state/1<- ...
-?state/1<- ...

close/0

ns4::
ns5::

bob.asl

+!contract/1 <- …

priv::
state/1

auction.asl

default::

!close/0

Figure 6 The namespaces of agent bob during its execution.
Full-size DOI: 10.7717/peerjcs.1162/fig-6

Next, a forward declaration of the local namespace priv in line 3 is defined. Observe that
the namespace of start/2 is abstract, and a concrete namespace will be given when the
module is loaded (lines 14, 17 and 7 of Codes 2, 3 and 7, respectively). The auctionmodule
exports elements associated with the abstract namespace, e.g., plans @p1 and @p2. The local
namespace priv is not visible to other modules, thus it does not interfere or clash with
any namespace in other modules, even if they have the same name, e.g., line 3 of Code
3. Namespace priv in module auction is used to encapsulate the belief representing the
current state of a running auction, it means that such belief is accessible only from this
module, e.g., line 10. However, a loader module can retrieve the current state of the auction
by means of plans @p3 and @p4. The Fig. 6 illustrates the relation between the modules bob
and auction using the same notation of Fig. 5 in Section ‘Loading Modules’.

The module participant provides functionality for participating in auctions. The
plan @p1 is executed if an auction has been started, and the participant is interested in the
task and trusts the auctioneer agent. A part of the functionality needed for participating
in auctions, is in turn modularized into a complementary module called bidder, which
provides agents with the appropriated functionality for consulting if they are winning an
auction, or not (c.f. line 1 of Code 8), as well as to place bids following their own strategy
(lines 3 and 4 of Code 8).Module bidder is loaded at line 7, in such a way that each instance
A of module bidder, represents an auction from the point of view of the participant. In
lines 8 and 9, the participant module extends the instances of bidder to specify the
strategy adopted for bidding in each auction. Next, at line 12, auction artifacts are focused
in the same namespace used to load the module bidder, with the purpose of letting the

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 22/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-6
http://dx.doi.org/10.7717/peerj-cs.1162

instances of such module apply its rules and plans to the corresponding perceptions and
artifact operations. Finally, the plan defined in lines 18–20 is executed when the agent
results the final winner of an auction.
1 i_am_winning:- .my_name(Me) & term2string(Me,MeS) & currentWinner(MeS).
2

3 +currentBid(Bid): improve(Bid ,MyBid) & not i_am_winning
4 <- bid(MyBid).

Code 8: bidder.asl

The logger module implements the ‘view’ part of the auction system, illustrating
separation of concerns. It prints in the console relevant information about active auctions.
The behavior of informing the progress of specific auctions can be easily activated (and
deactivated). Moreover, it can be independently developed and maintained from the
modules implementing the main functionality of the system.
1 +task(T)
2 <- println("An auction for task",T,"has started!").
3

4 // reports all bids
5 +currentBid(V): task(T) & currentWinner(W)
6 <- println("The current winner of auction for task",T,"is",W,"with a bid of",V).

Code 9: logger.asl

EVALUATION
With the purpose of evaluating the advantages of our approach, we also developed another
version of the case study with nomodularity. Consequently, we implemented six extensions
to these versions. The source code of all modular and non-modular versions is available
for download (Ortíz-Hernq́ndez, 2020c). The initial version is composed of two auctioneer
agents (alice and bob) and two participants who are companyA and companyB. The
first extension consists in modifying agent alice behavior to extend their deadline in case
that some of its auctions has resulted without a winner. The second and third versions
add participant agents with individual bidding strategies into the MAS (i.e., companyC,
companyD, companyE and companyF). In the fourth, auctioneer agents can optionally
print-out the progress of negotiations for specific auctions (as illustrated through module
logger presented in Section ‘Case Study’). The fifth provides agents with functionality
for registering statistical information about determined auctions. Finally, in the sixth
we generalize the MAS to let alice bid any set of tasks instead of only those related to
building a house; so that fixed plans for implementing the workflow of building a house
are removed, and tasks are delegated to winners immediately after the auction is closed,
expecting they have a proper plan to perform such task.

The comparison between the versions is shown in Tables 5 and 6. Both coupling and
cohesion metrics are inspired from strategies proposed in Jordan & Collier (2012) and
García-Magariño, Cossentino & Seidita (2010). Coupling is estimated by summing every
single use of a component by external modules, and cohesion is calculated by counting
the number of connected components in the internal dependencies graph of each module
similarly as the 4th method of calculating the lack in cohesion of methods (LCOM4). The
scripts used to estimate coupling and cohesion scores are available at Ortíz-Hernq́ndez
(2020b).

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 23/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

Table 5 Contrasting the AuctionMAS over a series of extensions. (Files) specifies the number of source code files that compose the MAS;
(Rewrites) the working components that had to be reedited; (Length), (Difficulty) and (Effort) correspond to the measures from the Halstead
complexity metrics (Halstead, 1977); (Updates) summarizes the block additions and deletions of source code that had to be performed over existing
components, counted in basis of a diff algorithm; (m) stands for modular version; and (n) for non-modular version.

Extension Description Files Rewrites Length Difficulty Effort Updates

m n m n m n m n m n m n

Starting implementation 10 9 0 0 1210 1377 33.14 37.80 1788 2322 0 0
1 Wait until all auctions have a winner 10 9 1 1 1371 1614 34.19 38.88 2091 2798 14 21
2 Add two participants (scale) 12 11 1 1 1703 1957 40.34 45.82 3108 4056 2 2
3 Another two participants 14 13 1 1 1908 2152 44.81 49.71 3868 4839 2 2
4 Print-out progress of auction 15 13 1 2 2031 2276 45.21 50.85 4154 5236 2 10
5 Register auction statistics 16 14 1 2 2327 2609 49.38 52.27 5268 6169 10 34
6 Delegate tasks to winners 16 14 1 2 2181 2591 46.45 51.44 4645 6029 10 21

Table 6 Comparing the AuctionMAS through a series of extensions. (Plans) specifies the number of plans in the MAS; (Components) stands for
the sum of all goals, beliefs, events, actions, etc. in the modules composing the MAS; (Coupling) the overall level of coupling of MAS; (Cohesion)
the average of the cohesion scores of modules, where value 1 means that module fulfills the principle of cohesion, and higher values suggest that the
module should be split. (Uncoupled) and (Coupled) denote the number of uncoupled and coupled Components, respectively; (m) stands for modu-
lar version, i.e., coded under the proposed approach; and (n) for the version without modularization.

Extension description Plans Components Coupling Cohesion Uncoupled Coupled

m n m n m n m n m n m n

Starting implementation 7 8 140 149 422 616 1.50 1.0 28 33 112 116
1 Wait until all auctions have a winner 7 8 150 163 470 752 1.50 1.0 28 32 122 131
2 Add two participants (scale) 9 10 196 210 876 1247 1.50 1.0 32 34 164 176
3 Another two participants 11 12 225 240 1284 1681 1.50 1.0 31 33 194 207
4 Print-out progress of auction 11 13 237 249 1357 1830 1.42 1.0 31 30 206 219
5 Register auction statistics 12 14 270 285 1736 2468 1.25 1.0 29 27 241 258
6 Delegate tasks to winners 12 14 262 287 1651 2499 1.25 1.0 32 31 230 256

The extensions are progressive; therefore, updates are counted as the necessary
modifications to achieve the current extension from the previous one. Extensions two
and three are not extensions but escalations; for the sake of clarity we will homogenize as
extensions all the system updates. Because of the available space, the effort measure has
been multiplied by 10−2 and rounded. The Total row shows the increases from the initial
implementation to the last version (sixth); and for the rewrites and updates columns, it
sums the times that a component had to be rewritten and the updates performed to existing
code, respectively.

For example, to fulfil the 5th extension of the modular version (we began with the 4th
one), we performed ten updates (code additions and deletions) in one file, which increased
the length, effort and difficulty measures of the system programs in 14.5%, 9.2% and
26.8% respectively (i.e., 296 points more of length, 4.17 of more difficulty and 1,114 of
extra effort), when compared with the 4th extension (the previous one). Analogously, to
extend the non-modular version, one file was edited to perform deletions and additions
over twenty-one blocks of code, increasing the program length in 14.6% (333 points),

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 24/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

Figure 7 Scores of the auctionMAS’s according to the Halstead metric for complexity (Length, Dif-
ficulty, and Effort); where X -axis denotes the version of the MAS from the initial implementation (1)
to that resulting of performing all six extensions (7) (c.f. Table 5), and Y-axis corresponds to the score.
The updates chart summarizes the block additions and deletions of source code that had to be performed
to implement each extension. The plans and components charts stand for the total plans and components
(i.e., beliefs, goals, events, etc.), respectively. The coupling chart shows the sum of coupling scores of all
modules in the MAS. The cohesion chart presents the average cohesion per module, the maximum value
for this score is 1, and higher values mean less cohesive modules.

Full-size DOI: 10.7717/peerjcs.1162/fig-7

the difficulty in 2.8% (1.42 points) and the effort measure by 17.8% (933 points), when
compared with its previous extension. One source file was added to the system in both
versions, as result of the extension.

According to the results, a total of 40 updates and six rewrites were needed in themodular
version. On the contrary, in the non-modular version 90 updates and nine rewrites were
required. Particularly, in this case study we decreased the duties of maintainability and
extensibility by 55.5% and 33.3%, respectively (i.e., 50 updates and three rewrites less).
Therefore, we can argue that our approach makes easy the development of a project in
terms of maintenance and extensibility.

The Halstead metric scores better the modular versions in all its complexity measures,
i.e., length, difficulty and effort (c.f. Figure 7, lower is preferred). By analyzing this
particular case study, it is because in the non-modular version, extra terms are needed in
multiple occasions for disambiguating which components (e.g., beliefs, plans, goals) are
referred by identifiers. This increases both vocabulary and length of the system programs.
Specifically in JaCa, by integrating namespaces with artifacts following our solution, the
use of annotations artifact_name and artifact_id (c.f. Ricci, Piunti & Viroli (2011)) is
considerably reduced.

From extensions one to three, where participant agents are added to the MAS, both
versions needed the same number of updates and suffer a similar increase of Halstead

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 25/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1162/fig-7
http://dx.doi.org/10.7717/peerj-cs.1162

measures. This can be explained because Jason already provides an include/1 directive
which allows incorporating code from a source file, and the functionality needed to
participate in auctions was developed in a separate file which is included by the participant
agents at booting; similarly to including a module but without namespaces support.
However, it worth emphasizing that the old Jason directive (include/1) does not solve
the name collision issue and it also lacks information on hiding support. It just avoids
the code repetition across multiple files. To illustrate this consider the auctioneer agent
bob using price/2 (e.g., to set its maximum price), when it loads the source file with the
implementation of the functionality to participate in an auction (by means of an include
with no namespaces support), due to belief price/2 is already used by the including file
to calculate the amount of bids for tasks, it ends in a name-collision. Then, the produced
behaviour is not clearly determined (Madden and Logan Madden & Logan (2010) report
on this, based on the usage of the include directive incorporated in earlier Jason releases
for building Multi-Agent System of large-scale Madden & Logan (2007)). To cope with
this, it is necessary either to rename the belief used by bob for setting its maximum price,
or perform the name change in the included file. If the latter option is intended to be use,
updating every source file to avoid symbol duplicity is needed.

From extension four to six the modular versions take advantage in the score. This is
because of the mechanism that allows focusing artifacts in multiple namespaces, e.g., to
make an observable event, such as close signal, trigger multiple plans in different modules,
such that each module follows a particular and independent course of action (plan) as
result of the same percept (e.g., for printing-out information, registering statistics and
notifying winners of auctions to delegate the corresponding task). To achieve extensions
four to six in the modular version, the current working code remained almost unchanged,
since a new module was written each time that was needed to independently handle the
specific event with a new plan. Contrastingly, in the non-modular version, i.e., without
namespaces, the exclusive plan to handle the event had to be rewritten each time that it
was required to trigger an additional course of action for a particular event; considerably
increasing the number of updates.

The results also show that, as long as the system grows through extensions, the difference
of the scores between both versions increases progressively, which suggest that aftermultiple
extensions the non-modular version will be even more complex, hence harder to maintain
and extend than the modular version (c.f. Figure 7).

The following section provides an overview of our proposal for modules pointing out
the topics mentioned in the ‘Introduction’; it remarks the main properties of our proposal
contrasting them with the related work discussed in ‘Related Work’. It also presents a
discussion about how some Object-Oriented programming concepts can be modeled in
Agent-Oriented programming using our namespace-based solution for modularization.

DISCUSSION
BDI-AOP languages benefit from the notion of namespace to address modularization.
Under this approach the main concerns of modularization can be overcome: (a) the

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

association of each componentwith a unique namespace solves the name-collision problem:
reference disambiguation is possible due the usage of qualified names; (b) the interface
comprises the global namespace concept, to make possible both importing components
and extending module’s functionality; (c) dynamic association of components of a module
to namespaces is granted by the notion of abstract namespace, this allows composing a
solution with higher degree of complexity by two possibilities: loading multiple times the
same module in disparate namespaces, and loading several modules into one namespace.
(d) encapsulation of components is possible thanks to local namespaces making easy the
development of modules in an independent way, thus modules are committed to handle
just a given set of percepts and actions requested by programmers. Loading modules
at runtime results in the acquisition of new capabilities on the fly (without execution
interruption), so this can be seen as a kind of dynamic updating. The strategy we use
to perform modularization is the key difference of our approach. First, adding more
information to the identifiers of components, allows establishing a logical way to organize
them in the mental state of agents. Second, those approaches described in ‘Related Work’
commonly require introducing additional transition rules in order to handle several belief
bases and plan libraries, even event queues, in one reasoning cycle, i.e., they consider
modules as active components within the operational semantics due to they deal with
multiple mental states inside agents. As a consequence, the implementation of solutions
is more difficult. On the other hand, our approach provides a solution at the syntax level.
Thus, to implement our proposal in different BDI languages it is enough just to perform a
parser extension.

Next, considering what Nunes (2014) discusses and some principles from Object-
Oriented programming, we argue about the suitability of our approach to set up different
relationships between modules, namely: association, composition and generalization. Note
that capability is a quite similar concept of module, both include a set of beliefs, plans
and goals (Busetta et al., 1999; Braubach, Pokahr & Lamersdorf, 2006). Consequently, those
relationships related to capabilities also apply to our notion of module.

Association
With the execution of any plan of a loader module a goal is required, and the plan to achieve
it belongs to the loaded module, then we say there is an association. According to Nunes
(2014), one consequence of association is to increase cohesion because of functionality
modularization allows addressing different concerns using separate modules.

In Codes 10 and 11 an example of association is provided: the module one loads the
A module for the execution of one plan from it. The information hiding principle holds
when the module is loaded by a local namespace, i.e., in this relationship module A ignores
about module one.
1 {namespace(ia,local)}
2

3 +!do <- .include("A.asl",ia);
4 !ia::inc (2).

Code 10: one.asl

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 27/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

1 count (0).
2

3 +!inc(S): count(X)
4 <- -+count(X+S).

Code 11: A.asl

Composition
Compared with the association, relationship composition is a stronger one. According
to Nunes (2014) there are situations where components belonging to the loader module
are used by the loaded module. Despite the increase in coupling between modules,
containment notion can be modeled granting information hiding. Such a relationship is
not implemented in our approach, allowing preserving the information hiding principle
and to reduce module coupling. We opted to use arguments to share information between
modules load and loaded whenever they are required. However, the modeling of the
composition relationship described byNunes (2014) is possible with namespaces: it suffices
with the addition of a symbol to refer the abstract namespace of the loader module. An
example of this can be seen in Codes 12 and 13. A module named B get access to one belief
from module two: rate/1. Then, when the plan do/0 from module two the output is the
printing of counter 1. The symbol ◦ is used here to indicate the abstract namespace of
loader. To support this, an extension of the mangling function (c.f. algorithm 1) can be
performed in order to substitute the ◦ symbol by the right namespace at loading-time.
1 {namespace(ib,local)}
2

3 rate (0.50).
4

5 +!do <- .include("B.asl",ib);
6 !ib::inc (2);
7 ?ib::count(X);
8 .print("counter ",X).

Code 12: two.asl

1 count (0).
2

3 +!inc(S): count(X)
4 <- ?◦::rate(R);
5 -+count(X+S*R).
6

7

8

Code 13: B.asl

Cardinality
Cardinality in module associations can be represented due to the fact that one module can
be loaded into several namespaces while instances keep its own beliefs. For instance, in
Codes 3 and 7 from the ‘Case Study’ section, the module bob loads an initiator instance
for each contract net protocol it fires, then, the state of each negotiation is preserved.

Visibility
With local namespaces, components can be kept private within a module. On the other
hand, global namespaces can be used to share components between all modules. Moreover,

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

when sharing components among the instances of the same modules is required, for
instance to avoid the replication of the same information over and over, our approach
allows representing this by proposing a new level for namespace visibility (along with
global and local). In this way, a module namespace grant access to all its instances only.
This is similar to the concept of class visibility level in the Object-Oriented Programming
approach, for example, the Java modifier static.

Multi-Inheritance
Our approach makes it possible to implement a concept like this one through the union of
modules. It is possible to reuse beliefs, plans and goals from multiple modules, to compose
newmodules implementing a more complex and specialized behavior. The example shown
in Codes 14 and 15 reproduces the case when a module C inherits B by placing together
all its components in one namespace (line 9). When a local namespace has a parent, it is
hidden to the child module, and vice-versa. A parent module can be included at the end of
the source code, this overrides the current plan inc/1 in A (if multiple plans are applicable
for an specific event, the default selection function chooses the first plan added to the
agent’s plans library). This latter works particularly well in Jason given the fact that the
first plan within the code is the selected one for execution, no matter if there are several
applicable plans to handle an event.

Dhaon & Collier (2014) present a more sophisticated solution for languages alike
AgentSpeak(L). Their method customizes the selection function that the interpreter
uses to determine the next plan to be executed, so a disambiguation of plans to be executed
is performed whenever different implementations of the same plan occurs at different level
within the hierarchy of modules.

At runtime level, a dynamic extension of modules is also achieved by using the
namespaces notion. For instance, in Code 7 at lines 8–12, the functionality of module
auction (c.f. Code 6) is extended. This can be convenient in the case that an extension
of the functionality of only one instance is required but there is no need to create a new
module.

Related to this topic, it is worth mentioning a solution introduced by Baldoni, Giordano
& Martelli (1995), that seems more general for modeling multi-inheritance in agent-
oriented programming. Such approach is grounded in the scope of logic programming,
and consists not in the use of namespaces but a modal operator, to group rules; thus
the inheritance relationship between modules is defined by a set of logic implications.
However, its feasibility for being adopted in the context of agent-oriented programming
should be carefully analyzed and evaluated.
1 {namespace(ic,local)}
2

3 +!init
4 <- .include("C.asl",ic);
5 !ic::inc (2);
6 !ic::mult (2);
7 ?ic::count(X);
8 .print("counter " X).
9

Code 14: three.asl

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 29/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

1 // belief count/1 is inherited from A
2 +!mult(T): count(X)
3 <- -+count(X*T).
4

5 // overrides plan inc/1 in A
6 +!inc(S): count(X)
7 <- -+count(X+1).
8

9 {include("A.asl")}

Code 15: C.asl

CONCLUSION AND FUTURE WORK
We proposed a solution for BDI Agent development pinned to the A&A meta-model
following the principles of modularization; we also explored the premise that the notions
of namespace and bridge, as proposed in this article, are suitable to cope with the main
problems related to modularization, namely, overcoming name-collisions, maintaining
the information hiding principle, offering an interface, and integrating environment
components with modules. We illustrated some examples of the properties and feasibility
of our approach by implementing it under the framework of JaCa. Furthermore, the present
approach was successfully implemented as part of the official distribution of Jason (Bordini,
Hübner & Wooldridge, 2007) and CArtAgO (Ricci et al., 2009), a widely used platform for
programming MAS.

As a future work, we aim to provide a mechanism to unload modules for allowing
removing all components from modules that agent is no longer using. It is also relevant
to consider and analyze the design efforts at early phase of development related to tasks
of decomposing functionality into modules and defining its interface, as well as explore a
refactoring algorithm to automatically perform modularization. We have to point out that
the design effort is close related to the complexity of the intended task, where refactoring
is really needed. In our work, we established the basis to make this possible. Finally, we
aim to explore the use of namespaces to modularize organizational reasoning plans and
patterns, e.g., as conceived by Moise (Hannoun et al., 2000), to implement our proposal
in other languages and test multiple study cases to deeply evaluate the generality of the
discussed approach.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Gustavo Ortiz-Hernndez conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 30/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162

• Alejandro Guerra-Hernndez conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.
• Jomi F. Hbner conceived and designed the experiments, performed the computation
work, authored or reviewed drafts of the article, and approved the final draft.
• Wulfrano Arturo Luna-Ramrez conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.
The Jason 2.1 Code that includes the implementation of our proposal is also available

at SourceForge: https://sourceforge.net/projects/jason/files/jason/version%202.1. (Code
authored by Jomi Hbner (Department of Automation and Systems, Federal University of
Santa Catarina, Florianpolis, SC, Brazil), Rafael Bordini (Pontifcia Universidade Catlica do
Rio Grande do Sul, Porto Alegre, RS, Bazil))

The Java Code (scripts to automatically analyse the metrics to evaluate the case of
study) and the Jason Project of our case of study are also available at SourceForge:
https://sourceforge.net/projects/house-building. (Code authored by Gustavo Ortiz-
Hernandez).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1162#supplemental-information.

REFERENCES
Abran A, Bourque P, Dupuis R, Moore JW (eds.) 2001.Guide to the software engineering

body of knowledge - SWEBOK. Piscataway: IEEE Press.
AschermannM, Kraus P, Müller JP. 2017. LightJason. In: Criado Pacheco N, Carrascosa

C, Osman N, Julián Inglada V, eds.Multi-agent systems and agreement technologies.
Cham: Springer International Publishing, 58–66.

Baldoni M, Giordano L, Martelli A. 1995. A modal extension of logic programming:
modularity, beliefs and hypothetical reasoning. Journal of Logic and Computation
8(5):597–635.

Bordini RH, Braubach L, Dastani M, Seghrouchni AEF, Gomez-Sanz JJ, Leite J, O’Hare
G, Pokahr A, Ricci A. 2006. A survey of programming languages and platforms for
multi-agent systems. Informatica 30(1).

Bordini RH, Dastani M, Dix J, El Fallah Seghrouchni A. 2005.Multi-agent programming:
languages, platforms and applications.Multiagent systems, artificial societies, and
simulated organizations, New York, NY, USA: Springer Science & Business Media,
Inc.

Bordini RH, Hübner JF, Wooldridge MJ. 2007. Programming multi-agent systems in
agentspeak using Jason. Hoboken: John Wiley & Sons, Ltd, XVII–292.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 31/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1162#supplemental-information
https://sourceforge.net/projects/jason/files/jason/version%202.1
https://sourceforge.net/projects/house-building
http://dx.doi.org/10.7717/peerj-cs.1162#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1162#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1162

BratmanM. 1987. Intention, plans, and practical reason. Cambridge: Harvard University
Press.

Braubach L, Pokahr A, LamersdorfW. 2006. Extending the capability concept for
flexible BDI agent modularization. In: Proceedings of the third international conference
on programming multi-agent systems, ProMAS’05. Berlin, Heidelberg: Springer-
Verlag, 139–155 DOI 10.1007/11678823_9.

Braubach L, Pokahr E, LamersdorfW. 2005. Jadex: a BDI agent system combining
middleware and reasoning. In: Ch. of software agent-based applications, platforms and
development kits. Birkhaeuser, 143–168.

Bray T, Hollander D, Layman A, Tobin R. 2006. Namespaces in XML 1.0. Available at
https://www.w3.org/TR/2006/REC-xml-names-20060816/.

Busetta P, Howden N, Rnnquist R, Hodgson A. 1999. Structuring BDI agents in
functional clusters. In: Jennings NR, Lesprance Y, eds. Intelligent agents VI, agent
theories, architectures, and languages. ATAL 1999. Lecture notes in computer science,
vol. 1757. Berlin, Heidelberg: Springer DOI 10.1007/10719619_21.

CapM, Dastani M, Harbers M. 2011. Belief/goal sharing BDI modules. In: The 10th
international conference on autonomous agents and multiagent systems - Volume 3,
AAMAS ’11. Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems, 1201–1202.

Cuesta P, Gomez A, Gonzalez J. 2008. Agent oriented software engineering. In:
Moreno A, Pavon J, eds. Issues in multi-agent systems.Whitestein series in software
agent technologies and autonomic computing, Birkhuser Basel: Springer, 1–31
DOI 10.1007/978-3-7643-8543-9_1.

da Rocha Costa AC. 2018. Two concepts of module, for agent societies and inter-societal
agent systems. In: El Fallah-Seghrouchni A, Ricci A, Son TC, eds. Engineering multi-
agent systems. Cham: Springer International Publishing, 56–72.

Dastani M. 2008. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3):214–248 DOI 10.1007/s10458-008-9036-y.

Dastani M, Mol CP, Steunebrink BR. 2009. Modularity in agent programming lan-
guages an illustration in extended 2APL. In: Bui TD, Ho TV, Ha QT, eds. Intelligent
Agents and Multi-Agent Systems. PRIMA 2008. Lecture notes in computer science, vol.
5357. Berlin, Heidelberg: Springer DOI 10.1007/978-3-540-89674-6_17.

Dastani M, van Riemsdijk B, Dignum F, Meyer J-JC. 2004. A programming language
for cognitive agents: goal directed 3APL. In: Dastani M, Dix J, El Fallah-Seghrouchni
A, eds. Programming multi-agent systems. ProMAS 2003. Lecture notes in computer
science, vol. 3067. Berlin, Heidelberg: Springer DOI 10.1007/978-3-540-25936-7_6.

Dastani M, Steunebrink B. 2009.Modularity in BDI-based multi-agent programming
languages. In: Proc. of the 2009 IEEE/WIC/ACM international joint conference on
web intelligence and intelligent agent technology - Volume 02, WI-IAT ’09. Piscataway:
IEEE, 581–584 DOI 10.1109/WI-IAT.2009.214.

Dennett DC. 1987, reprinted 2002. The intentional stance. Cambridge: The MIT
Press/Bradford Books.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 32/35

https://peerj.com
http://dx.doi.org/10.1007/11678823_9
https://www.w3.org/TR/2006/REC-xml-names-20060816/
http://dx.doi.org/10.1007/10719619_21
http://dx.doi.org/10.1007/978-3-7643-8543-9_1
http://dx.doi.org/10.1007/s10458-008-9036-y
http://dx.doi.org/10.1007/978-3-540-89674-6_17
http://dx.doi.org/10.1007/978-3-540-25936-7_6
http://dx.doi.org/10.1109/WI-IAT.2009.214
http://dx.doi.org/10.7717/peerj-cs.1162

Dhaon A, Collier RW. 2014.Multiple inheritance in AgentSpeak(L)-Style programming
languages. In: Proceedings of the 4th international workshop on programming based
on actors agents; decentralized control, AGERE! ’14. New York: ACM, 109–120
DOI 10.1145/2687357.2687362.

Federico Bergenti M-PG, Zambonelli F. 2004. Methodologies and software engineering
for agent systems. In: Bergenti F, Gleizes M-P, Zambonelli F, eds. The agent-oriented
software engineering handbook. volume 11 of Multiagent systems, artificial societies, and
simulated organizations, New York: Springer, 4–10.

García-Magariño I, CossentinoM, Seidita V. 2010. A metrics suite for evaluating
agent-oriented architectures. In: Proceedings of the 2010 ACM symposium on applied
computing, SAC ’10. New York: ACM, DOI 10.1145/1774088.1774278.

HalsteadMH. 1977. Elements of software science (Operating and Programming Systems
Series). New York: Elsevier Science Inc.

HannounM, Boissier O, Sichman J, Sayettat C. 2000. MOISE: an organizational
model for multi-agent systems. In: Monard M, Sichman J, eds. Advances in artificial
intelligence. IBERAMIA SBIA 2000. Lecture notes in computer science, vol. 1952.
Berlin, Heidelberg: Springer, 156–165 DOI 10.1007/3-540-44399-1_17.

Hindriks K. 2008. Modules as policy-based intentions: modular agent programming
in GOAL. In: Dastani M, El Fallah Seghrouchni A, Ricci A, Winikoff M, eds.
Programming Multi-Agent Systems. ProMAS 2007. Lecture notes in computer science,
vol. 4908. Berlin, Heidelberg: Springer-Verlag, 156–171.

Hindriks KV. 2009. Multi-agent programming: languages, tools and applications. In: El
Fallah Seghrouchni A, Dix J, Dastani M, Bordini RH, eds.Multi-agent programming.
Boston: Springer, 119–157 DOI 10.1007/978-0-387-89299-3_4.

van der HoekW,Wooldridge M. 2012. Logics for multiagent systems. AI Magazine
33(3):92–105.

Howden N, Ronnquist R, Hodgson A, Lucas A. 2001. JACK intelligent agents—
summary of an agent infrastructure. In: Proceedings of the 5th ACM international
conference on autonomous agents. New York: ACM.

Hübner JF, Bordini RH. 2016. Jason a java-based interpreter for AgentSpeak. Available at
http://jason.sourceforge.net/wp/ (accessed on 15 May 2022).

Hübner JF, Bordini RH. 2020. Jason 2.1 download page. Available at https://sourceforge.
net/projects/jason/files/jason/version%202.1 (accessed on 15 May 2022).

Jennings NR. 1999. Agent-oriented software engineering. In: Garijo FJ, Boman M, eds.
Multi-Agent System Engineering. MAAMAW 1999. Lecture notes in computer science,
vol. 1647. Berlin, Heidelberg: Springer, 4–10
DOI 10.1007/3-540-48437-X_1.

Jordan HR, Collier R. 2012. Evaluating agent-oriented programs: towards multi-
paradigm metrics. In: Collier R, Dix J, Novák P, eds. Programming multi-agent
systems. Berlin, Heidelberg: Springer, 63–78.

Maamar Z, Moulin B. 1997. Software agent-oriented frameworks for heterogeneous
information access. In: Proceedings of the 4th KRDB workshop. 11-1–11-6.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 33/35

https://peerj.com
http://dx.doi.org/10.1145/2687357.2687362
http://dx.doi.org/10.1145/1774088.1774278
http://dx.doi.org/10.1007/3-540-44399-1_17
http://dx.doi.org/10.1007/978-0-387-89299-3_4
http://jason.sourceforge.net/wp/
https://sourceforge.net/projects/jason/files/jason/version%202.1
https://sourceforge.net/projects/jason/files/jason/version%202.1
http://dx.doi.org/10.1007/3-540-48437-X_1
http://dx.doi.org/10.7717/peerj-cs.1162

Madden N, Logan B. 2007. Collaborative narrative generation in persistent virtual
environments. In: Intelligent narrative technologies: papers from the 2007 AAAI Fall
Symposium. Menlo Park: AAAI Press.

Madden N, Logan B. 2010. Modularity and compositionality in Jason. In: Braubach
L, Briot J-P, Thangarajah J, eds. Programming Multi-Agent Systems. ProMAS 2009.
Lecture notes in computer science, vol. 5919. Berlin, Heidelberg: Springer, 237–253
DOI 10.1007/978-3-642-14843-9_15.

Meyer J-JC, Broersen J, Herzig A. 2015. BDI Logics. In: van Ditmarsch H, Halpern JY,
va der Hoek W, Kooi B, eds. Handbook of logics for knowledge and belief. Suwanee:
College Publications, 453–498.

Nunes I. 2014. Improving the design and modularity of BDI agents with capability
relationships. In: Dalpiaz F, Dix J, van Riemsdijk MB, eds. Engineering Multi-Agent
Systems. EMAS 2014. Lecture notes in computer science, vol. 8758. Cham: Springer,
58–80 DOI 10.1007/978-3-319-14484-9_4.

Ortíz-Hernq́ndez G. 2020a. Jason house building project. Available at https://sourceforge.
net/projects/house-building/files/house_building.rar (accessed on 15 May 2022).

Ortíz-Hernq́ndez G. 2020b. Scripts to estimate coupling and cohesion scores. Available
at https://sourceforge.net/projects/house-building/files/ScoreCalcs (accessed on 15 May
2022).

Ortíz-Hernq́ndez G. 2020c. Several house building project implementations. Available at
https://sourceforge.net/projects/house-building (accessed on 15 May 2022).

Ortiz-Hernández G, Fred Hübner J, Bordini RH, Guerra-Hernández A, Hoyos-
Rivera GdJ, Cruz-Ramírez N. 2016. A namespace approach for modularity in BDI
programming languages. In: Baldoni M, Müller J, Nunes I, Zalila-Wenkstern R, eds.
Engineering Multi-Agent Systems. EMAS 2016. Lecture notes in computer science, vol.
10093. Cham: Springer DOI 10.1007/978-3-319-50983-9_7.

Ortiz-Hernandez G, Guerra-Hernandez A, Hoyos-Rivera GJ. 2013. JasMo—a modu-
larization framework for Jason. In: 12th Mexican international conference on artificial
inteligence (MICAI). Mexico City. Piscataway: IEEE, 3–9.

Rao AS. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde W, Perram JW, eds. Agents Breaking Away. MAAMAW 1996.
Lecture notes in computer science, vol. 1038. Berlin, Heidelberg: Springer, 42–55
DOI 10.1007/BFb0031845.

Ricci A, Bordini RH, Hübner JF, Collier R. 2019. AgentSpeak(ER): enhanced encapsula-
tion in agent plans. In: Weyns D, Mascardi V, Ricci A, eds. Engineering multi-agent
systems. Cham: Springer International Publishing, 34–51.

Ricci A, Piunti M, Viroli M. 2009. Externalisation and internalization: a new perspective
on agent modularisation in multi-agent system programming. In: Languages,
methodologies, and development tools for multi-agent systems, second international
workshop, LADS 2009, Torino, Italy, September 7-9, 2009, revised selected papers.
35–54 DOI 10.1007/978-3-642-13338-1_3.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 34/35

https://peerj.com
http://dx.doi.org/10.1007/978-3-642-14843-9_15
http://dx.doi.org/10.1007/978-3-319-14484-9_4
https://sourceforge.net/projects/house-building/files/house_building.rar
https://sourceforge.net/projects/house-building/files/house_building.rar
https://sourceforge.net/projects/house-building/files/ScoreCalcs
https://sourceforge.net/projects/house-building
http://dx.doi.org/10.1007/978-3-319-50983-9_7
http://dx.doi.org/10.1007/BFb0031845
http://dx.doi.org/10.1007/978-3-642-13338-1_3
http://dx.doi.org/10.7717/peerj-cs.1162

Ricci A, Piunti M, Viroli M. 2011. Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems
23(2):158–192 DOI 10.1007/s10458-010-9140-7.

Ricci A, Piunti M, Viroli M, Omicini A. 2009. Environment programming in CArtAgO.
In: El Fallah Seghrouchni A, Dix J, Dastani M, Bordini R, eds.Multi-agent program-
ming. Boston: Springer, 259–288 DOI 10.1007/978-0-387-89299-3_8.

Searle JR. 1969. Speech Acts. Cambridge: Cambridge University Press.
Shoham Y. 1993. Agent-oriented Programming. Artificial Intelligence 60(1):51–92

DOI 10.1016/0004-3702(93)90034-9.
Suryanarayana G, SamarthyamG, Sharma T. 2015. Chapter 5 - modularization smells.

In: Suryanarayana G, Samarthyam G, Sharma T, eds. Refactoring for software design
smells. Boston: Morgan Kaufmann, 93–122 DOI 10.1016/B978-0-12-801397-7.00005-9.

Van Riemsdijk MB, Dastani M, Meyer J-JC, de Boer FS. 2006. Goal-oriented modularity
in agent programming. In: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, AAMAS ’06. New York: ACM,
1271–1278 DOI 10.1145/1160633.1160864.

Weyns D, Omicini A, Odell J. 2007. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1):5–30
DOI 10.1007/s10458-006-0012-0.

Zanbar AT, Kaminka GA. 2019. Agents are more complex than other software: an
empirical investigation. In: Pre-proceedings of the 7th international workshop on
engineering multi-agent systems (EMAS 2019). Montreal, Canada.

Ortiz-Hernández et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1162 35/35

https://peerj.com
http://dx.doi.org/10.1007/s10458-010-9140-7
http://dx.doi.org/10.1007/978-0-387-89299-3_8
http://dx.doi.org/10.1016/0004-3702(93)90034-9
http://dx.doi.org/10.1016/B978-0-12-801397-7.00005-9
http://dx.doi.org/10.1145/1160633.1160864
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.7717/peerj-cs.1162

