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ABSTRACT
Virtual motion and pose from images and video can be estimated by detecting body
joints and their interconnection. The human body has diverse and complicated poses
in yoga, making its classification challenging. This study estimates yoga poses from the
images using a neural network. Five different yoga poses, viz. downdog, tree, plank,
warrior2, and goddess in the form of RGB images are used as the target inputs. The
BlazePose model was used to localize the body joints of the yoga poses. It detected
a maximum of 33 body joints, referred to as keypoints, covering almost all the body
parts. Keypoints achieved from the model are considered as predicted joint locations.
True keypoints, as the ground truth body joint for individual yoga poses, are identified
manually using the open source image annotation tool namedMakesense AI. A detailed
analysis of the body joint detection accuracy is proposed in the form of percentage of
corrected keypoints (PCK) and percentage of detected joints (PDJ) for individual body
parts and individual body joints, respectively. An algorithm is designed to measure
PCK and PDJ in which the distance between the predicted joint location and true joint
location is calculated. The experiment evaluation suggests that the adopted model
obtained 93.9% PCK for the goddess pose. The maximum PCK achieved for the
goddess pose, i.e., 93.9%, PDJ evaluation was carried out in the staggering mode where
maximum PDJ is obtained as 90% to 100% for almost all the body joints.

Subjects Human-Computer Interaction, Computer Vision, Neural Networks
Keywords BlazePose, PCK, PDJ, Joint Detection, Pose Estimation

INTRODUCTION
Human pose estimation is one of the most challenging problems of computer vision.
Human pose estimation involves localizing various body joints like shoulder, hip, elbow,
ankle, knee, etc., at the correct location of a static image or video data. Body joint detection
and localization are carried out in two-dimensional coordinates (x , y) or three-dimensional
coordinates (x , y , z). If the localization of joints is in 2D coordinates, then the estimated
pose is considered 2D human pose estimation; otherwise, it is deemed to be 3D human pose
estimation (Zheng et al., 2020). Representation of detected body joint localization on the
input data consists of three approaches: (1) skeleton model, where body joints are detected
in the point form and connected in the form of a line that creates limbs. (2) Shape model in
which body parts are detected instead of body joints and represented in square boxes. (3)
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Meshmodel represents the detected body parts as complete 3D volume. Therefore, themesh
model is used to represent 3D pose estimation. The skeleton model represents body-joint
localization in the proposed approach (Desai & Mewada, 2021). The methodology to
estimate human pose consists of the traditional method (Yang & Ramanan, 2012) and the
deep neural network-based approach. Various deep neural networks like DeepPose (Toshev
& Szegedy, 2014), OpenPose (Cao et al., 2018), Convolutional Pose Machine (Wei et al.,
2016), Stacked Hourglass Network (Newell, Yang & Deng, 2016), BlazePose (Bazarevsky et
al., 2020), etc., are used to identify accurate body joint localization on the human pose. We
used the BlazePose model to estimate body joints in the proposed article.

Estimated body joints are accurate if the location of estimated body joints is the same
as actual joints. Accuracy is measured based on the percentage of detected joints (PDJ)
as well as the percentage of corrected keypoints (PCK) (Dang et al., 2019). Human pose
estimation is essential in various real-time applications like activity recognition, people
tracking system, sports gaming, fitness application, yoga, asanas, etc.

In yoga, almost all important body joints of a human pose are activated. Therefore, yoga
exercise needs proper knowledge and appropriate tutors. The recent trend is to follow the
yoga pose online or through recorded videos. However, the evaluation of yoga following
online or recorded sessions is complex. Furthermore, the human body has unusual poses
in yoga, making it more challenging than other activities. Therefore, accurate localization
of these body joints is of utmost importance for estimating the various yoga poses. In
literature, different machine learning frameworks were adopted to detect body joints,
including wearable sensor-based models (Wu et al., 2019; Puranik, Kanthi & Nayak, 2021),
a Kinect model (Trejo & Yuan, 2018; Islam et al., 2017), OpenPose model (Cao et al., 2018),
and computer vision-basedmodels.Wu et al. (2019) presented artificial intelligencemodels
using these sensor data for yoga pose recognition. However, the wearable sensor needs
the attachment of the sensors to the body joints during yoga, and Kinect based approach
needs a depth camera. Therefore, the sensor-based system is not convenient for users and
is impractical. On the other hand, computer vision approaches are invasive and most
suitable.

Accurate body joint detection plays a primary role in pose estimation and classification.
The existing yoga pose identification techniques focus more on deep neural network-based
classification models, and most literature evaluated the classification rate using confusion
matrix parameters. Another alternative to assess the yoga pose classification is based on
joint detection accuracy parameters viz. PCK, PDJ represents different method of yoga
pose classification. This paper presents the adoption of a well-known machine learning
algorithm to improve body joint detection from the image. According to the authors’
knowledge, quantitative evaluation of body-joint detection is unique among all literature.
The main contributions of the paper are as follows:

• A well-known body-joints detection model, BlazePose, is adopted and trained from
scratch for the localization of body joints in yoga poses.
• In contrast to the conventional pose estimation models, which use 18 body joints to
represent a human pose, detecting 33 key points is proposed to achieve higher accuracy.
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• True keypoints as the ground truth body joint is created using an open source image
annotation tool named Makesense AI. All true keypoints of individual body joints are
manually added and annotated on individual yoga poses.
• This article presents an in-depth analysis of each detected keypoint and a comprehensive
study on various yoga poses using these key points. Finally, a quantitative evaluation
and comparative analysis using PCK and PDJ are presented.

The article’s overall structure is as follows: Section 2 represents the related work carried
out. The dataset used for testing and validating the proposedmodel is introduced in Section
3. The proposed model is explained in Section 4. The experimental setup and test results
are discussed in Section 5. Finally, Section 6 gives the concluding remarks and further
scope of application.

RELATED WORK
Yoga plays a vital role in developing a balance between mental, physical, and spiritual
states. The current situation of the COVID-19 pandemic creates maximum stress and
anxiety worldwide (Sharma, Anand & Kumar, 2020). Regular yoga practice is essential in
developing strong immunity and improving human beings’ psychological development.
This leads to reduced stress and anxiety in the human body. The yoga technique is easy,
flexible, and cost-effective as anyone can practice it at home only by learning basic yoga
asana without any instrument. Yoga is the cumulative process of different types of ‘‘asana’’.
The term ‘‘asana’’ has been derived from the Sanskrit term, which means ‘‘posture’’ or
‘‘pose’’. An asana is a different kind of body posture or poses like ‘‘Sukhasana (easy pose)’’,
‘‘Naukasana (boat pose)’’, ‘‘Dhanurasana (bow pose)’’, ‘‘Bujangasana (Cobra pose)’’, etc.
Asanas help to enhance body flexibility by lubricating the muscles, joints, ligaments, and
other body parts.

Literature proposed the work carried out by various researchers for automated yoga pose
estimation during exercises and worked out. Thar, Winn & Funabiki (2019) proposed yoga
pose classification methods for self-learning. Body joints are achieved using the OpenPose
(Cao et al., 2018) approach, and 24 body joints are used to represent the complete human
skeleton. This system can classify up to four yoga poses with 85% to 90% classification
accuracy. However, the localization accuracy of body joints is notmeasured in the presented
system.

Lin et al. (2021) introduced a self-practice yoga system for tracking the performance
of body posture during exercises. The OpenPose model is used to detect 24 keypoints of
body joints. The localization accuracy of body joints is measured according to the angle
designed by the vectors x and y of respective joints. The mean and standard deviation of
the measured angle is classified in the posture evaluation in three different classes. The
presented approach does not measure the accuracy of body-joint localization as per the
standard evaluation parameters of body joints.

Yamao & Kubota (2021) proposed a human pose recognition system using the PoseNet
(Chen et al., 2017) model on the Pi (2015) Platform. The PoseNet model detected 18 body
joints. The test results are presented, measuring the accuracy of pose recognition that
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demonstrated body parts’ movement. The body joints localization algorithm is based on
the traditional angle method instead of standard evaluation parameters.

To guide and supervise yoga students for their correct yoga poses, Huang et al. (2020)
have proposed ‘‘Miss yoga’’ a yoga assistantmobile application based on keypoint detection.
The application is built based on the OpenPose model to detect correct body key points
during yoga. Application estimates the keypoints and calculates the score by comparing
estimated key points with corrected keypoints. The application also uses vocal instruction
to assist yoga students in providing a cooperative environment. The proposed approach is
more inclined to the accuracy of body posture rather than body-joint localization.

Trejo and Yuan proposed recognition of yoga poses using Kinect (Trejo & Yuan, 2018).
Kinect technology comprises a depth camera sensor (Shotton et al., 2012). The proposed
interactive system recognizes six different yoga poses, with the accuracy of the pose being
measured using the mean and deviation of the joint location of concerned body parts.
However, a depth camera sensor is not readily available for users.

The existing approach of yoga pose estimation represented a significant role in yoga pose
classification. Furthermore, almost all current techniques used the OpenPose or PoseNet
model to localize body joints and detect 18 to 24 body joints to recognize the whole body.
However, we proposed a different human body joint detection approach and analyzed the
pose estimation accuracy, using various yoga poses as the input. Furthermore, 33 body
joints were identified from the BlazePose model representing the whole body. In the later
stage of the proposed approach, the pose estimation accuracy is measured in the form of
standard evaluation parameters, viz. PCK, PDJ, plays a vital role in classifying yoga poses.

DATASET
Any neural network’s input source is considered an image or video frame in detecting the
keypoints to estimate the human pose. The images or video frame information is often
represented in pixel values demonstrated in CSV files. Therefore, real-time images or video
frames collected in CSV file is considered the dataset. The proposed system uses the Yoga
Pose Dataset for further implementation (Pandit, 2020). The yoga poses datasets contain
various yoga poses images like downdog poses, goddess poses, plank poses, tree poses, and
warrior2 poses. The dataset contains 1,000 images of mentioned poses. A total of 70% of
images of this dataset are used for training purposes, and the remaining 30% are used for
testing purposes. Table 1 represents the summary of the Yoga Poses Dataset. Each image
has a resolution of 300 × 300. The images in the dataset have different backgrounds with
various skin colors and hair tones. The images are also captured from different camera
angles and different lighting conditions. The sample images of all mentioned yoga poses
are demonstrated in Fig. 1 Below.

PROPOSED APPROACH
The proposed approach objective is to detect the number of human body joints and
analyze the human pose estimation accuracy using percentage of correct keypoints (PCK)
and percentage of detected joints (PDJ) evaluation parameters. As shown in Fig. 2, The
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Table 1 Summary of yoga poses dataset.

Types of
yoga poses

Total no.
of images

Total no.
of training
images

Total no.
of testing
images

Goddess 260 180 80
Tree 229 160 69
Warrior2 361 252 109
Plank 381 266 115
Downdog 320 223 97

Figure 1 Sample images from dataset. Image source: https://www.kaggle.com/datasets/niharika41298/
yoga-poses-dataset.

Full-size DOI: 10.7717/peerjcs.1152/fig-1

overall approach is decomposed into two main phases. Firstly, detection of human body
joints using the BlazePose model for all five yoga poses (for understanding, the general
approach is exemplified with one pose goddess in Fig. 2). Secondly, accuracy analysis for
all five yoga poses. In the second phase, the detected keypoints are validated using the
annotation tool, and a discussion on joint-detection accuracy is presented.
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Figure 2 The functional flow of the proposed approach.
Full-size DOI: 10.7717/peerjcs.1152/fig-2

BlazePose model
Generally, human body joint detection is carried out using COCO topology, which uses
18 body joints to detect human pose (Lin et al., 2014). Representation of the viewpoint
of human body joints as key points is carried out in the form of two different categories:
(1) Person Centric (PC) and (2) Observer Centric (OC). The Person Centric viewpoint
is considered the keypoint position decided concerning the person’s view. An Observer
Centric viewpoint is regarded as a keypoint position determined concerning the observer’s
view (Fu, Zhang & Huang, 2015). The BlazePose is another human pose estimation model
developed by Google and presented at CVPR 2020 as an on-device real-time body pose
tracking model. As shown in Fig. 3, the BlazePose model efficiently detects 33 human
body joint landmarks in static images or videos, including the head, torso, arms, and legs.
Moreover, it shows all 33 key points in depth per the person’s centric (PC) view. The
BlazePose model can estimate and detect maximum body joints; it is used for dance poses
and fitness applications.

BlazePose model is an example of a machine learning pipeline (ML) approach for
human pose tracking. The ML pipeline approach for human pose estimation combines
pose detector and pose tracker. As shown in Fig. 4(A), the pose detector model can detect
the human pose as the Region-of-Interest (RoI) from the static image or consisting of a
video frame. The pose tracker model subsequently predicts 33 keypoints from the resultant
RoI generated by the pose detector model. As shown in Fig. 4(B), the pose detector model
only runs for the first frame and derives RoI for the video frame data. Once RoI is derived
for the first frame, the pose tracker model runs for the same frame and identifies all
33 keypoints for the derived RoI. For the subsequent frames, RoI is derived from every
previous frame, and the pose tracker model is applied to the respective frame for keypoints.

The human pose detection and tracking process of the ML pipeline must be speedy
(in the form of a few milliseconds) for real-time applications like sports and yoga. The
person’s face is the main target element to detect the pose speedily in the image and video.
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Figure 3 33 keypoints in BlazePose model.
Full-size DOI: 10.7717/peerjcs.1152/fig-3

Figure 4 Machine learning pipeline approach for human pose estimation.
Full-size DOI: 10.7717/peerjcs.1152/fig-4
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Figure 5 Leonardo da Vinci’s Vitruvian man approach.
Full-size DOI: 10.7717/peerjcs.1152/fig-5

This is because the person’s face contains high-contrast variation and comparatively more
minor variation than the appearance. It results from training a simple neural network
to estimate the primary position of a person for the input data. The motivation for the
Face detector training is taken from the Blazeface model (Bazarevsky et al., 2019), where
a submillisecond neural face detection algorithm is carried out on the mobile platform.
The model only detects the position of a single person within the image or video input.
However, it cannot identify the position of multi persons as individuals. Once the face is
detected, the estimated position of the remaining part of the human body is carried out
from the inspiration of Leonardo da Vinci’s Vitruvian Man approach.

In addition to face detection using the Blazeface model, Leonardo’s approach to
estimating the body part’s position is based on the global centric circle. Here the center of
the ring is the predicted midpoint of the person’s hip, the radius of the ring is the perimeter
of the whole body, and the inclination of the angle line connects the shoulder and hip’s
midpoint. The given approach even tracks the person’s position in complex cases like yoga
asanas and fitness applications. Figure 5, shown below, illustrates the suggested method.

The tracking architecture of the BlazePose model is shown in Fig. 6. The overall training
of the model is divided into two sections: heatmap and regression. Initially, the model
trains the input image to identify the heatmap of the human body joints. In the later part of
the model, this heatmap will be used as the supervised element for the regression encoder,
which confers the body-joint location. The output of the model is 33 keypoints as human
body joints. All 33 key points are represented as individual landmarks. The landmarks
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Figure 6 Tracking architecture for BlazePose model.
Full-size DOI: 10.7717/peerjcs.1152/fig-6

include (x,y,z), visibility, and presence. Here (x,y,z) indicates the position of individual
keypoints in the image or frame. Visibility represents the probability of keypoints occluded
by the object in the frame. Presence represents the probability of a keypoint in the frame.
Thus, landmarks consist of 165 elements for individual keypoints.

In the proposed approach, the BlazePose algorithm is applied to input images for
estimating the keypoints. It combines offset, heatmap, and regression to detect keypoints
from the frame. First, the heatmaps are used effectively to control lightweight embedding;
later, the regression encoder uses them. The skip connection provides a balance between
the low and high-level features. The model localizes and estimates the keypoints on the
input image and also records localization using x and y coordinates in the CSV file. These
key points are considered as predicted joints for the further procedure. Summarization of
localization of keypoints using the BlazePose model is represented in Algorithm 1.
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Algorithm 1: Localization of Keypoints using BlazepsoeModel

Input: Set of RGB Images — P
Set of BlazePose Landmarks — L

Output: Set of Resultant Images R imposed with pose Landmark L
Set of BlazePose coordinates in train.csv file.

1. Initialize supported python libraries for BlazePose model
2. Initialize BlazePose landmark — L
3. Initialize Input Image path (P)
4. Define path for Resultant Images (R)
5. For P Images do

Train BlazePose model to estimate the localization of all body joints
Save the resultant images (R)

End
6. Record Blazepsoe coordinates x,y in train.csv
7. Return {train.csv, Resultant Images R}

Image annotation and true keypoint estimation using AI tool
Estimation of accuracy needs the true position of body joints in the image. Unfortunately,
no such database is available specifically for various yoga poses. In the proposed approach,
we used the Makesense AI image annotation tool (Prats Cristia, 2021) to mark the ground
truth joints of the pose within images. Make sense AI is the open-source and platform-
independent image annotation tool used for labeling the keypoints in the object detection
environment of images. Before starting the labeling process, the labels are imported
manually for the respective objects. The Makesense AI tool has three different labeling
methods: Point Form, Line Form, and Polygon Form. The keypoint detection is labeled in
point form. However, the area and volume of the object can be marked in the line form or
the polygon form. Keypoints and resultant regions can be extracted from the image in the
form of x and y coordinates of the respective pixels with reference to the size of the image.
The pixel information is exported in a CSV file. All 33 keypoints are loaded manually as
labels for further annotation in the proposed approach. After fixing the labels, input images
are imported to the annotation tool. Once image input is given, all the visible joints are
manually annotated according to the labels. After completing the annotation, all recorded
key points are exported to a CSV file. These key points are considered actual joints for
further quantitative parameters evaluation.

Analysis of pose estimation accuracy
The accuracy measurement for human pose estimation is carried out by identifying the
correct position of keypoints or estimating the correct position of human body parts.
Different evaluation parameters include PCP, PCK, PDJ, AP, AR, OSK, etc. PCK and PDJ
parameters are almost identical, except the multiplication factor to achieve the threshold
are different, as shown in Eq. (1) and Eq. (2). In the proposed approach, we focus on PDJ
and PCK evaluation parameters to measure the accuracy of the human pose.
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Percentage of detected joints (PDJ)
In the initial stage of human pose estimation, the percentage of corrected parts (PCP) is
considered the evaluation parameter for pose estimation, which measures the accuracy of
detected limbs (body parts). However, the major limitation of PCP is failing to measure
accuracy for short limbs. Therefore, a PDJ evaluation parameter is introduced by Munea
et al. (2020). PDJ is the detected joint found correct if the mean distance between the
predicted joint and ground through joint lies within certain threshold limits. However, the
threshold is defined as follows:

Threshold as PDJ@0.2= |Predicted Joint − Ground Truth Joint|

< 0.2∗Torso Diameter. (1)

Here Torso Diameter is the distance between two opposite body joints of the torso, i.e.,
the distance between the right hip and left shoulder.

Threshold rates can be changed by changing the fraction value from 0.1 to 0.4 to achieve
better accuracy of PDJ. The higher value of PDJ expressed a better model.

Percentage of correct keypoints (PCK)
The percentage of correct key points defined as estimated keypoints is considered valid
if the distance between predicted joints (achieved by training the model) and ground
truth joints lies within the boundary of certain threshold limits. However, the threshold is
defined as follows:

Threshold as PCK@0.2= |Predicted Joint − Ground Truth Joint|

< 0.2∗ThresholdMax. (2)

Here ThresholdMax Torso Height is considered a side with a maximum length of the
outer rectangle covering ground truth body joints (Shamsafar & Ebrahimnezhad, 2018).
The higher value of PDJ expressed a better model.

Keypoint estimation accuracy is proposed by developing an algorithm using PCK
and PDJ as evaluation parameters. The PCK and PDJ algorithm is developed in the
MATLAB environment, where predicted and ground truth joints are used to compute the
localization accuracy of body joints. Algorithm 2 presents accuracy parameters PCK and
PDJ calculation.
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Algorithm 2: Computation of accuracy parameters PCK and PDJ

Input: Set of Predicted body joints — R
Set of Real body joints — K
Set of Body joints Name— A
Set of Body Part Name— B

Output: PCK for individual body part B and average PCK
PDJ (0.1→ 0.4) for individual body Joints A

1. Initialize all body joints (as per Blazepsoe Model) as set C
2. Compute PCK:

{PCKB, Mean}← {R, K,C, B};
Return {PCKB, Mean}

3. Initialize Reference joint pair as set D
Compute PDJ:

{PDJ0.1→ 0.4}← {R, K, D, C, A};
Return {PDJ0.1→ 0.4}

EXPERIMENTAL SETUP & TEST RESULTS DISCUSSION
The experimental setup of the proposed approach is a stepwise process. The first step
is the keypoints localization using the BlazePose model and actual keypoint estimation
using the AI tool. The second step is the computation of accuracy, i.e., PCK and PDJ.
The resultant PCK and PDJ achieved for the BlazePose model are compared with the
OpenPose model. The OpenPose model identifies 18 keypoints as per the COCO dataset
notation. The yoga dataset input image is given to the OpenPose model to determine the
location of 18 keypoints. These keypoints are considered the predicted keypoints. Later, the
Image annotation tool is used to localize the ground truth joints as per the COCO dataset
notations. For specific yoga poses like downdog pose and plank pose, we observed that some
body parts are not visible due to complex posture. In the ground truth localization process,
non-visible keypoints are replicated by visual keypoint localization content. For example,
for the downdog pose, if the right shoulder body part is not visible in the image and the
left shoulder body part is visible. Localization of the left shoulder is replicated for the right
shoulder body part. The computation algorithm finds PCK and PDJ for various yoga poses
for OpenPose models. Table 2 represents the summary of keypoint localization operating
BlazePose and OpenPose model for different yoga poses. It is significantly observed that
the OpenPose model fails to localize three keypoints for warrior2 posture, six keypoints
for plank pose, and 12 keypoints for downdog pose.

The ground truth localization of body joints achieved from the image annotation tool
and the estimated localization of body joints acquired using the BlazePose model for
individual yoga poses are shown in Fig. 7. For all five yoga poses, the BlazePose model
predicted the joint location; however, in some wired poses, viz. downdog and plank, a few
of the body joints are missing. For these missing joints, the model has been trained so that,
first, it predicts the location of the present joint and takes the projection of the present
symmetry joint. Here the model detects the location of the projected point, and finally, it

Desai and Mewada (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1152 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1152


Table 2 Summary of keypoint localization using BlazePose and OpenPose model for various yoga
poses.

Yoga
poses

Model
name

Targeted
keypoints

Detected
keypoints

Missing
keypoints

BlazePose 33 33 0
Goddess

OpenPose 18 18 0
BlazePose 33 33 0

Tree
OpenPose 18 18 0
BlazePose 33 33 0

Warrior2
OpenPose 18 15 3
BlazePose 33 33 0

Plank
OpenPose 18 12 6
BlazePose 33 33 0Downdog
OpenPose 18 6 12

Notes.
(Significance of Bold Text): For Warrior2 Yoga pose, OpenPose Model detected only 15 keypoints and missing 3 keypoints as
compared BlazePose Model.
For Plank Yoga pose, OpenPose Model detected only 12 keypoints and missing 6 keypoints as compared BlazePose Model.
For Downdog Yoga pose, OpenPose Model detected only 6 keypoints and missing 12 keypoints as compared BlazePose Model.

localizes the body joint, which is not visible in the input image. As shown in Fig. 7(D), it
is demonstrated that only the left shoulder is visible in the input image for the plank pose.
At the same time, the right shoulder is not visible. In this case, the BlazePose model first
predicts the location of the left shoulder and then takes the same parameter’s projection
to detect the right shoulder’s location. However, as shown in Fig. 7(E), a few of the body
joints of a plank yoga pose is not visible and therefore cannot be detected through the
image annotation tool. The missing joint locations are considered using symmetry in the
actual joint location analysis phase. For example, in the plank pose, the right shoulder is
not visible in the input image. However, the left shoulder is visible in the input image.
So with consideration of the left and right shoulders being symmetrical to each other, we
considered the localization of the left shoulder as the localization of the right shoulder in
the process of ground truth localization.

Table 3 represents the PCK evaluation achieved from the model, which runs individually
for various yoga poses. Quantitative information described in Table 3 shows that the overall
body pose is achieved by estimating several body parts from the Nose to Foot Index. Table
3 shows that the goddess pose obtained maximum PCK, i.e., 93.9%, whereas the downdog
pose obtained minimum PCK, i.e., 69.7%. Table 3 shows the accuracy order for estimating
yoga poses as goddess, tree, warrior2, plank, and downdog. The downdog pose replicates
joint locations using symmetry without body joints in the ground truth localization.

The PDJ0.1 →0.4 evaluation parameter for goddess yoga pose for BlazePose is
represented in Table 4. As per Table 4 representation, the detection rate of a body part
elbow was 50% initially with a threshold of 0.1, and it improved significantly to 100% PDJ
at a 0.4 threshold. Among all estimated body parts, only the hip part gives 50% PDJ. The
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Figure 7 Yoga poses with predicted joints and true joints location obtained using proposed model.
Image source: https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset.

Full-size DOI: 10.7717/peerjcs.1152/fig-7

remaining parts achieved 100% in PDJ0.4. Figure 8 shows the PDJ0.1→0.4 detection rate
on goddess yoga pose for the BlazePose model.

The PDJ0.1→0.4 for tree yoga pose for BlazePose is shown in Table 5. Body parts index,
and thumb results in 0% PDJ rate as these two parts are almost missing in the ground truth
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Table 3 Individual percentage of correct keypoints (PCK) on various yoga poses using BlazePose
model.

Body parts Yoga poses

Goddess Tree Warrior2 Plank Downdog

Nose 100 100 100 100 100
Eye Inner 100 100 50 0 100
Eye 100 100 50 100 100
Eye Outer 100 100 50 100 100
Ear 100 100 50 100 0
Mouth 100 100 50 100 100
Shoulder 100 100 100 100 100
Elbow 50 100 100 100 100
Wrist 100 100 100 50 100
Pinky 100 100 100 50 0
Index 100 0 100 50 0
Thumb 100 0 100 50 0
Hip 50 100 100 50 100
Knee 100 100 100 100 100
Ankle 100 100 100 50 100
Heel 100 50 50 50 100
Foot Index 100 50 50 100 0
Mean 93.9 81.8 78.8 72.7 69.7

Notes.
(Significance of Bold Text): The Goddess Yoga pose achieve highest mean PCK as 93.9% among all other Yoga Poses.

Figure 8 PDJ0.1_0.4 Detection rate on goddess yoga pose for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-8
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Table 4 Percentage of detected joints (PDJ) on goddess yoga pose for BlazePose.

Body parts Goddess

PDJ@0.1 PDJ@0.2 PDJ@0.3 PDJ@0.4

Nose 100 100 100 100
Eye Inner 100 100 100 100
Eye 100 100 100 100
Eye Outer 100 100 100 100
Ear 100 100 100 100
Mouth 100 100 100 100
Shoulder 100 100 100 100
Elbow 50 50 50 100
Wrist 100 100 100 100
Pinky 0 100 100 100
Index 0 100 100 100
Thumb 0 100 100 100
Hip 0 50 50 50
Knee 100 100 100 100
Ankle 100 100 100 100
Heel 100 100 100 100
Foot Index 100 100 100 100

Notes.
(Significance of Bold Text): The Pinky, Index and Thumb body parts improvise PDJ rate from 0% to 100% at different PDJ
Level.
The Elbow body part improvise PDJ rate from 50% to 100% at different PDJ Level.
(Significance of Blue Text): The Hip body part indicate PDJ rate of only 50% due to improper visibility of this body part in
Goddess Yoga Pose.

localization of tree pose. The heel and the foot index parts achieve 50% PDJ in the final
PDJ stage. The remaining parts gained 100% in PDJ0.4. Figure 9 shows the PDJ0.1→0.4
detection rate on tree yoga pose for the BlazePose model.

The PDJ0.1→0.4 for the warrior2 yoga pose is demonstrated in Table 6. As per Table 6,
a few body parts achieve 50% of the PDJ rate, covering the eye, ear, mouth, heel, and foot
index from the overall body parts. The remaining body parts achieved 100% as PDJ0.4.
Figure 10 shows the PDJ0.1→0.4 detections rate on warrior2 yoga pose for the BlazePose
model.

The plank yoga pose achieves a 100% PDJ rate for nose as body parts. The remaining
body parts identify 50% as the PDJ rate. PDJ0.1→0.4 for plank yoga pose is demonstrated
in Table 7. As shown in the table, the eye inner is not visible from the pose therefore, we
obtained PDJ as 0 for Eye Inner. Figure 11 shows the PDJ0.1→0.4 detection rate on Plank
Yoga Pose for the BlazePose model.

The downdog yoga pose achieves minimum PDJ among all other yoga poses. This is
because, in the downdog yoga pose, the missing ground truth body joints are replicated
with the visible ground truth body joints considering symmetry. Table 8 shows PDJ rates
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Table 5 Percentage of detected joints (PDJ) on tree yoga pose for BlazePose.

Body parts Tree

PDJ@0.1 PDJ@0.2 PDJ@0.3 PDJ@0.4

Nose 100 100 100 100
Eye Inner 100 100 100 100
Eye 100 100 100 100
Eye Outer 100 100 100 100
Ear 100 100 100 100
Mouth 100 100 100 100
Shoulder 100 100 100 100
Elbow 100 100 100 100
Wrist 100 100 100 100
Pinky 50 100 100 100
Index 0 0 0 0
Thumb 0 0 0 0
Hip 0 100 100 100
Knee 100 100 100 100
Ankle 100 100 100 100
Heel 50 50 50 50
Foot Index 50 50 50 50

Notes.
(Significance of Bold Text): The Hip body part improvise PDJ rate from 0% to 100% at different PDJ Level.
The Pinky body part improvise PDJ rate from 50% to 100% at different PDJ Level.
(Significance of Blue Text): The Heel and Foot Index body parts indicate PDJ rate of only 50% due to improper visibility of
these body parts in Tree Yoga Pose.
(Significance of Red Text): The Index and Thumb body parts indicate PDJ rate of 0% due to invisibility of these body parts in
Tree Yoga Pose.

for the downdog yoga poses for various body parts. Figure 12 shows the PDJ0.1→0.4
detection rate on downdog yoga pose for the BlazePose model.

Table 9 represents the PDJ evaluation achieved for various yoga poses using the BlazePose
model. Here the average PDJ (PDJ0.1→ 0.4) is considered for individual body parts for
respective yoga poses. Quantitative information described in Table 9 shows that the overall
body pose is achieved by estimating several body parts from Nose to Foot Index. As shown
in the table, the goddesss pose achieved maximum PDJ, i.e., 89.71%, whereas the downdog
pose obtained minimum PDJ, i.e., 25.74%. Among all the yoga poses, the downdog pose
and the plank pose achieved minimum PDJ accuracy because the model identifies few of
the body parts are absent or over imposing in both the yoga poses.

The PDJ0.1 →0.4 comparative analysis for all five yoga poses for BlazePose and
OpenPose model is represented in Table 10. For both models, PDJ parameters improvise
their results in staggering mode from PDJ0.1 to PDJ0.4. It shows that PDJ0.4 is maximum
in the range of 70% to 100% for the BlazePose model for common body parts compared
to the OpenPose model. However, the PDJ0.4 for ear body parts for the BlazePose model
is the same as the OpenPose model. This is because ear key points for downdog and plank
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Figure 9 PDJ0.1_0.4 detection rate on tree yoga pose for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-9

Figure 10 PDJ0.1_0.4 detection rate on warrior2 yoga pose for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-10
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Table 6 Percentage of detected joints (PDJ) on warrior2 yoga pose for BlazePose.

Body parts Warrior2

PDJ@0.1 PDJ@0.2 PDJ@0.3 PDJ@0.4

Nose 100 100 100 100
Eye Inner 50 50 50 50
Eye 50 50 50 50
Eye Outer 50 50 50 50
Ear 50 50 50 50
Mouth 50 50 50 50
Shoulder 100 100 100 100
Elbow 100 100 100 100
Wrist 100 100 100 100
Pinky 50 100 100 100
Index 0 100 100 100
Thumb 100 100 100 100
Hip 0 100 100 100
Knee 50 100 100 100
Ankle 100 100 100 100
Heel 50 50 50 50
Foot Index 50 50 50 50

Notes.
(Significance of Bold Text): The Index and Hip body parts improvise PDJ rate from 0% to 100% at different PDJ Level.
The Pinky and Knee body parts improvise PDJ rate from 50% to 100% at different PDJ Level.
(Significance of Blue Text): The Eye Inner, Eye, Eye Outer, Ear, Mouth, Heel & Foot Index body parts indicate PDJ rate of only
50% due to improper visibility of these body parts in Warrior2 Yoga Pose.

yoga poses are almost missing in the ground truth localization of BlazePose joints. So the
missing localization of the respective body part is replicated with symmetry body joint
location of the same pose. Figures 13 and 14 show an overall PDJ0.1→0.4 detection rate
on all five yoga poses for BlazePose and OpenPose, respectively.

Comparative analysis of PCK evaluation parameters for MPII dataset of existing
model viz ConvNet (Carreira et al., 2016), Stacked Hour Glass (Newell, Yang & Deng,
2016) & HrNet (Sun et al., 2019) along with BlazePose model (with yoga pose dataset)
is demonstrated in Table 11. It is observed that all existing models are targeted for the
minimum number of body joints like shoulder, elbow, wrist, etc. In contrast, the BlazePose
model can detect themaximumnumber of body joints. It is also observed that the BlazePose
model for the yoga pose dataset gives higher accuracy for almost all the body joints than
the other models with the MPII dataset. It shows that the proposed approach provides the
highest accuracy for complex datasets.

The bifurcation of training and testing images of the yoga pose dataset is further used
to train the BlazePose model. The model is trained individually for the training and testing
image sets. Furthermore, the model is evaluated with different evaluation parameters:
accuracy, loss, precision, recall, and f1-score individually for 33 and 18 body joints. Figures
15(A) and Fig. 15(B) demonstrate the model accuracy curve for 33 body joints and 18 body
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Table 7 Percentage of detected joints (PDJ) on plank yoga pose for BlazePose.

Body parts Plank

PDJ@0.1 PDJ@0.2 PDJ@0.3 PDJ@0.4

Nose 100 100 100 100
Eye Inner 0 0 0 0
Eye 100 100 100 100
Eye Outer 100 100 100 100
Ear 0 100 100 100
Mouth 100 100 100 100
Shoulder 50 100 100 100
Elbow 50 100 100 100
Wrist 50 50 50 100
Pinky 0 50 50 50
Index 0 50 100 100
Thumb 0 50 100 100
Hip 0 50 100 100
Knee 100 100 100 100
Ankle 0 50 100 100
Heel 0 50 100 100
Foot Index 50 100 100 100

Notes.
(Significance of Bold Text): The Ear, Index, Thumb, Hip, Ankle and Heel body parts improvise PDJ rate from 0% to 100% at
different PDJ level.
The Shoulder, Elbow, Wrist and Foot Index body parts improvise PDJ rate from 50% 100% at different PDJ level.
(Significance of Blue Text): The Pinky body part indicate PDJ rate of only 50% due to improper visibility of this body part in
Plank Yoga Pose.
(Significance of Red Text): The Eye Inner body part indicate PDJ rate of 0% due to invisibility of this body part in Plank Yoga
Pose.

joints. The model loss curve for 33 and 18 body joints is represented in Fig. 16(A) and Fig.
16(B). Table 12 demonstrates the additional model parameters, viz. Precision, recall, and
F1-score for 33 and 18 body joints. It is observed that the model achieved 91% accuracy in
localizing the maximum body joints.

CONCLUSIONS
This article presents a different approach to human body joint detection and its analysis
for human pose estimation accuracy. The proposed method is demonstrated in the five
different yoga poses. Body joints are detected using the BlazePose model—a machine
learning pipeline approach. The model sees the maximum number of body joints (33) to
estimate the overall pose. The accuracy of detected body joints is represented with PCK and
PDJ evaluation parameters. PCK and PDJ measurement algorithms evaluate the distance
between the predicted and actual joint locations. According to the test results, the model
successfully detected almost all body joints except downdog pose and the plank pose. The
posture has half-body visibility in the downdog and plank poses; therefore, half of the
body joints cannot be detected. These missing joints affected the accuracy. Usually, the
missing body joints are at the same location as the visible half-body joints. Therefore, we
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Figure 11 PDJ0.1_0.4 detection rate on plank yoga pose for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-11

Figure 12 PDJ0.1_0.4 detection rate on downdog yoga pose for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-12
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Table 8 Percentage of detected joints (PDJ) on downdog yoga pose for BlazePose.

Body parts Downdog

PDJ@0.1 PDJ@0.2 PDJ@0.3 PDJ@0.4

Nose 100 100 100 100
Eye Inner 100 100 100 100
Eye 100 100 100 100
Eye Outer 100 100 100 100
Ear 0 0 0 0
Mouth 100 100 100 100
Shoulder 100 100 100 100
Elbow 50 100 100 100
Wrist 0 100 100 100
Pinky 0 0 0 100
Index 0 0 100 100
Thumb 0 0 0 0
Hip 50 100 100 100
Knee 100 100 100 100
Ankle 100 100 100 100
Heel 50 100 100 100
Foot Index 0 0 0 0

Notes.
(Significance of Bold Text): The Wrist, Pinky and Index body parts improvise PDJ rate from 0% to 100% at different PDJ
level.
The Elbow, Hip and Heel body parts improvise PDJ rate from 50% 100% at different PDJ level.
(Significance of Red Text): The Ear, Thumb and Foot Index body parts indicate PDJ rate of 0% due to invisibility of these
body part in Downdog Yoga Pose.

can justify that a 50% detection rate is equivalent to 100% for these two poses. PCK results
achieved a maximum of 93.9% for the goddess pose among all five poses. The PDJ results
are conducted in the staggering mode as PDJ0.1→ 0.4. The proposed model succeeded
with PDJ ranging from 90% to 100% for almost all the body joints. The maximum PDJ
result is achieved for goddess pose as 89.71%. The proposed approach also represents a
comparative analysis of PCK and PDJ parameters of the BlazePose and OpenPose models.
BlazePose model recognizes 33 body joints with higher accuracy than 18 OpenPose body
joints.

Furthermore, there is a significant difference in PCK and PDJ analysis of BlazePose and
OpenPose models. PCK and PDJ results for BlazePose can be improved if all the body joints
are detected in the downdog and plank poses. Additionally, the system can be extended by
applying the proposed approach to complex yoga poses like surya namaskara.
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Table 9 Individual percentage of detected joints (PDJ) on various yoga poses using BlazePose model.

Body parts Yoga poses

Goddess Tree Warrior2 Plank Downdog

Nose 100 100 100 100 50
Eye Inner 100 100 50 0 25
Eye 100 100 50 50 25
Eye Outer 100 100 50 50 25
Ear 100 100 50 50 0
Mouth 100 100 50 50 25
Shoulder 100 100 100 50 25
Elbow 62.5 100 100 50 25
Wrist 100 100 100 50 25
Pinky 75 87.5 87.5 50 18.75
Index 75 0 75 37.5 18.75
Thumb 75 0 100 50 0
Hip 37.5 75 75 50 25
Knee 100 100 87.5 50 50
Ankle 100 100 100 50 50
Heel 100 50 50 50 50
Foot Index 100 50 50 50 0
Mean 89.71 80.15 75.00 49.26 25.74

Notes.
(Significance of Bold Text): The Goddess Yoga Pose achieved highest mean PDJ rate as 89.71% among all other Yoga Poses.

Table 10 Comparative analysis of PDJ 0.1–>0.4 with other model for yoga dataset.

Model
name

PDJ
points

Common body parts

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle

BlazePose PDJ@0.1 100 90 50 90 70 70 10 90 80
OpenPose PDJ@0.1 60 50 60 40 60 60 30 20 30
BlazePose PDJ@0.2 100 90 70 100 90 90 80 100 90
OpenPose PDJ@0.2 80 50 70 60 60 60 50 40 40
BlazePose PDJ@0.3 100 90 70 100 90 90 90 100 100
OpenPose PDJ@0.3 80 60 70 60 60 60 50 40 40
BlazePose PDJ@0.4 100 90 70 100 100 100 90 100 100
OpenPose PDJ@0.4 80 60 70 60 60 60 50 40 40

Notes.
(Significance of Bold Text): The BlazePose Model achieve highest PDJ rate at all PDJ level for common body parts as compared to the OpenPose Model.
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Figure 13 Overall PDJ0.1_0.4 detection rate on all five yoga poses for BlazePose.
Full-size DOI: 10.7717/peerjcs.1152/fig-13

Figure 14 Overall PDJ0.1_0.4 detection rate on all five yoga poses for OpenPose.
Full-size DOI: 10.7717/peerjcs.1152/fig-14
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Table 11 Comparative analysis of PCK with other models and different dataset.

Model
name

Dataset Common body parts

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle

ConvNet MPII – – – 91.9 83.9 77.8 80.9 72.3 64.8
Stacked Hour Glass MP-II – – – 96.3 91.2 87.1 90.1 87.4 83.9
HrNet MP-II – – – 96.9 92.8 89.0 91.5 89.0 85.7
BlazePose Yoga Pose 100 90 70 100 90 90 80 100 90

Notes.
(Significance of Bold Text): The BlazePose Model with Yoga Pose dataset achieve highest PCK rate for all common body parts as compared to other existing models with MPII
dataset.

Table 12 Body joint accuracy analysis and its comparison for various poses.

Name of
yoga pose

Number of
joints targeted

Precision Recall F1-score Overall
accuracy

Downdog 0.97 0.99 0.98
Goddess 0.82 0.70 0.76
Plank 0.98 0.94 0.96
Tree 0.82 0.88 0.85
Warrior2

17

0.80 0.87 0.83

88%

Downdog 0.98 0.99 0.98
Goddess 0.80 0.77 0.78
Plank 0.98 0.96 0.97
Tree 0.84 0.88 0.85
Warrior2

33

0.83 0.84 0.84

91%

Figure 15 Model accuracy curve. (A) For 33 body joints. (B) For 18 body joints.
Full-size DOI: 10.7717/peerjcs.1152/fig-15
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Figure 16 Model loss curve. (A) For 33 body joints. (B) For 18 body joints.
Full-size DOI: 10.7717/peerjcs.1152/fig-16
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