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absence of a species. The algorithm used by the system was selected after comparing the

accuracy and efficiency of three variants of a template-based classification. The algorithm

computes a similarity vector by comparing a template of a species call with time

increments across the spectrogram. Statistical features are extracted from this vector and

used as input for a Random Forest classifier that predicts presence or absence of the

species in the recording. The fastest algorithm variant had the highest average accuracy

and specificity; therefore, it was implemented in the ARBIMON web-based system.
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ABSTRACT9

We developed a web-based cloud-hosted system that allow users to archive, listen, visualize, and

annotate recordings. The system also provides tools to convert these annotations into datasets that can

be used to train a computer to detect the presence or absence of a species. The algorithm used by the

system was selected after comparing the accuracy and efficiency of three variants of a template-based

classification. The algorithm computes a similarity vector by comparing a template of a species call

with time increments across the spectrogram. Statistical features are extracted from this vector and

used as input for a Random Forest classifier that predicts presence or absence of the species in the

recording. The fastest algorithm variant had the highest average accuracy and specificity; therefore, it

was implemented in the ARBIMON web-based system.
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INTRODUCTION19

Monitoring fauna is an important task for ecologists, natural resource managers, and conservationists.20

Historically, most data were collected manually by scientists that went to the field and annotated their21

observations (Terborgh et al., 1990). This generally limited the spatial and temporal extend of the22

data. Furthermore, given that the data were based on an individual’s observations, the information is23

difficult to verify, reducing its utility for understanding long-term ecological processes (Acevedo and24

Villanueva-Rivera, 2006).25

To understand the impacts of climate change and deforestation on the fauna, the scientific community26

needs long-term, wide-spread and frequent data (Walther et al., 2002). Passive acoustic monitoring (PAM)27

can contribute to this need because it facilitates the collection of large amounts of data from many sites28

simultaneously, and with virtually no impact to the fauna and environment (Brandes, 2008; Lammers29

et al., 2008; Tricas and Boyle, 2009; Celis-Murillo et al., 2012). In general, PAM systems include a30

microphone or a hydrophone connected to a self powered system and enough memory to store various31

weeks or months of recordings, but there are also permanent systems that use solar panels and an Internet32

connection to upload recordings in real time to a cloud based analytical platform (Aide et al., 2013).33

Passive recorders can easly create a very large data set (e.g. 100,000s of recordings) that is over-34

whelming to manage and analyze. Although reserachers often collect recordings twenty-four hours a day35

for weeks or months (Acevedo and Villanueva-Rivera, 2006; Brandes, 2008; Lammers et al., 2008; Sueur36

et al., 2008; Marques et al., 2013; Blumstein et al., 2011), in practice, most studies have only analyzed a37

small percentage of the total number of recordings.38

Web-based applications have been developed to facilitate data management of these increasingly39

large datasets (Aide et al., 2013; Villanueva-Rivera and Pijanowski, 2012), but the biggest challenge40

is to develop efficient and accurate algorithms for detecting the presence or absence of a species in41

many recordings. Algorithms for species identification have been developed using spectrogram matched42

filtering (Clark et al., 1987; Chabot, 1988), statistical feature extraction (Taylor, 1995; Grigg et al., 1996),43

k-Nearest neighbor algorithm (Hana et al., 2011; Gunasekaran and Revathy, 2010), Support Vector44
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Machine (Fagerlund, 2007; Acevedo et al., 2009), tree-based classifiers (Adams et al., 2010; Henderson45

and Hildebrand, 2011) and Template based classification (Anderson et al., 1996; Mellinger and Clark,46

2000), but most of these algorithms are built for a specific species and there was no infrastructure provided47

for the user to create models for other species.48

The main objective of this study was to compare the performance (e.g. efficiency and accuracy) of49

three variants of a template-based classification algorithm and incorporate the best into the ARBIMON II50

bioacoustic platform.51

MATERIALS AND METHODS52

Passive acoustic data acquisition53

We gathered recordings from five locations, four in Puerto Rico and one in Peru. Some of the record-54

ings were acquired using the Automated Remote Biodiversity Monitoring Network (ARBIMON) data55

acquisition system described in Aide et al. (2013) while others were acquired using the newest version of56

ARBIMON permanent recording station, which uses an Android cell phone and transmits the recorded57

data through a cellular network. All recordings have a sampling rate of 44.1kHz, a sampling depth of58

16-bit and an approximate duration of 60 seconds (±.5s)59

The locations in Puerto Rico were the Sabana Seca permanent station in Toa Baja, the Casa la Selva60

station in Carite Mountains (Patillas), El Yunque National Forest in Rio Grande and Mona Island (see61

Figure 1). The location in Peru was the Amarakaeri Communal Reserve in the Madre de Dios Region62

(see Figure 2). In all the locations, the recorders were programmed to record 1 minute of audio every63

10 minutes. The complete dataset has more than 100,000 1-minute recordings. We randomly chose 36264

recordings from Puerto Rico and 547 recordings from Peru for comparing the three algorithm variants.65

Figure 1. Recording locations in Puerto Rico.

We used the ARBIMON II web application interface to annotate the presence or absence of 21 species66

in all the recordings. Regions in the recording where a species emits a sound were also marked using67

the web interface. Each region of interest (ROI) is a rectangle delimited by starting time, ending time,68

lowest frequency and highest frequency along with a species id and sound type. The species included in69

the analysis are listed in Table 1, along with the number of total recordings and the number of recordings70

where the species is present or absent.71

Algorithm72

The algorithm recognition process is divided into three phases: 1) Template Computation, 2) Model73

Training and 3) Classification (see Figure 3). In Template computation all ROIs submitted by the user74

in the training set are aggregated into a template. In Model Training the template is used to compute75

recognition functions from validated audio recordings and features from the resulting vector V are76

computed. These features are used to train a random forest model. In the Classification phase the template77

is used to compute the features, but this time the features are fed to the trained random forest model to78

compute a prediction of presence or absence.79
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Figure 2. Recording location in Peru.

Figure 3. The three phases of the algorithm to create the species-specific models. In the Model Training

phase Reci is a recording, Vi is the vector generated by the recognition function on Reci and in the

Classification phase V is the the vector generated by the recognition function on the incoming recording.

In the following sections the Template Computation process will be explained, then the process of80

using the Template to extract features from a recording is presented and finally, the procedures to use the81

features to train the model and to classify recordings are discussed.82

Template Computation83

The template refers to the combination of all ROIs in the training data. To create a template we first start84

with the examples of the specific call of interest (i.e. ROIs) that were annotated from a set of recordings85

for a given species and a specific call type (e.g. common, alarm). Each ROI encompasses an example86
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Species Group Total Presence Absence Location

Eleutherodactylus cooki Amphibian 38 19 19 Carite

Eleutherodactylus brittoni Amphibian 38 17 21 Sabana Seca

Eleutherodactylus cochranae Amphibian 54 30 24 Sabana Seca

Eleutherodactylus coqui Amphibian 53 41 12 Sabana Seca

Eleutherodactylus juanariveroi Amphibian 35 14 21 Sabana Seca

Unknown Insect Insect 48 22 26 Sabana Seca

Epinephelus guttatus Fish 152 76 76 Mona Island

Megascops nudipes Bird 100 50 50 El Yunque

Microcerculus marginatus Bird 80 40 40 Peru

Basileuterus chrysogaster Bird 60 30 30 Peru

Myrmoborus leucophrys Bird 160 80 80 Peru

Basileuterus bivittatus Bird 100 50 50 Peru

Liosceles thoracicus Bird 76 38 38 Peru

Chlorothraupis carmioli Bird 112 56 56 Peru

Megascops guatemalae Bird 28 8 20 Peru

Saltator grossus Bird 68 34 34 Peru

Myrmeciza hemimelaena Bird 180 90 90 Peru

Thamnophilus schistaceus Bird 60 30 30 Peru

Hypocnemis subflava Bird 140 70 70 Peru

Percnostola lophotes Bird 100 50 50 Peru

Formicarius analis Bird 80 40 40 Peru

Table 1. Species, class, location and count of recordings with validated data.

of the call, and is an instance of time between time t1 and time t2 of a given recording and low and high87

boundary frequencies of f1 and f2, where t1 < t2 and f1 < f 2. In a general sense, we combine these88

examples to produce a template of a specific song type of a single species.89

Specifically, for each recording that has an annotated ROI, a spectrogram matrix (SM) is computed

using the Short Time Fourier Transform with a frame size of 1024 samples, 512 samples of overlap and

a Hanning analysis window, thus the matrices have 512 rows. For a recording with a sampling rate of

44,100 Hz, the matrix bin bandwidth is approximately 43.06 Hz. The SM is arranged so that the row

of index 0 represents the lowest frequency and the row with index 511 represents the highest frequency

of the spectrum. Properly stated the columns c1 to c2 and the rows from r1 to r2 of SM were extracted,

where:

c1 = ⌊t1 ×44100⌋, c2 = ⌊t2 ×44100⌋, r1 = ⌊ f1/43.06⌋ and r2 = ⌊ f2/43.06⌋.

The rows and columns that represent the ROI in the recording (between frequencies f1 and f2 and between90

times t1 and t2) are extracted. The submatrix of SM that contains only the area bounded by the ROI is91

define as SMROI and refer in the manuscript as the ROI matrix.92

Since the ROI matrices can vary in size, to compute the aggregation from the ROI matrices we have93

to take into account the difference in the number of rows and columns of the matrices. All recordings94

have the same sampling rate, 44100Hz. Thus the rows from different SMs, computed with the same95

parameters, will represent the same frequencies, i.e. rows with same indexes represent the same frequency.96

After the ROI matrix, SMROI , has been extracted from SM, the rows of SMROI will also represent specific97

frequencies. Thus, if we were to perform an element-wise matrix sum between two ROI matrices with98

potentially different number of rows, we should only sum rows that represent the same frequency.99

To take into account the difference in the number of columns of the ROI matrices, we use the Frobenius100

norm to optimized the aligment of the smaller ROI matrices and perform element-wise sums between101

rows that represent the same frequency. We present that algorithm in the following section and a flow102

chart of the process in Figure 4.103

Template Computation Algorithm:104

1. Generate the set of SMROI matrices by computing the short time Fourier Transform of all the user105

generated ROIs.106
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2. Create matrix SMmax, a duplicate of the first created matrix among the matrices with the largest107

number of columns.108

3. Set cmax as the number of columns in SMmax109

4. Create matrix Ttemp, with the same dimensions as SMmax and all entries equal to 0. This matrix will110

contain the element-wise addition of all the extracted SMROI matrices.111

5. Create matrix W with the same dimensions of SMmax and all entries equal to 0. This matrix will112

hold the count on the number of SMROI matrices that participate in the calculation of each element113

of Ttemp.114

6. For each one of the SMi ROI matrices in SMROI :115

(a) If SMi has the same number of columns as Ttemp:116

i. Align the rows of SMi and Ttemp so they represent equivalent frequencies and perform117

an element-wise addition of the matrices and put the result in Ttemp.118

ii. Add one to all the elements of the W matrix where the previous addition participated.119

(b) If the number of columns differs between SMi and Ttemp, then find the optimal alignment120

with SMmax as follows:121

i. Set ci as the number of columns in SMi.122

ii. Define (SMmax)I as the set of all submatrices of SMmax with the same dimensions as123

SMi. Note that the cardinality of (SMmax)I is cmax − ci.124

iii. For each Subk ∈ (SMmax)I :125

A. Compute dk = NORM(Subk −SMi) where NORM is the Frobenius norm defined

as:

NORM(A) =

√

∑
(i, j)

|a2
i, j|

where ai, j are the elements of matrix A.126

iv. Define Submin{dk} as the Subk matrix with the minimum dk. This is the optimal align-127

ment of SMi with SMmax.128

v. Align the rows of Submin{dk} and Ttemp so they represent equivalent frequencies, perform129

an element-wise addition of the matrices and put the result in Ttemp.130

vi. Add one to all the elements of the W matrix where the previous addition participated.131

7. Define the matrix Ttemplate as the element-wise division between the Ttemp matrix and the W matrix.132

The resulting Ttemplate matrix summarizes the information available in the ROI matrices submitted by133

the user and it will be used to extract information from the audio recordings that are to be analyzed. In134

this article each species Ttemplate was created using five ROIs.135

In Figure 5a a training set for the Eleutherodactylus coqui is presented and in Figure 5b the resulting136

template can be seen. This tool is very useful because the user can see immediately the effect of adding or137

subtracting a specific sample to the training set.138

Model Training139

The goal of this phase is to train a random forest model. The input to train the random forest are a series140

of statistical features extracted from vectors Vi that are created by computing a recognition function141

(similarity measure) between the computed Ttemplate and submatrices of the spectrogram matrices of a142

series of recordings.143

In the following section we present the details of the algorithm that processes a recording to create the144

recognition function vector and in Figure 6, we present a flowchart of the process.145
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Figure 4. Flowchart of the algorithm to generate the template of each species.

Algorithm to Create the Similarity Vector:146

1. Compute matrix SPEC, the submatrix of the spectrogram matrix that contains the frequencies in147

Ttemplate. Note that we are dealing with recordings that have the same sample rate as the recordings148

used to compute the Ttemplate.149

2. Define cSPEC, the number of columns of SPEC.150

3. Define ctemplate, the number of columns of Ttemplate. Note that cSPEC >> ctemplate since the SPEC151

matrix have the same number of columns as the whole spectrogram and that the Ttemplate matrix fits152

c = cSPEC − ctemplate +1 times inside the SPEC matrix. There are c submatrices of SPEC with the153

same dimensions as Ttemplate.154

4. Define step, the step factor by which Ttemplate will progresed over the SPEC matrix.155

5. Define n =
⌊

cSPEC−ctemplate

step

⌋

+ 1. Note that if step = 1 then n = c. In this work, however, this156

parameter was selected as step = 16 as a tradeoff for speed.157

6. Define SPECi as the submatrix of SPEC that spans the columns from i× step to i× step+ ctemplate158

7. Set i = 1159
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(a) (b)

Figure 5. (a) A training set with 16 examples of the call of E. coqui. (b) The resulting template from the

training set.

8. While i <= n160

(a) Compute the similarity measure measi for SPECi (the definition of measi for each of the161

three variants is provided in the following section).162

(b) Increase i by 1. Note that this is equivalent to progresing step columns in the SPEC matrix.163

9. Define the vector V as the vector containing the n similarity measures resulting from the previous164

steps. That is, V = [meas1,meas2,meas3, · · · ,measn].165

Figure 6. Flowchart of the algorithm to generate the similarity vector of each recording.
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Recognition Function166

We used three variations of a pattern match procedure to define the similarity measure vector V . First, the

Structural Similarity Index described in Wang et al. (2004) and implemented in van der Walt et al. (2014)

as compare_ssim with the default window size of seven unless the generated pattern is smaller. It will

be referred in the rest of the manuscript as the SSIM variant. For the SSIM variant we define measi as:

measi = SSI(Ttemplate,SPECi) ,

where SPECi is the submatrix of SPEC that spans the columns from i× step to i× step+ ctemplate and

the same number of rows as Ttemplate and V = [meas1,meas2,meas3, · · · ,measn] with

n =

⌊

cSPEC − ctemplate

step

⌋

+1.

Second, the dynamic thresholding method (threshold_adaptive) described in Wang et al.

(2004) with a block size of 127 and an arithmetic mean filter is used over both Ttemplate and SPECi before

multiplying them and applying the Frobenius norm and normalized by the norm of a matrix with same

dimensions as Ttemplate and all elements equal to one. Therefore, measi for the NORM variant is defined

as:

measi = FN
(

DT M(Ttemplate) .∗ DT M(SPECi)
)

/FN(U) ,

where again SPECi is the submatrix of SPEC that spans the columns from i× step to i× step+ ctemplate,

FN is the Frobenius norm, DTM is the dynamic thresholding method, U is a matrix with same dimensions

as Ttemplate with all elements equal to one and .∗ performs an element-wise multiplication of the matrices.

Again, V = [meas1,meas2,meas3, · · · ,measn] with

n =

⌊

cSPEC − ctemplate

step

⌋

+1.

Finally, for the CORR variation we first apply the OpenCV’s matchTemplate procedure (Bradski,

2000) with the Normalized Correlation Coefficient option to SPECi, the submatrix of SPEC that spans

the columns from i× step to i× step+ ctemplate. However, for this variant, SPECi includes two additions

rows above and below, thus it is slightly larger than the Ttemplate. With these we can define:

meas j,i =CORR(Ttemplate,SPEC j,i)

where SPEC j,i is the submatrix of SPECi that starts at row j (note that there are 5 such SPEC j,i matrices).167

Now, we select 5 points at random from all the points above the 98.5 percentile of meas j,i and apply

the Structural Similarity Index to the neighborhoods of the 5 selected points. Each neighborhood is 266%

of the length of Ttemplate, 133% before and 133% after. Then, lets define FilterSPEC as the matrix that

contains these 5 neighborhoods and FilterSPECi as the submatrix of FilterSPEC that spans the columns

from i to i+ ctemplate then, the similarity measure for this variant is define as:

measi = SSI(Ttemplate,FilterSPECi)

and the resulting vector V = [meas1,meas2,meas3, · · · ,measn] but this time with

n = 5×
(⌊

2.66× ctemplate

⌋

+1
)

.

It is important to note that no matter which variant is used to calculate the similarity measures, the168

result will always be a vector of measurements V . The idea is that the statistical properties of these169

computed recognition functions have enough information to distinguish between a recording that has the170

target species present and a recording that does not have the target species present. However, notice that171

since cSPEC, the length of SPEC, is much larger that ctemplate the length of the vector V for the CORR172

variant is much smaller than the other two.173
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Features

1. mean

2. median

3. minimum

4. maximum

5. standard deviation

6. maximum - minimum

7. skewness

8. kurtosis

9. hyper-skewness

10. hyper-kurtosis

11. Histogram

12. Cumulative frequency histogram

Table 2. The statistical features extracted from vector V

Random Forest Model Creation174

After calculating V for many recording we can train a random forest model. First, we need a set of175

validated recordings with the specific species vocalization present in some recordings and absent in others.176

Then for each recording we compute a vector Vi as described in the previous section and extract the177

statistical features presented in Table 2. These statistical features represent the dataset used to train the178

random forest model, which will be used to classify recordings for presence or absence of a species call179

event. These 12 features along with the species presence information are used as input to a random forest180

classifier with a 1000 trees.181

Recording Classification182

Now that we have a trained model to classify a recording, we have to compute the statistical features from183

the similarity vector V of the selected recording. This is performed in the same way as it was described in184

the previous section. These features are then used as the input dataset to the previously trained random185

forest classifier and a label indicating presence or absence of the species in the recording is given as186

output.187

The Experiment188

To decide which of the three variants was to be selected, we performed the algorithm explained in the

previous section with each of the similarity measures. We computed 10-fold validations on each of

the variants to obtained measurements of the performance of the algorithm. In each validation 90%

of the data is used as training and 10% of the data is used as validation data. Each algorithm variant

used the same 10-fold validation partition for each species. The measures calculated were accuracy or

correct classification rate (Ac), negative predictive value (N pv), precision or positive predictive value (Pr),

sensitivity, recall or true positive rate (Se) and specificity or true negative rate (Sp) where they are defined

as follows:

Ac =
tp + tn

tp + tn + fp + fn

, N pv =
tn

tn + fn

, Pr =
tp

tp + fp

, Se =
tp

tp + fn

and Sp =
tn

tn + fp

with tp the number of true positives (number of times both the expert and the algorithm agree that the189

species is present), tn the number of true negatives (number of times both the expert and the algorithm190

agree that the species is not present), fp the number of false positives (number of times the algorithm191

states that the species is present while the expert states is absent) and fn the number of false negatives192

(number of times the algorithm states that the species is not present while the expert states it is present).193

Although we present and discuss all measures, we gave accuracy more importance since it is funda-194

mentally a weighted average between sensitivity and specificity and therefore contain the information of195

true positive rate as well as true negative rate. Also notice, that when the number of positive cases is equal196

to the number of negative cases the accuracy measure becomes the area below the line formed between197

the three points (0, 0), (1- mean(Sp), mean(Se)), (1, 1) in a receiver operating characteristic (ROC) graph198

and therefore is proportional to the area under the ROC curve but much simpler to calculate.199
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The experiment was performed in an Intel i7 4790K 4 cores computer with 32GB of RAM and running200

Ubuntu Linux. The execution time needed to classify each recording was registered and the mean and201

standard deviation of the execution times were calculated for each variant of the algorithm. We also202

computed the quantity of pixels on all the Ttemplate matrices and correlated with the execution time of203

each of the variants.204

A global one-way analysis of variance (ANOVA) was performed on the five calculated measures205

across all of the 10-fold validations to identify if there was a significant difference between the variants of206

the algorithm. Then a post-hoc Tukey HSD comparison test was performed to identify which one of the207

variants was significantly different at the 95% confidence level. Additionally, an ANOVA was performed208

locally between the 10-fold validation of each species and on the mean execution time for each species209

across the algorithm variants to identify if there was any significant execution time difference at the 95%210

confidence level. Similarly, a post-hoc Tukey HSD comparison test was performed on the execution times.211

RESULTS212

The five measurements (accuracy, negative predictive value, precision, sensitivity and specificity) com-213

puted to compared the model across the three variants varied greatly among the 21 species. The lowest214

scores were among bird species while most of the highest scores came from amphibian species. Table 3215

presents a summary of the results of the measurements comparing the three variants of the algorithm (for216

a detail presentation see Table 6 in Appendix 1). The NORM variant did not achieve a best value in any217

of the measures summarized in Table 3 while the CORR variant had a greater number of species with218

80% or greater for all the measures and an overall median accuracy of 81%. We considered these two219

facts fundamental for a generic non-species specific system.220

The local species ANOVA suggested that there are significant accuracy differences at the 95%221

significance level for 6 of the 21 species studied as well as 4 in terms of precision and 3 in terms of222

specificity (see supplemental materials). Algorithm variants SSIM and CORR have higher mean accuracy223

than the NORM variant. Nevertheless, variant CORR has the highest median accuracy of 81%, which is224

slightly higher that the median accuracy of the SSIM variant at 76%. In addition, variant CORR had more225

species with an accuracy of 80% or greater.226

In terms of median precision, the three variants had similar values, although in terms of mean precision227

variants SSIM and CORR have greater values than the NORM variant. Moreover, the median and mean228

precision of the SSIM variant were only 1% higher than the median and mean precision of the CORR229

variant. In terms of sensitivity, variants SSIM and CORR have greater values than the NORM variant. It230

is only in terms of specificity that the CORR variant has greater values than all other variants. Figure 8231

presents a summary of these results with whisker graphs.232

In terms of execution times, an ANOVA analysis on the mean execution times suggests a difference233

between the variants (F = 9.9341e+30,d f = 3, p < 2.2e−16). The CORR variant has the lowest mean234

execution time at 0.255s followed very closely by the NORM variant with 0.271s while the SSIM variant235

was noticeably worst with a mean execution time of 2.269s (Figure 9). The Tukey HSD test suggests that236

there was no statistical significant difference between the mean execution times of the NORM and CORR237

variants (p = 0.999). However, there was a statistical significant difference at the 95% confidence level238

between the mean execution times of all other pairs of variants, specifically variants SSIM and CORR239

(p < 2.2e−16).240

Moreover, the mean execution time of the SSIM variant increased as the number of pixels in the241

Ttemplate matrix increases (Figure 9b). There was no statistically significant relationship between the242

Ttemplate pixel size and the execution time for the other two variants (Table 4).243

In summary, variants SSIM and CORR outperform the NORM variant in most of the statistical244

measures computed having statistically significant high accuracy for three species each. However, the245

CORR variant has much lower mean execution times than the SSIM variant (Table 3). Furthermore, the246

mean execution time of CORR variant did not increase with increasing size of the Ttemplate (Table 4).247

DISCUSSION248

The algorithm used by the ARBIMON system was selected by comparing three variants of a template-249

based method for the detection of presence or absence of a species vocalization in recordings. The250

most important features for the selection of this method is that the algorithm have to provide a generic251
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Summary of meassures SSIM NORM CORR

Number of species with an Accuracy of 80% or greater 8 7 12

Number of species with statistically significant Accuracy 3 0 3

Mean Accuracy 0.77 0.73 0.77

Median Accuracy 0.76 0.75 0.81

Standard Deviation of Accuracy 0.12 0.14 0.14

Number of species with an Negative predictive value of 80% or greater 7 5 10

Number of species with statistically significant Negative predictive value 0 0 0

Mean Negative predictive value 0.73 0.71 0.74

Median Negative predictive value 0.71 0.75 0.79

Standard Deviation of Negative predictive value 0.08 0.12 0.13

Number of species with an Precision of 80% or greater 5 5 9

Number of species with statistically significant Precision 2 0 2

Mean Precision 0.73 0.68 0.72

Median Precision 0.75 0.73 0.74

Standard Deviation of Precision 0.12 0.13 0.16

Number of species with an Sensitivity of 80% or greater 8 6 11

Number of species with statistically significant Sensitivity 0 0 0

Mean Sensitivity 0.77 0.70 0.74

Median Sensitivity 0.79 0.73 0.80

Standard Deviation of Sensitivity 0.12 0.16 0.17

Number of species with an Specificity of 80% or greater 4 6 7

Number of species with statistically significant Specificity 3 0 0

Mean Specificity 0.69 0.68 0.72

Median Specificity 0.67 0.70 0.75

Standard Deviation of Specificity 0.13 0.15 0.16

Ratio of False positive to True positive 0.37 0.47 0.39

Ratio of False negative to True positive 0.45 0.47 0.39

Ratio of False positive to True negative 0.3 0.43 0.35

Ratio of False negative to True negative 0.37 0.43 0.35

Table 3. Summary of the measures of the three variants of the algorithm. Best values are in bold.

non-species specific system that can detect species and given that it will have to process hundred of252

thousand recordings, that can do so in a reasonable amount of time. The CORR algorithm was selected253

because of it’s speed and it’s comparable performance in terms of detection efficiency with the SSIM254

variant. It achieved accuracy of 0.80 or better in 12 of the 21 species and sensitivity of 0.80 or more in255

11 of the 21 species and the average execution time of 0.26s per minute per recording means that it can256

process around 14,000 minutes of recordings per hour.257

The difference in execution time between the SSIM variant and the other two was due to a memory

management issue in the SSIM algorithm. An analysis reveals that all the algorithms have order of

O
((

cSPEC − ctemplate

)

× ctemplate × rtemplate

)

where cSPEC and ctemplate are the number of columns in SPEC and Ttemplate respectively and rtemplate is the258

number of rows in Ttemplate. The only explanation we can give is that the SSIM function uses an uniformly259

distributed filter (uniform_filter) that has a limit on the size of the memory buffer that handles260

(4000 64-bit doubles divided by the number of elements in the dimension been process). Therefore, as the261

size of Ttemplate increase the number of calls to allocate the buffer, free and allocate again can become a262

burden since it has a smaller locality of reference even when the machine has enough memory and cache263

to handle the process. Further investigation is required to confirm this.264

Another interesting result is that the SSIM variant provide more stable results. The boxes for the SSIM265

variant in all the whisker boxes in Figures 7 and 8 are smaller and the standard deviation is also smaller266
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Summary of execution times SSIM NORM CORR

Mean Execution Time 2.27 0.27 0.26

Standard Deviation of Execution Time 3.04 0.06 0.07

PPMCC between Execution Time and size of template 0.96 0.33 0.11

Table 4. Summary of the execution times of the three variants of the algorithm. Best values are in bold.

PPMCC is the Pearson product-moment correlation coefficient.

Figure 7. Whisker boxes of the 10-fold validations for the three variants of the presented algorithm for

the accuracy measure.

for all the cases. However, although this variant appears to perform better in terms of false positives, in267

terms of false negatives performs worst than the CORR variant. This is interesting because the CORR268

variant is a “lite version” of the SSIM variant. We started looking to achieve comparable performances in269

terms of detection effectiveness with a much better performance in terms of execution time. The idea270

was to run the SSIM function over a selected number of elements to maintain reasonable execution times.271

This is what we achieve with the pattern matching phase, a function that by itself did not provided good272

results but one that as a ranker provided enough information for the SSIM to decide on the presence or273

absence of a species. It will seem that for some species this filtering also helps in obtaining less false274

negatives than in the SSIM variant.275

CONCLUSIONS276

Now that passive autonomous acoustic recorders are readily available the amount of data is growing277

exponentially. For example, one permanent station recording 1 minute of every 10 minutes every day278

of the year generates 52,560 one minute recordings. Multiply that by the need to monitor thousands of279

locations across the planet and one can understand the magnitude of the task in hand.280

We have shown how the algorithm used in the ARBIMON II web-based cloud-hosted system was281

selected. The ease of managing of this system as well as the options to create playlists based on many282

different parameters including user-created tags, allow users to analize large quantities of recordings283

(see Table 5). Therefore, a generic non-species specific system for detecting presence or absence of a284

species in recordings is fundamental. For example, the system currently counts with 1,749,551 recordings285

uploaded by 453 users and 659 species specific models have being created and run over 3,780,552 minutes286
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(a) (b)

(c) (d)

Figure 8. Whisker boxes of the 10-fold validations for the three variants of the presented algorithm.

of recordings of which 723,054 are distinct recordings. Notice that that is 41.33% of the total recordings.287

As a society, it is fundamental that we study the effects of climate change and deforestation on the288

fauna and we have to do it with the best possible tools. We are collecting a lot of data, but until recently289

there was not an intuitive and user-friendly system that allowed scientists to manage and analyze large290

number of recordings. Here we presented a web-based cloud-hosted system that provides a simple way291

to manage large quantities of recordings with a non-species specific method to detect their presence in292

recordings.293
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(a) (b)

Figure 9. (a) Whisker boxes of the execution times of the three algorithms. (b) Execution times as a

function of the size of the template in number of pixels.

Number of users in the system 453

Number of recordings in the system 1,749,551

Number of models created by users 659

Total number of classified recordings 3,780,552

Number of distinct classified recordings 723,054

Average times a recording is classified 5.22

Standard deviation of the number of times a recording is classified 7.78

Maximum number of times a recordings has been classified 58

Table 5. Summary of the usage of the ARBIMON2 system and its model creation feature.
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APPENDIX 1361

Detail presentation of the performance of each variant of the algorithm. The mean accuracy, mean362

precision, mean sensitivity and mean specificity values for each species, of the 10-fold validations for the363

three variants of the presented algorithm (SSIM, NORM and CORR). The mean, median and standard364

deviation values across all species are presented at the bottom of the table.365

Species
SSIM NORM CORR

Ac Npv Pr Se Sp Ac Npv Pr Se Sp Ac Npv Pr Se Sp

E. brittoni 0.92 0.81 0.77 0.72 0.95 0.89 0.83 0.80 0.77 0.92 0.98 0.84 0.80 0.77 1.00

E. cochranae 0.87 0.84 0.94 0.88 0.85 0.72 0.70 0.81 0.77 0.68 0.98 0.96 1.00 0.97 1.00

M. guatemalae 0.93 0.81 0.50 0.45 0.97 0.97 0.82 0.50 0.45 1.00 0.90 0.80 0.47 0.45 0.87

E. cooki 0.96 0.85 0.77 0.77 0.97 0.82 0.78 0.73 0.67 0.87 0.89 0.82 0.72 0.73 0.92

Unknown Insect 0.90 0.79 0.84 0.75 0.82 0.92 0.84 0.83 0.82 0.83 0.90 0.79 0.84 0.75 0.82

E. coqui 0.90 0.75 0.96 0.93 0.70 0.86 0.75 0.88 0.96 0.47 0.88 0.85 0.89 0.98 0.47

M. leucophrys 0.87 0.88 0.87 0.89 0.87 0.76 0.79 0.74 0.81 0.72 0.88 0.87 0.89 0.87 0.90

E. juanariveroi 0.78 0.69 0.60 0.48 0.79 0.88 0.70 0.55 0.48 0.83 0.81 0.69 0.47 0.45 0.80

M. nudipes 0.74 0.76 0.75 0.77 0.74 0.81 0.84 0.80 0.85 0.79 0.85 0.83 0.88 0.82 0.86

B. bivittatus 0.59 0.65 0.65 0.64 0.65 0.74 0.78 0.73 0.80 0.73 0.85 0.84 0.88 0.83 0.87

C. carmioli 0.77 0.75 0.83 0.73 0.83 0.73 0.75 0.73 0.76 0.72 0.81 0.80 0.86 0.80 0.84

L. thoracicus 0.73 0.71 0.76 0.67 0.79 0.76 0.80 0.73 0.80 0.77 0.81 0.83 0.82 0.84 0.80

F. analis 0.81 0.81 0.79 0.82 0.79 0.63 0.65 0.63 0.69 0.57 0.58 0.59 0.58 0.62 0.55

E. guttatus 0.69 0.70 0.69 0.70 0.69 0.75 0.76 0.77 0.77 0.75 0.77 0.77 0.78 0.77 0.77

M. hemimelaena 0.76 0.71 0.77 0.67 0.82 0.59 0.59 0.58 0.60 0.57 0.63 0.62 0.63 0.65 0.59

B. chrysogaster 0.68 0.66 0.67 0.62 0.74 0.75 0.70 0.72 0.65 0.83 0.73 0.69 0.64 0.66 0.78

S. grossus 0.66 0.66 0.68 0.66 0.67 0.74 0.72 0.75 0.70 0.76 0.71 0.73 0.74 0.78 0.62

P. lophotes 0.71 0.68 0.73 0.63 0.78 0.58 0.60 0.59 0.62 0.57 0.61 0.63 0.62 0.64 0.61

H. subflava 0.64 0.64 0.64 0.66 0.61 0.51 0.51 0.52 0.53 0.49 0.51 0.52 0.51 0.56 0.48

M. marginatus 0.59 0.55 0.60 0.59 0.51 0.49 0.43 0.47 0.39 0.47 0.61 0.62 0.61 0.66 0.56

T. schistaceus 0.58 0.58 0.61 0.51 0.67 0.50 0.46 0.45 0.49 0.43 0.52 0.48 0.49 0.44 0.52

Mean Values 0.77 0.73 0.73 0.69 0.77 0.73 0.71 0.68 0.68 0.70 0.77 0.74 0.72 0.72 0.74

Median Values 0.76 0.71 0.75 0.67 0.79 0.75 0.75 0.73 0.70 0.73 0.81 0.79 0.74 0.75 0.80

Standard Dev. 0.12 0.09 0.12 0.13 0.12 0.14 0.12 0.13 0.15 0.16 0.14 0.13 0.16 0.16 0.17

Table 6. Accuracy (Ac), negative predictive value (Npv), precision (Pr), sensitivity (Se) and specificity

(Sp) of the 21 species and three variants of the algorithm. Best values are shaded and the cases where the

ANOVA suggested a significant difference between the algorithm variants at the 95% confidence level are

in bold .
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APPENDIX 2366

In this Appendix we present the templates created by the training sets of each species. We classified them367

by the algorithm that presented a better accuracy for that species.368

Templates of species that presented a better accuracy for the SSIM variant.369

(a) F. analis (b) M. hemimelaena

(c) E. cooki (d) P. lophotes

(e) E. coqui (f) T. schistaceus

(g) H. subflava

Figure 10. Sample of species that the SSIM variant presented better accuracy. (a), (b) and (c) are

statistically significant.
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Templates of species that presented a better accuracy for the NORM variant.370

(a) Unknown Insect (b) B. chrysogaster

(c) S. grossus (d) M. guatemalae

(e) E. juanariveroi

Figure 11. Sample of species that the NORM variant presented better accuracy. Neither is statistically

significant.
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Templates of species that presented a better accuracy for the CORR variant.371

(a) E. cochranae (b) M. leucophrys

(c) B. bivittatus (d) C. carmioli

(e) M. marginatus (f) M. nudipes

(g) E. brittoni (h) E. guttatus

(i) L. thoracicus

Figure 12. Sample of species that the CORR variant presented better accuracy. (a), (b) and (c) are

statistically significant.
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