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ABSTRACT
Background. During the COVID-19 pandemic, the accurate forecasting and profiling
of the supply of fresh commodities in urban supermarket chains may help the city
government make better economic decisions, support activities of daily living, and
optimize transportation to support social governance. In urban supermarket chains,
the large variety of fresh commodities and the short shelf life of fresh commodities
lead to the poor performance of the traditional fresh commodity supply forecasting
algorithm.
Methods. Unlike the classic method of forecasting a single type of fresh commodity,
we proposed a third-order exponential regression algorithm incorporating the block
Hankle tensor. First, a multi-way delay embedding transform was used to fuse multiple
fresh commodities sales to a Hankle tensor, for aggregating the correlation and
mutual information of the whole category of fresh commodities. Second, high-order
orthogonal iterations were performed for tensor decomposition, which effectively
extracted the high-dimensional features of multiple related fresh commodities sales
time series. Finally, a tensor quantization third-order exponential regression algorithm
was employed to simultaneously predict the sales of multiple correlated fresh produce
items.
Results. The experiment result showed that the provided tensor quantization exponen-
tial regression method reduced the normalized root mean square error by 24% and the
symmetric mean absolute percentage error by 22%, compared with the state-of-the-art
approaches.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Network
Science and Online Social Networks
Keywords Supply forecasting and profiling, Urban supermarket chains, Multi-way delay
embedding transform, Tensor decomposition, Exponential regression, Social governance

INTRODUCTION
The global epidemic of COVID-19 has had a serious impact on urban livelihoods. Urban
supermarket chains are essential for the supply of urban goods in a social governance
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environmentwhen policies are implemented to prevent and control the epidemic (Ihle, Bar-
Nahum & Jongeneel, 2020; Viljoen & Joubert, 2019). The supply forecasting and profiling
of urban supermarket chains play an indispensable role in social governance.

Fresh produce is a key issue in the forecasting and profiling of urban supermarket
chains (Gibbon, 2003; Dolan & Humphrey, 2000). How to effectively break through the
bottleneck of fresh goods circulation and optimise supply forecasting and profiling is of
great significance for the intelligent operation of urban supermarket chains (Lin & Wu,
2011; McLaughlin, 2004). The value of fresh goods is closely linked to freshness, which is
not only difficult to keep for a long time but also has high transport losses. In addition,
fresh goods have various types and preservation methods, making it difficult for the supply
forecasting and profiling of urban supermarket chains to be carried out efficiently and
scientifically (Ilbery et al., 2004; Boerkamps, Van Binsbergen & Bovy, 2000). A large number
of urban supermarket chains are still making very primary and subjective decisions on
fresh produce supply forecasting and profiling that can not meet the special needs of
urban supermarket chains for fresh produce (Thompson, Newsome & Commander, 2013;
Bourlakis & Weightman, 2008).

Nowadays, the management of urban supermarket chains has changed from simply
maximising the use of existing human and material resources to supply forecasting and
profiling (Ge, Proudlove & Spring, 2004; Aburto & Weber, 2007). Supply forecasting and
profiling are very important aspects of urban supermarket chains (Thompson, Newsome
& Commander, 2013; Bourlakis & Weightman, 2008). Accurate supply forecasting and
profiling of fresh produce can help urban supermarket chains understand consumer
demand and develop more reasonable pricing and promotion plans for fresh produce
(Jiang, Yao & Li, 2021; Chen, Wang & Fu, 2022).

There are two difficulties in supply forecasting and profiling fresh produce in urban
supermarket chains. To address these two difficulties, we propose a tensor quantization
exponential regression algorithm. Firstly, we use tensor decomposition (Ding, Qi & Wei,
2015; Mgale, Yan & Timothy, 2021) to fuse the fresh produce sales volume of multiple
urban supermarket chains. The tensor decomposition technique ensures the correlation
between multiple time series in a high-dimensional space (Cichocki et al., 2016; Cichocki et
al., 2017; Cichocki, 2018). Secondly, the tensorized cubic exponential regression algorithm
is proposed, which adapts to the cyclical nature of the fresh produce sales of urban
supermarket chains. Finally, we achieve parallel computation of forecasting time series of
fresh produce sales for multiple urban supermarket chains.

Traditional supply forecasting and profiling of urban supermarket chains typically use
classical one-dimensional time series forecasting methods (Shukla & Jharkharia, 2011;
Taylor & Fearne, 2009). Classical one-dimensional time series forecasting is used to predict
trends in data by capturing patterns between historical time series data. Common time
series data include commodity sales, stock prices and rainfall (Zhang & Wang, 2021).
Classical one-dimensional time series forecasting methods predict future data trends by
capturing the linear characteristics of historical data. However, they are not as effective for
supply forecasting and profiling of urban supermarket chains (Holt, 2004;Wulff, 2017).
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There are two main improvements in this research area. One is the use of combined
algorithms. Jiang, Yao & Li (2021) combined the multiple linear regression algorithm with
the ARIMA algorithm. Song et al. (2021) combined the SARIMA algorithm with the LSTM
algorithm. Sharma et al. (2020) improved the ARIMA algorithm, and in Chai et al. (2021)
improved the grey algorithm and successfully used it for supply forecasting and profiling
of fresh agricultural products.

In addition, other recent research results have been noticed by researchers. Fattah et al.
(2018) constructed an improved ARIMA algorithm. Sarwar et al. (2021) used LSTM neural
networks for supply forecasting and profiling of urban supermarket chains. Ulrich et al.
(2022) proposed a model selection algorithm for retail supply model selection, which was
used in model selection for supply forecasting and profiling for the diversity of retail.

Since urban supermarket chains have a wide range of fresh goods and a short shelf life.
The existing algorithms do not meet the requirements for parallel forecasting and had a
higher computational cost for predicting the sales of fresh produce. We investigate the use
of tensor quantization exponential regression to solve the problem of supply forecasting
and profiling of fresh produce in urban supermarket chains.

MATERIALS & METHODS
The dataset used in this article was based on Walmart commodities sales. There are 30,491
time series of length 1,941 days in this dataset. The time series were aggregated into three
fresh commodities sales by region. The regions were divided into three states, California,
Texas and Wisconsin. The size of the experimental dataset was 3 rows and 1,941 columns.
The sample of the dataset was shown in Table S1. Each row represented a time series of
one fresh commodity sale. The dataset consisted of three-time series of fresh commodity
sales. Each time series contained 1,941 data, which represented the total amount of fresh
commodities sold in that region on that day. The statistics covered the period from January
29 2011 to May 22 2016, which is a total of 1,941 days. The experiment used the first 1,923
days of fresh commodities sales as input data and the last 28 days as test data.

To solve the problem of supply forecasting and profiling of fresh goods in urban
supermarket chains, we proposed the tensor quantization exponential regression algorithm.
As shown in Fig. 1, historical sales of fresh products in urban supermarket chains are used
as input data. The input data is processed by multi-way delay embedding and transformed
into a high-order Hankle tensor block (Jing et al., 2018). Then, the order orthogonal
iterations are projected into the low-rank space and produce a tensor, called the core
tensor. By using the cubic exponential regression algorithm for the core tensor, the future
core tensor is predicted for fresh goods sales. The future core tensor is transformed into
a Hankle tensor block by inverse high-order orthogonal iterations for future fresh goods
sales.

We train the cubic exponential regression algorithmusing the core tensor of the historical
fresh produce sales, in which we exploit the correlation of multiple time series to improve
the prediction accuracy. The proposed method can be adapted to the supply forecasting
and profiling of fresh commodities in urban supermarket chains to provide guidance for
sales planning.
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Figure 1 Diagram of the third-order exponential regression algorithmwith block Hankle tensor.
Full-size DOI: 10.7717/peerjcs.1138/fig-1

We take the historical sales of fresh produce in urban supermarket chains as input data.
In Fig. 1, X is the historical sales of merchandise in urban supermarket chains and X is a
second-order tensor. A time series of historical sales of fresh produce is a sequence of sales
of fresh produce in chronological order.

In Table S1, X is a second-order tensor consisting of multiple historical sales time series
of fresh produce. Table S1 shows part of the data content and structure of the tensor, with
each row being a historical fresh produce sales. The predicted region is represented by
stated_id column, in which day_n (n= 1,2, . . . ,1,941) represents the fresh produce sales on
the n-th day in kilograms. We obtained three historical fresh produce sales time series by
aggregating X by region. In this article, the main variables are defined as shown in Table 1.

Multi-way delay embedding transform
In this study, we consider low-rankness in the tensor embedding space. To that point,
we extend the delay embedding of time series to a multi-way delay embedding transform
of the tensor. it takes the given tensor as input and outputs a high-rank Hankel tensor.
Then, it recovers the higher-order tensor by a Tucker-based decomposition of the low-rank
tensor. Finally, the estimated tensor is obtained by using the inverse multiplexed delayed
embedding transform of the recovered higher-order tensor.

We transform the data only along the temporal dimension. The reason is the commodity
adjacencies in the non-time dimension are not strongly correlated. It is also possible to
arbitrarily permute the ordering between different time series. Therefore implementing the
multi-way delay embedding transform in all data directions increases the computational
effort, considering that order becomes larger in dimensionality. The proposed algorithm is
able to support the simultaneous implementation of multi-way delay embedding transform
in multiple directions, resulting in higher-order tensors.

In Fig. S1, X represents the historical sales of fresh produce, and the size of X is I ×
T. The symbols I and T represent the type of fresh produce in X and the date of sales,
respectively. The symbol Xi is the historical sales of all fresh produce in X at the date
i-th, which is the column vector of X, with values in the range [1,T ]. The symbol Gi, i
=1,2,. . . ,T - τ+1, is a transformation from Xi, i =1,2,. . . ,T. The symbol G is the Hankle
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Table 1 Variable definitions.

Symbol definition Description

X Historical sales volume of urban supermarket chains
commodities

S Duplication Matrix
B Core Tensor
⊗ Kronecker product
G Urban supermarket chains commodities volume block

Hankle tensor
τ Duplicate matrix size
M (i) i times exponential regression matrix
† Moore–Penrose pseudo-inverse
K Number of iterations of high-order orthogonal iterations

tensor block of historical sales of raw goods, which is a tensor with a special structure. As
shown in Fig. S1, we transform X into G by a multi-way delay embedding transform.

G=Hτ (X)
= Fold(I ,τ )(X×2S).

(1)

In Eq. (1), Hτ (X) means that the multi-way delay embedding transform is performed
along with the secondmode of X. The mode of a tensor is both the order and the dimension
of the tensor. Since X belongs to RI×T , the first and second modes of X are I and T, which
represent the category of fresh goods and the date they were sold, respectively. We only use
the multi-way delay embedding transform on the second mode of X.

The reason is that the correlation between the sales of different types of fresh produce
is usually weaker than the correlation in time. The replication matrix is denoted as S. A
replica matrix is a matrix that is stitched together with multiple unit matrices. The process
of generating a replica matrix is shown in Fig. S2. In Fig. S2, ST is the transpose matrix of
S. The symbol Iτ denotes a diagonal matrix of size τ × τ . The symbol Iτ denotes a diagonal
matrix of size τ × τ . ST is a matrix consisting of T - τ+ 1× Iτ , which has the size T - τ+
1×T as shown in Fig. S2.

The mode matrix expansion of a tensor is the process of rearranging the elements of
a tensor and obtaining the mode expansion matrix (Kolda & Bader, 2009). Taking the
Hankle tensor block G of fresh goods sales in Fig. S3 as an example, the mode matrix
expansion process for G ∈RI×τ×(T−τ+1) is shown in Fig. S3.

As shown in Fig. S3, the size of G is I × τ ×(T - τ+1). The mode-expansion matrix of G
is labelled G(k ), k= 1,2,3. Figure S3 shows the matrix expansion process for the 1-module,
2-module and 3-modules of G(1)

∈I × τ (T - τ+1), G(2)
∈ τ ×I (T - τ+1), and G(3)

∈I τ
×(T - τ+1). The modal product of a tensor is the multiplication of the modal expansion
matrix of a tensor with another matrix. In Eq. (1), X×2S denotes the 2-modular product
of X. Since X is a matrix, X×2S is equivalent to XST , so X×2S results in a matrix of size I
× τ (T - τ+1). The computational procedure of Eq. (1) can be split into T - τ+1 matrices
Gi of size I × τ , i ∈[1, T - τ+1]. Fold(I ,τ )(X ×2S) in Eq. (1) denotes the composition of
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Gi into a vector G. The structure of G is shown in Fig. S1 as a Hankle tensor block of the
historical sales of fresh goods, with size I × τ ×(T - τ+1).

High-order orthogonal iterations
According to Eq. (1), G, a third-order Hankle tensor block, is obtained. Compared to the
historical sales of fresh goods X, G has low rank and smoothness in the high dimensional
space. G incorporates all categories of historical sales of fresh goods in X, G can be used
to predict multiple time series simultaneously, thus reducing computational complexity.
As the dimensionality of G increases, the amount of data increases exponentially. In order
to reduce the computational effort, we use high-order orthogonal iterations to compress
the data, which is able to preserve the valid information in the data. Figure S4 shows a
schematic representation of the processing of high-order orthogonal iterations.

High-order orthogonal iterations are a tensor decomposition method, which is a
generalisation of matrix orthogonal iterations to high-dimensional spaces. High-order
orthogonal iterations can be used to solve for the best low-rank approximation matrix
of a tensor. A low-rank approximation is an approximate representation of the original
tensor by a low-rank tensor. We refer to the best low-rank approximation matrix of G as
the core tensor, denoted by B. The symbol Bi represents the core tensor corresponding to
Gi, i ε [1, T - τ+1]. During high-order orthogonal iterations, we solve for the left singular
vector of the mode expansion matrix to obtain the optimal low-rank approximation of
the tensor. The process of modulo matrix expansion is shown in Figs. S3A–S3C. We solve
the approximation problem for the optimal rank (r1, r2, r3) of G, which is equivalent to
finding the tensor Ĝ∈RI×τ×(T−τ+1). The symbol Ĝ satisfies the constraint in Eq. (2).

Ĝ= argminW ‖G−W ‖F. (2)

In Eq. (2),W is the loss matrix of G during the low-rank approximation and rank (W )
is equal to (r1, r2, r3).The symbol ||A||F denotes the F-parametrization of A, which is equal

to
(∑n

i,j,k |aijk |
2
) 1

2 , and aijk denotes the element in tensor A. The n-modular product of a
tensor is the product of each moduli expansion matrix of the tensor and the corresponding
matrix. The symbol Ĝ can be written in n-modular product form, as shown in Eq. (3).

Ĝ=
(
U (1),U (2),U (3)).B. (3)

In Eq. (3), U (n) is an orthogonal matrix. The tensor B is the core tensor of G, and the
size of B is (U (1),U (2),U (3)). The n-modular product of B is denoted as (U (1), U (2), U (3)),
which is equivalent to B ×1U (1)

×2U (2)
×3U (3). When Eq. (2) is optimised, the objective

function of the high-order orthogonal iterations is obtained as illustrated in Eq. (4).

min
rank(Ĝ)=(r1,r2,r3)

∥∥G− Ĝ∥∥F=min
∥∥G−B×1U (1)

×2U (2)
×3U (3)∥∥

F. (4)

Equation (4) describes a linear least squares problem. It is solved as a least squares
solution of B ×1U (1)

×2U (2)
×3U (3)

=G. We use least squares to view the tensor
decomposition as an optimisation problem, which can be resolved optimally byminimising
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the square of the error. Since U (n) is a column orthogonal matrix, B can be described by
the modal product of the tensor as shown in Eq. (5).

B=G×1U (1)T
×2U (2)T

×3U (3)T . (5)

In Eq. (5),U (n)T is the inverse matrix ofU (n). SinceU (n) is a column orthogonal matrix,
U (n)−1 is equivalent to U (n)T . The symbol G×1 U (1)T ×2 U (2)T ×3 U (3)T represents the n-
modulus product of G, which is the product of each modulus expansion matrix of G and
the corresponding U (n)T .

The singular value decomposition of matrices is very important in matrix calculations.
Assuming that our matrix A is an m ×n matrix, then ATA is a square matrix. We find its
eigenvalues and eigenvectors are (ATA) vi = λi vi. The eigenvectors v of the matrix ATA,
which is consist of n eigenvalues, can be obtained. Because ATA =V 6TU TU 6V T

=V
6T 6V T

=V 62V T, eigenvectors v can be expanded a n ×n matrix V, in which each
eigenvector is called the right singular vector of the matrix A. Similarly, (AAT) ui = λiui,
the matrix U can be obtained.

When U and V have been obtained, the matrix 6 is the final step of singular value
decomposition. Since 6 is a matrix of singular values, it is only necessary to find each
singular value σ . On the basis of A =U 6V T, AV =U 6V TV, AV =U 6, Av i = σ i ui, σ i

=Av i/ui, in fact, the eigenvalue matrix6 is equal to the square of the singular value matrix,
which means that the eigenvalues and singular values satisfy the following relationship, σ i

=(λi)1/2.
The higher-order singular value decomposition is an extension of the matrix singular

value decomposition algorithm to the tensor (Miao, Qi & Wei, 2020; Zhang & Han, 2019),
which is the process of decomposing the original tensor into smaller core tensors. The
higher-order singular value decomposition of G is shown in Eq. (6).

G(k)=D(k)
∑(k)

V (k)T,k= 1,2,3 (6)

In Eq. (6), G (k ) is the k-modulus expansion matrix of the tensor G. The process of
expanding the modulus matrix of a tensor is shown in Fig. S2. The symbols D(k ) and V (k ),
k =1,2,3, are the matrices consisting of the left and right singular vectors of G(k ),
respectively. The elements on the diagonal of the matrix 6(k ), k =1,2,3, are called the
singular values of G (k ).

In Eq. (6), the sizes of D(k ), k =1,2,3, are I ×I, τ × τ , and (T - τ+1) ×(T - τ+1). For a
given core tensor of size r1×r2×r3, where r1 ≤I, r2 ≤ τ , and r3= T - τ+1, the higher-order
singular value decomposition of the tensor can be dimensionally reducible. We take the
first r1, r2, and r3 the left singular vector corresponding to the largest singular value of
G(k ) to obtain U (k ), k =1,2,3, which is called the truncated higher-order singular value
decomposition. The sizes of U (k ) are I ×r1, τ ×r2, and (T - τ+1)×(T - τ+1). To speed up
the convergence of solving the core tensor, we use U (k ), k =1,2,3, as the initial value for
the high-order orthogonal iterations. Table S2 shows the computation of the high-order
orthogonal iterations with G as the solution object.

In Table S2,
⊗

denotes the Kronecker product. For example, the Kronecker product of
a matrix A of size m1 ×m2 and a matrix C of size n1 ×n2 is shown in Eq. (7). The size of
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the result of A
⊗

C is m1n1 ×m2n2.

A⊗C =

a11B L a1m2B
M O M
am11B L am1m2B

. (7)

Tensor quantization cubic exponential regression algorithm
We train a tensorised cubic exponential regression directly on the core tensor to predict the
new core tensor, which not only reduces the computational effort as the core tensor size is
smaller. In addition, it improves prediction accuracy by exploiting the interrelationships
between multiple time series in the model construction process. Existing tensor models all
constrain the mapping matrix in the direction of each data dimension. We only relax the
constraints in the time dimension. This approach better captures the intrinsic correlation
between the series. At the same time, the tensorization of the cubic exponential regression
algorithm makes it possible to deal directly with multidimensional data, so the core tensor
is necessary to achieve tensor computation.

The cubic exponential regression is an improvement on the primary and the quadratic
exponential regression algorithms. It adds additional seasonal information over primary
and quadratic exponential regression, which is more applicable to seasonal variation time
series. The exponential regression adds seasonal information that is more applicable to
seasonally varying time series. Seasonality is necessary for the cubic exponential regression
forecasting algorithm. Non-seasonal series cannot be predicted by this method. the
predictive strength of cubic exponential regression is related to the stability of the historical
data. If there is a seasonal pattern in the historical data, the algorithm is able to capture the
pattern well, otherwise, there will be a large error.

The cubic exponential regression consists of three components: the smoothing
coefficient, the trend value and the seasonal component. They are the three important
elements of seasonal information. If a time series repeats itself at a certain interval, then
this interval is called a season. This time series is then seasonal. The seasonal length is the
number of data points within a cycle of change in the series. Each point in each season is a
component of seasonality.

The tensor quantization cubic exponential regression algorithm is able to predict future
demand for fresh produce based on the core tensor of historical sales of fresh produce
in urban supermarket chains. Compared with the classical cubic exponential regression
algorithm, the tensor quantization cubic exponential regression algorithm is not only able
to predict multiple categories of fresh produce sales simultaneously but also to find the
correlation between multiple time series, thus improving the prediction accuracy. Figure
S5 shows a diagram of the tensor quantization cubic exponential regression algorithm
calculation.

The cubic exponential regression algorithm is to perform another exponential smoothing
on the quadratic exponential smoothing, which corrects the predicted values of the
quadratic exponential smoothing. The prediction results can adequately reflect the
cyclicality of the demand for fresh commodities in urban supermarket chains. Our

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1138 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1138#supp-7
http://dx.doi.org/10.7717/peerj-cs.1138#supp-7
http://dx.doi.org/10.7717/peerj-cs.1138


proposed tensor quantization cubic exponential regression algorithm is shown in Eq.
(8).

M (1)
i =αBi+(1−α)M

(1)
i−1

M (2)
i =αM

(1)
i +(1−α)M

(2)
i−1

M (3)
i =αM

(2)
i +(1−α)M

(3)
i−1

. (8)

In Eq. (8), α, 0<α<1, is the regression coefficient in the tensor quantization cubic
exponential regression algorithm. The symbol B ∈ Rr1×r2×(T−τ+1) is the input data to the
tensor quantization cubic exponential regression algorithm. As shown in Fig. S5, B can be
viewed as a time series of historical fresh produce sales consisting of Bi. The symbol Bi. is
the core tensor of historical fresh produce sales for urban supermarket chains at the time
i, and the size of Bi is r1 ×r2. The symbols M (1)

i , M (2)
i , and M (3)

i are matrices obtained by
subjecting Bi to primary, secondary, and tertiary exponential regression.

We use the tensor quantization cubic exponential regression algorithm to solve for the
core tensor of fresh goods sales on the future m day, named BT̂+m, T̂ = T - τ+1. Because
the cubic exponential regression algorithm reflects the linear relationship between the
input data and the exponential regression values, we can use the tensor quantization cubic
exponential regression algorithm for B as shown in Eq. (8). It is a special kind of weighted
average analysis method. The symbol BT̂+m is calculated as in Eq. (9).

BT̂+m= aT̂ +bT̂m+
1
2
cT̂m

2. (9)

In Eq. (9), m is a positive integer and is equal to or greater than 1. The symbols aT̂ , bT̂ ,
and cT̂ can be obtained by Eq. (10).

aT̂ = 3M (1)
T̂
−3M (2)

T̂
+M (3)

T̂

bT̂ =
α

2(1−α)2
[
(6−5α)M (1)

T̂
−(10−8α)M (2)

T̂
+(4−3α)M (3)

T̂

]
cT̂ =

α

(1−α)2
[
M (1)

T̂
−2M (2)

T̂
+M (3)

T̂

]. (10)

Reverse high-order orthogonal iterations
Reverse high-order orthogonal iterations are the inverse of high-order orthogonal
iterations. The symbol BT̂+m need to be converted into a Hankle tensor block GT̂+m
for fresh merchandising by reverse high-order orthogonal iterations. Figure S6 shows a
diagram of the conversion of BT̂+m to GT̂+m.

The size of BT̂+m is r1 ×r2 in Fig. S6 and is transformed into the Hankle tensor block
of fresh commodities sales GT̂+m at the corresponding moment by the reverse high-order
orthogonal iterations. Equation (11) is the formula to get GT̂+m.

GT̂+m=BT̂+m×1U (1)
×2U (2). (11)

In Eq. (11), U (n), n =1,2, is the U (n), n =1,2,3, from Eq. (4). Since the tensor BT̂+m
has only two modes, we take only the U (n), n=1,2, on the corresponding mode for inverse
high-order orthogonal iterations.U (n) is defined as in Eq. (5). The magnitudes ofU (1) and
U (2) are I ×r1 and τ ×r2, respectively. According to Eq. (11), the magnitude of GT̂+m is I
×r.
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Reverse multi-way delay embedding transform
According to the structure of Fig. 1, GT̂+m must undergo a reverse multi-way delay
embedding transform to obtain the forecast of fresh produce sales at the time T̂+m, which
contains the forecast of all types of fresh produce sales at the time T̂ +m. The reverse
multi-way delay embedding transformation process is shown in Fig. S7. Equation (12)
demonstrated reverse multi-way delay embedding transform.

X̂ =H−1τ
(
Ĝ
)

=Unfold(I ,τ )
(
Ĝ
)
×2O†.

(12)

In Eq. (12), the Hankle tensor block for fresh goods sales Ĝ consists of G and GT̂+m.
The data structure of Ĝ is shown in Fig. S8, with a size is I × τ ×(T - τ+2). The operator
† denotes the Moore–Penrose generalised inverse. The symbol O denotes the replication
matrix and the structure of OT is shown in Fig. S8. In Fig. S8, Iτ is a diagonal matrix of
size τ × τ , as shown in Fig. S3. OT is a replica matrix consisting of T - τ+2 times Iτ of size
(T+ 1) × τ (T - τ+1). The formula for O† is (OTO)−1OT , and the size of O† is also (T+ 1)
× τ (T - τ+1).

In Eq. (12), H−1τ is the inverse function of Hτ . The symbol Unfold(I ,τ )(Ĝ) denotes the
expansion of Ĝ, which is illustrated in Fig. S9. In Fig. S9, Unfold(I ,τ )(Ĝ) represents the
Hankle tensor block Ĝ for fresh produce sales expanded into a matrix R, R ∈I × τ (T -
τ+2). X̂ is the 2-module product of R and O†. The fresh produce sales X̂ are composed of
historical sales X and sales forecasts XT̂+m at the moment in time T̂ +m. The structure of
X̂ is shown in Fig. S10.

RESULTS
The experiments were performed on a Windows system. We used an RTX2060 graphics
card, which has 6G of videomemory. The programming language used was Python, version
3.7.3. The dataset we used was based on the Walmart fresh produce sales public dataset,
aggregating 30491 time series of length 1,941 by region into three fresh produce sales time
series. The regions are divided into California, Texas andWisconsin. The size of our dataset
is three rows and 1,941 columns. In Fig. S11, the horizontal axis represents the date, from
day 1 to day 1,941. The vertical axis represents the volume of fresh commodities sold.
The red line, the yellow line, and the grey line show the trend in daily sales of all fresh
commodities in California, Texas, and Wisconsin. Each time series contains 1,941 data,
each representing the total amount of fresh produce sold in that region on that day. The
statistics cover a total of 1,941 days from January 29, 2011, to May 22, 2016. We used the
first 1,923 days of fresh produce sales as input data and the last 28 days as test data.

Evaluation metrics
The evaluation metrics of the experiment were evaluated using the Symmetric Mean
Absolute Percentage Error, Normalized Root Mean Square Error and R-squared (Estrada
et al., 2020; Kong et al., 2022a; Kong et al., 2022b; Memic et al., 2021). The abbreviations
were SMAPE, NRMSE and R2 (Chicco, Warrens & Jurman, 2021; Zhu et al., 2022).
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Equation (13) was the formula of SMAPE.

SMAPE=
1
n

n∑
i=1

∣∣ŷi−yi∣∣(∣∣ŷi∣∣− ∣∣yi∣∣)/2 (13)

Equation (14) was the formula of NRMSE.

NRMSE=

√
1
N
∑N

i=1

∣∣yi− ŷi∣∣2
ymax−ymin

(14)

Equation (15) was the formula of R2.

R2
= 1−

∑n
i=1
(
yi− ŷi

)2∑n
i=1
(
yi−y

)2 . (15)

In Equations (13)–(15), n indicates the number of days of test data. The symbol yi
indicates real fresh produce sales. The symbols ymax and ymin denote the maximum and
minimumvalues, respectively. The symbol ŷi denotes the predicted value of raw commodity
sales for the proposed tensor quantization exponential regression algorithm. The values of
SMAPE, NRMSE and R2 are all in the range of 0 to 1 (Zhang et al., 2016). When the values
of SMAPE, NRMSE, and R2 are closer to 0, 0, and 1, the proposed method is more effective
in prediction.

High-order orthogonal iterations number selection
The loss function generally refers to the error between the predicted and true values of a
single sample. The individual cost function generally refers to the error between a single
batch or the entire training set and the true value (Zhou et al., 2017). In practice, the loss
function refers to the overall situation. In the absence of overfitting, the goal is to minimise
the loss function, with a smaller loss indicating that the predicted value is closer to the
true value. Since the loss function is a direct calculation of the batch, the returned loss is a
vector of dimensional batch size.

During the computation of the proposed tensor quantization exponential regression
algorithm for the high-order orthogonal iterations method, we compared the magnitude
of the loss values under different K in order to select the optimal number of iterations K.
The F-norm in Eq. (2) is loss, as shown in Eq. (16).

loss=‖W ‖F
=
∥∥G− Ĝ∥∥F. (16)

In Eq. (16),W and G are the loss matrix and the historical core tensor of fresh produce
sales, respectively. The value of loss is normalised by using a deviation normalisation, as
shown in Eq. (17).

loss∗i =
lossi− lossmin

lossmax− lossmin
. (17)

In Eq. (17), loss∗i , lossmin, and lossmin are the normalised values, the maximum value,
and the minimum value of lossi, for a given high-order orthogonal iterations K. In our
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Figure 2 Loss values.
Full-size DOI: 10.7717/peerjcs.1138/fig-2

comparison, the values of K range from 1 to 10. Therefore, the value of i from [1,10] in
Eq. (17). Figure 2 illustrates the normalised loss value versus the number of iterations.

We chose Eqs. (16), (17) as the loss function for the proposed method based on the
subject under study. Equations (16), (17) are the more commonly used loss functions.
The error curve is characterised as smooth, continuous, and derivable. Therefore, the
gradient descent algorithm can be used to find the minimum value of the loss function.
In addition, the gradient of the error curve decreases as the error decreases. It facilitates
the convergence of the function. Even at a fixed descent gradient, the loss function can be
minimised relatively quickly. Equation (16) has a special property. When the difference
between G and Ĝ is too large, it increases error. Equation (16) imposes a larger penalty for
larger errors and a smaller penalty for smaller errors. The proposed model will be more
biased towards larger penalties. If there are outliers in the sample, Eq. (17) assigns higher
weights to the outliers.

In Fig. 2, the horizontal axis represents the process of changing the value of the number
of iterations K, K ∈ [1,10]. The vertical axis is the normalised loss value loss∗. As the value
of K decreased from 1 to 6, the value of loss∗ decreased. When K was 6, loss∗ took a very
small value of 0.10245697. When K was greater than 6, the value of loss∗ oscillated over
a wide range. Since the smaller loss∗ the smaller the loss in tensor decomposition, K was
taken to be 6 in this article.

Regression factor selection
In Eq. (8), we need to determine the value of the smoothing coefficient α, 0<α<1, to
implement the tensor quantization cubic exponential regression algorithm. The α value is
chosen subjectively, with larger values indicating a greater weighting of more recent data
in the prediction of the future. When the time series is relatively smooth, α is taken as a
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smaller value. It is possible to ignore the effect of the value of α on future forecasts. The
α is generally determined by first making an approximate estimate based on experience.
When the time series is relatively smooth, the chosen α value is between 0.05 and 0.20.
When the time series is volatile, but the long-term trend does not change significantly, the
chosen α value is between 0.10 and 0.40. When the time series is highly volatile and the
long-term trend is significant upward or downward, the α value chosen is between 0.60
and 0.80. When the time series is a typical upward or downward series, which satisfies the
additive model, the α value chosen is between 0.60 and 1.

The standard error of prediction under different values of α is then compared through
a multiple experiment process and the α value with the smallest error is chosen. We
determined the value of α by comparing the magnitude of the NRMSE corresponding
to different values of α. The results of the NRMSE comparison are shown in Fig. 3. In
Fig. 3, the horizontal and vertical axes represent the value of α and NRMSE, respectively.
When α was equal to 0.01, the NRMSE of the cubic exponential regression algorithm
and the proposed tensor quantization exponential regression algorithm both obtained the
minimum value. Therefore, the smoothing coefficient α was chosen to be 0.01.

Analysis of experimental results
Tables S3 and S4 show the values of NRMSE and SMAPE for predictions on the test data,
using the cubic exponential regression algorithm and the proposed tensor quantization
exponential regression algorithm, respectively.

From Tables S3 and S4, it was demonstrated that the proposed tensor quantization
exponential regression algorithmhad the bestNRMSE and SMAPE for the prediction results
in California, Texas, and Wisconsin. The NRMSE of the proposed tensor quantization
exponential regression algorithm was reduced by 0.0261, 0.0518, and 0.0387, for the test
data in California, Texas, andWisconsin. As shown in Table S4, the SMAPE of the proposed
tensor quantization exponential regression algorithm was reduced by 0.0468, 0.0281, and
0.0075, for the test data from California, Texas, and Wisconsin.

We also aggregated the Walmart merchandising dataset by type of fresh produce and
shop location. Then, we randomly selected ten fresh produce merchandising time series
from the aggregated data. The ten fresh produce items are shown in Table S5, in which
each fresh produce sales time series represents the same-day sales of one fresh produce in
one shop. We used the first 1841 days and the last 100 days of fresh produce sales in the
dataset as the input data and the validation data for the proposed method, respectively.

We used the proposed tensor quantization exponential regression algorithm and
the cubic exponential regression algorithm for the last 100 days of fresh produce sales
prediction, respectively. As shown in Table S5, the NRMSE of the proposed tensor
quantization exponential regression algorithm is smaller than the classical cubic exponential
regression algorithm for all ten randomly selected fresh produce sales.

Figure 4 shows the actual and predicted values of the total sales of fresh produce based
on the proposed method. In Fig. 4, the actual total sales of fresh produce are the total value
of the daily sales of the ten fresh produce mentioned above. The total sales forecast for fresh
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Figure 3 Comparison of NRMSE.
Full-size DOI: 10.7717/peerjcs.1138/fig-3

Figure 4 Comparison of true and predicted total sales of fresh commodities.
Full-size DOI: 10.7717/peerjcs.1138/fig-4
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produce is the sum of the daily sales forecasts for the mentioned above ten fresh produce.
The forecasts range from the day 1842 to the day 1941, in a total of 100 days.

Model comparison
We also compare the values of NRMSE, SMAPE and R2 of the prediction results of ARIMA,
VAR, MOAR, XGBoost, and deepAR for different proportions of the training set, as shown
in Fig. S12.

As shown in Fig. S12, the horizontal axis represents the training set proportions.
The vertical axes of (Figs. S12A–S12C) represent NRMSE, SMAPE, and R2 in sequence.
For different training set proportions, NRMSE, SMAPE, and R2 of the proposed tensor
quantization exponential regression algorithm outperformed the existing ARIMA, VAR,
MOAR, XGBoost, and deepAR. Furthermore, in Fig. S12, NRMSE, SMAPE, and R2 all
performed worse, when predicted by ARIMA, VAR, MOAR, XGBoost, and deepAR in
the smaller proportions of the training set. In contrast, the proposed tensor quantization
exponential regression algorithm had better performance for NRMSE, SMAPE, and R2 in
the smaller proportions of the training set.

CONCLUSIONS
A tensor quantization exponential regression algorithm was proposed for the supply
forecasting and profiling of fresh goods in urban supermarket chains. In the proposed
method, we first combined the tensor and cubic exponential regression algorithm models.
Secondly, we tensorized the cubic exponential regression algorithm to predict multiple time
series simultaneously and also improved the accuracy of the prediction. Finally, we used
the Wal-Mart produce sales dataset as the experimental validation dataset. By comparing
the proposed method with the existing ARIMA, VAR, MOAR, XGBoos, deepAR, and cubic
exponential regression algorithms, the experimental results showed that the proposed
method not only outperformed the above six existing methods but was also more stable.

In fact, the importance of supply forecasting is self-evident to individual consumers
and caterers, as well as to other brick-and-mortar industries, services, and e-commerce,
for social governance. Urban supermarket chains are key to reducing costs, improving
efficiency and ensuring the quality and consistency of fresh commodities. The short
shelf life of fresh commodities makes supply forecasting particularly important in the
transport and distribution of fresh food. To achieve freshness, fresh commodities need
to reach consumers quickly. The smaller the stock, the better supply forecasting, as fresh
commodities are expensive to obtain in terms of freshness and safety. As a bridge between
farmers and caterers, urban supermarket chains are centered on matching supply and
demand. The ability to forecast the supply chain of fresh commodities determines the core
competitiveness of urban supermarket chains in the future.
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