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ABSTRACT
As part of an automated fact-checking pipeline, the claim verification task consists
in determining if a claim is supported by an associated piece of evidence. The
complexity of gathering labelled claim-evidence pairs leads to a scarcity of datasets,
particularly when dealing with new domains. In this article, we introduce Semantic
Embedding Element-wise Difference (SEED), a novel vector-based method to few-
shot claim verification that aggregates pairwise semantic differences for claim-
evidence pairs. We build on the hypothesis that we can simulate class representative
vectors that capture average semantic differences for claim-evidence pairs in a
class, which can then be used for classification of new instances. We compare
the performance of our method with competitive baselines including fine-tuned
Bidirectional Encoder Representations from Transformers (BERT)/Robustly
Optimized BERT Pre-training Approach (RoBERTa) models, as well as the state-of-
the-art few-shot claim verification method that leverages language model perplexity.
Experiments conducted on the Fact Extraction and VERification (FEVER) and
SCIFACT datasets show consistent improvements over competitive baselines in few-
shot settings. Our code is available.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech
Keywords Claim verification, Misinformation detection, Natural language processing, Few-shot
classification, Veracity classification, Claim validation, Automated fact-checking

INTRODUCTION
As a means to mitigate the impact of online misinformation, research in automated
fact-checking is attracting increasing attention (Zeng, Abumansour & Zubiaga, 2021).
A typical automated fact-checking pipeline consists of two main components:
(1) claim detection, which consists of identifying the set of sentences out of a long
text deemed capable of being fact-checked (Konstantinovskiy et al., 2020), and
(2) claim validation, which aims to do both evidence retrieval and claim verification
for claims (Pradeep et al., 2020).

As a key component of the automated fact-checking pipeline, the claim verification
(the task is sometimes referred to as veracity classification (Lee et al., 2021)) component
is generally framed as a task in which a model needs to determine if a claim is supported
by a given piece of evidence (Thorne et al., 2018; Wadden et al., 2020; Lee et al., 2021).
It is predominantly tackled as a label prediction task: given a claim c and a piece of
evidence e, predict the veracity label for the claim c which can be one of “Support”,
“Contradict” or “Neutral”. The Fact Extraction and VERification (FEVER) (Thorne et al.,
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2018) dataset presents the following example: the claim, “A staging area is only an unused
piece of land.” is contradicted by the evidence, “A staging area (otherwise staging point,
staging base or staging post) is a location where organisms, people, vehicles, equipment or
material are assembled before use”.

Despite recent advances in the claim verification task, existing methods predominantly
involve training big language models, and/or rely on substantial amounts of labelled data,
which can be unrealistic in the case of newly emerging domains such as COVID-19
(Saakyan, Chakrabarty & Muresan, 2021). To overcome these dependencies, we set out to
propose a novel and effective method to claim verification with very limited data, e.g., as
few as 10 to 20 samples per veracity class. To develop this method, we hypothesise that a
method can leverage a small number of training instances, such that the semantic
differences will be similar within each veracity class. Hence, we can calculate a
representative vector for each class by averaging semantic differences within claim-
evidence pairs of that class. These representative vectors would then enable making
predictions on unseen claim-evidence pairs. Figure 1 provides an illustration.

Building on this hypothesis, we propose a novel method, Semantic Embedding
Element-wise Difference (SEED), as a method that can leverage a pre-trained language
model to build class representative vectors out of claim-evidence semantic differences,
which are then used for inference. By evaluating on two benchmark datasets, FEVER and
SCIFACT, and comparing both with fine-tuned language models, Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019) and Robustly Optimized
BERT Pre-training Approach (RoBERTa) (Liu et al., 2019), and with the state-of-the-art
few-shot claim verification method that leverages perplexity (Lee et al., 2021), we
demonstrate the effectiveness of our method. SEED validates the effectiveness of our
proposed paradigm to tackle the claim verification task based on semantic differences,
which we consistently demonstrate in three different settings on two datasets.

Figure 1 SEED consists of two steps: 1. Captures average semantic differences between claim-
evidence pairs for each class, leading to a ½½DIFFq�� representative vector per class. 2. During
inference, each input vector ½½DIFFq�� is compared with these representative vectors.

Full-size DOI: 10.7717/peerj-cs.1137/fig-1
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In this article, we conduct comprehensive experiments in order to answer two
overarching research questions:

� RQ1: Can sentence embeddings from pre-trained language models be effectively utilised
to compute pairwise semantic differences between claims and their associated evidences
with limited labelled instances?

� RQ2: If so, would they contribute positively to the task of claim verification in few-shot
settings?

We make the following contributions:

� We introduce SEED, a novel method that computes semantic differences within claim-
evidence pairs for effective and efficient few-shot claim verification.

� By experimenting on two datasets, we demonstrate the effectiveness of SEED to
outperform two competitive baselines in the most challenging settings with limited
numbers of shots. While the state-of-the-art perplexity-based model is restricted to two-
class classification, SEED offers the flexibility to be used in two- or three-class settings.
By looking at classwise performance results, we further demonstrate the consistent
improvement of SEED across all classes.

� We perform a post-hoc analysis of the method, further delving into the results to
understand performance variability through standard deviations, as well as to
understand method convergence through the evolution of representative vectors.

BACKGROUND
When dealing with claim verification, most recent systems fine-tune a large pre-trained
language model to do three-way label prediction, including VERISCI (Wadden et al.,
2020), VERT5ERINI (Pradeep et al., 2020), and ParagraphJoint (Li, Burns & Peng, 2021).
Despite the evident effectiveness of these methods, fine-tuning models depends on the
availability of substantial amounts of labelled data, which are not always accessible,
particularly for new domains. They may also be very demanding in terms of computing
resources and time. Given these limitations, here we argue for the need of developing more
affordable solutions which can in turn achieve competitive performance in few-shot
settings and/or with limited computing resources.

Research in few-shot claim verification is however still in its infancy. To the best of our
knowledge, existing work has limited its applicability to binary claim verification, i.e.,
keeping the “Support” class and merging the “Contradict” and “Neutral” classes into a new
“Not_Support” class. Lee et al. (2021) hypothesised that evidence-conditioned perplexity
score from language models would be helpful for assessing claim veracity. They explored
using perplexity scores with a threshold th to determine claim veracity into “Support”
and “Not_Support”: if the score is lower than the threshold th, it is classified as
“Not_Support” and otherwise “Support”. This method proved to achieve better
performance on few-shot binary classification than fine-tuning a BERT model. In
proposing our SEED method, we use this method as the state-of-the-art baseline for
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few-shot claim verification in the same two-class settings, while SEED is also applicable to
and experimented in three-class settings.

Use of class representative vectors for text classification has also attracted interest in the
research community recently. In a similar vein to our proposed approach SEED,
prototypical networks (Snell, Swersky & Zemel, 2017) have proven successful in few-shot
classification as a method using representative vectors for each class in classification tasks.
Prototypical networks were proposed as a solution to iteratively build class prototype
vectors for image classification through parameter updates via stochastic gradient descent,
and have recently been used for relation extraction in NLP (Fu & Grishman, 2021,
Gao et al., 2019). While building on a similar idea, our SEED method further proposes the
use of semantic differences to simulate a meaningful and comparable representation of
claim-evidence pairs, enabling its application on the task of claim verification.

SEED: METHODOLOGY
We hypothesise that we can make use of sentence embeddings from pre-trained language
models such as BERT and RoBERTa to effectively compute pairwise semantic differences
between claims and their associated evidences. These differences can then be averaged
into a representative vector for each class, which can in turn serve to make predictions on
unseen instances during inference.

We formalise this hypothesis through the implementation of SEED as follows. For a
given pair made of claim and evidence, we first leverage a pre-trained language model
through sentence-transformers library (Reimers & Gurevych, 2019) to obtain sentence
embeddings ½½claim�� and ½½evidence��. Specifically, embeddings are obtained by conducting
mean pooling with attention mask over the last hidden state. We then capture a
representation of their semantic difference by calculating the element-wise difference
j½½claim�� � ½½evidence��j. To the best of our knowledge, its previous implementation is only
found in Reimers & Gurevych (2019) as one of many available classification objective
functions, leaving room for further exploration. Formally, for a claim-evidence pair i that
has evidencei and claimi, we have Eq. (1):

½½DIFFi�� ¼ j½½evidencei�� � ½½claimi��j (1)

To address the task of claim verification that compares a claim with its corresponding
evidence, we obtain the mean vector of all ½½DIFF�� vectors within a class. We store this
mean vector as the representative of the target claim-evidence relation. That is, for each
class c that has n training samples available, we obtain its representative relation vector
with Eq. (2).

½½Relationc��
¼ ½½DIFFc��
¼ 1

n

Xn

i¼1

ð½½DIFFi��Þ

¼ 1
n

Xn

i¼1

ðj½½evidencei�� � ½½claimi��jÞ

(2)
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During inference, we first obtain the query ½½DIFFq�� vector for a given unseen claim-
evidence pair, then calculate Euclidean distance between the ½½DIFFq�� vector and every
computed ½½Relationc�� vector, e.g., ½½Support��, ½½Contradict�� and ½½Neutral�� for three-way
claim verification, and finally inherit the veracity label from the candidate relation vector
that has the smallest Euclidean distance value.

EXPERIMENT SETTINGS
Datasets
We conduct experiments on the FEVER (Thorne et al., 2018) and SCIFACT (Wadden
et al., 2020) datasets (see examples in Table 1). FEVER, a benchmark, large-scale dataset
for automated fact-checking, contains claims that are manually modified from Wikipedia
sentences and their corresponding Wikipedia evidences. SCIFACT is a smaller dataset
that focuses on scientific claims. The claims are annotated by experts and evidences are
retrieved from research article abstracts. For notation consistency, we use “Support”,
“Contradict” and “Neutral” as veracity labels for both datasets1.

Method implementation
We implement SEED using the sentence-transformers library (Reimers & Gurevych, 2019)
and the huggingface model hub (Wolf et al., 2020). Specifically, we use three variants of
BERT (Devlin et al., 2019) as the base model: BERT-base, BERT-large and BERT-nli2.
We include experiments with SEEDBERTNLI due to the proximity between the claim
verification and natural language inference tasks. We use SEEDBERTB , SEEDBERTL and
SEEDBERTNLI to denote them hereafter.

Baselines
We compare our method with two baseline methods: perplexity-based (PB) method and
fine-tuning (FT) method.

Perplexity-based method (PB)
The perplexity-based method (Lee et al., 2021) is the current SOTA method for few-shot
claim verification. It uses conditional perplexity scores generated by pre-trained language
models to find a threshold that enables binary predictions. If the perplexity score of a given
claim-evidence pair is higher than the threshold, it is assigned the “Support” label;
otherwise, the “Not_Support” label. We conduct experiments with BERT-base and BERT-
large for direct comparison with other methods. We denote them as PBBERTB and PBBERTL

hereafter.

Fine-tuning method (FT)

We also conduct experiments with widely-used model fine-tuning methods. Specifically,
we fine-tune vanilla BERT-base, BERT-large, RoBERTa-base and RoBERTa-large models3.
Following (Lee et al., 2021), we use 5e�6 for FTBERTB and FTRoBERTaB as learning rate
and 2e�5 for FTBERTL and FTRoBERTaL . All models share the same batch size of 32 and
are trained for 10 epochs. We denote them as FTBERTB , FTBERTL , FTRoBERTaB and FTRoBERTaL

hereafter.

1 Originally, FEVER uses “Support”,
“Refute” and “Not Enough Info” as vera-
city categories, while SCIFACT uses
“Supports”, “Refutes” and “No Info”.

2 The first two are available on huggingface
model hub (Wolf et al., 2020) with model
id bert-base-uncased and bert-largeun-
cased. The last one has been fine-tuned
on natural language inference (NLI)
tasks and is available on sentence-trans-
formers repository with model id bert-
base-nli-mean-tokens.

3 The associated model ids from hugging-
face model hub (Wolf et al., 2020) are
bert-base-uncased, bert-large-uncased,
robertabase and roberta-large
respectively.
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Experimental design
Experiments are conducted in three different configurations: binary FEVER claim
verification, three-way FEVER claim verification and three-way SCIFACT claim
verification. The first configuration is designed to enable direct comparison with the SOTA
method (i.e., PB), as it is only designed for doing binary classification.

We conduct n-shot experiments (n training samples per class) with the following
choices of n: 2, 4, 6, 8, 10, 20, 30, 40, 50, 100. Note that one may argue that 50-shot and
100-shot are not necessarily few-shot, however we chose to include them to further
visualise the trends of methods up to 100 shots. The number of shots n refers to the
number of instances per class, e.g., 2-shot experiments would include six instances in total
when experimenting with three classes. To control for the performance fluctuations owing
to the randomness of shots selection, we report the mean results for each n-shot
experiment obtained by using 10 different random seeds ranging from 123 to 132.
Likewise, due to the variability in performance of the FT method given its non-
deterministic nature, we do five runs for each setting and report the mean results.

RESULTS
We first report overall accuracy performance of each task formulation, then report
classwise F1 scores for three-way task formulations. Finally we report statistical
significance results.

Table 1 Veracity classification samples from the FEVER (Thorne et al., 2018) and SCIFACT (Wadden et al., 2020) datasets.

FEVER

Claim Evidence Veracity

“In 2015, among Americans, more than 50% of adults
had consumed alcoholic drink at some point.”

“For instance, in 2015, among Americans, 89% of adults had consumed
alcohol at some point, 70% had drunk it in the last year, and 56% in the last
month.”

“Support”

“Dissociative identity disorder is known only in the
United States of America.”

“DID is diagnosed more frequently in North America than in the rest of the
world, and is diagnosed three to nine times more often in females than in
males.”

“Contradict”

“Freckles induce neuromodulation.” “Margarita Sharapova (born 15 April 1962) is a Russian novelist and short
story writer whose tales often draw on her former experience as an animal
trainer in a circus.”

“Neutral”

SCIFACT

Claim Evidence Veracity

“Macropinocytosis contributes to a cell’s supply of
amino acids via the intracellular uptake of protein.”

“Here, we demonstrate that protein macropinocytosis can also serve as an
essential amino acid source.”

“Support”

“Gene expression does not vary appreciably across
genetically identical cells.”

“Genetically identical cells sharing an environment can display markedly
different phenotypes.”

“Contradict”

“Fz/PCP-dependent Pk localizes to the anterior
membrane of notochord cells during zebrafish
neuralation.”

“These results reveal a function for PCP signalling in coupling cell division
and morphogenesis at neurulation and indicate a previously unrecognized
mechanism that might underlie NTDs.”

“Neutral”
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FEVER binary classification
Experiment setup
For binary classification, we use the FEVER data provided by the original authors of the
PB method (Lee et al., 2021) for fair comparison. The data contains 3,333 “Support”
instances and 3,333 “Not_Support” instances4. For n-shot settings, we sample n instances
per class as the train set, and use 3333� n instances per class as the test set. We present
experiments with all three methods (SEED, PB, FT).

Results
As shown in Fig. 2, SEED achieves the overall best performance in few-shot settings. It
suggests positive answers to our research questions: sentence embeddings from pretrained
language models can be effectively utilised to compute semantic differences between
claim-evidence pairs (RQ1) and they do contribute positively to the task of claim
verification in few-shot settings (RQ2). When given fewer than 10 shots, the accuracy of
the FT method remains low at around 50%, which is close to a random guess for a
balanced, binary classification task. Meanwhile, PBBERTB , PBBERTL , SEEDBERTB and
SEEDBERTL achieve similar results at around 57%. In 10-shot, 20-shot and 30-shot settings,
SEED outperforms PB, which in turn outperforms FT. In 40-shot and 50-shot settings,
FTBERTL surpasses PB, although FTBERTB , FTRoBERTaB and FTRoBERTaL perform remarkably
lower. In the 100-shot setting, FTBERTL manages to outperform SEEDBERTB and SEEDBERTL

and achieves similar performance as SEEDBERTNLI . FTBERTB , FTRoBERTaB and FTRoBERTaL in
the 100-shot setting failed to outperform SEED, despite that FTRoBERTaL successfully
outperformed PB. Overall, SEED with vanilla pre-trained language models outperforms
both baselines from 10-shot to 50-shot settings. In addition, SEEDBERTNLI always achieves
the best performance up to 100 shots.

Figure 2 Comparison of few-shot accuracy performance on the binary FEVER dataset.
Full-size DOI: 10.7717/peerj-cs.1137/fig-2

4 The “Not Support” is obtained by sam-
pling and merging original instances
from both “Contradict” and “Neutral”.
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Interestingly, the increase of shots has very different effects on each method. SEED
experiences significant accuracy improvement as shots increase when given fewer than
20 shots; the performance boost slows down drastically afterwards. Starting with
reasonably high accuracy, PB achieves a mild performance improvement when given more
training samples. When given fewer than 10 shots, the FT method doesn’t experience
reliable performance increase over training data increase; it only starts to experience linear
performance boost after 10-shots.

FEVER three-way classification
Experiment setup
We use 3,333 randomly sampled instances for each class out of “Support”, “Contradict” and
“Neutral” from the original FEVER test set as the total dataset for our experiment. For
n-shot setting, we sample n instances per class as the train set, and use 3333� n instances
per class as the test set. In these experiments we compare SEED and FT, excluding PB as it
is only designed for binary classification.

Results
Figure 3 shows a general trend to increase performance as the amount of training data
increases for both methods. When given 10 or fewer shots, SEED shows significant
performance advantages. When given between two and 10 shots, performance of fine-
tuned models fluctuates around 33%, which equals to a random guess. Meanwhile, SEED
achieves significant accuracy improvement from less than 40% to around 55% with vanilla
pre-trained language models. In this scenario, the performance gap between the two
methods that use the same model base ranges from 6% to 26%. With 20 shots, SEED with
vanilla pre-trained language models significantly outperform FTBERTB , FTRoBERTaB and
FTRoBERTaL , although FTBERTL managed to achieve similar results. With 30 shots, SEED with
vanilla pre-trained language models reaches its performance peak at around 60% and
SEEDBERTNLI peaks at around 68%. Given 30 or more shots, SEED slowly gets surpassed by
the FT method. Specifically, FTBERTL surpasses SEED with vanilla pre-trained language
models using 30 shots, while FTRoBERTaL and FTBERTB only achieve a similar effect with 100
shots. However, FTRoBERTaB never outperforms SEED within 100 shots. In addition,
SEEDBERTNLI has substantial performance advantages when given fewer than 10 shots,
despite being outperformed by FTBERTL at 40 shots. Overall, SEED experiences a
performance boost with very few shots, whereas the FT method is more demanding, whose
performance starts to increase only after 10 shots. Like performance on binary FEVER,
performance on three-way FEVER also suggests positive answers to our research
questions: semantic differences between claim-evidence pairs can be captured by utilising
sentence embeddings (RQ1) and positive contributions to the task of claim verification in
few-shot settings are observed (RQ2).

Interestingly, SEEDBERTB outperforms SEEDBERTL starting from six shots. This
performance difference within SEED further results in another interesting observation:
SEEDBERTB achieves better overall accuracy than FTBERTL at 10 shots.

Zeng and Zubiaga (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1137 8/18

http://dx.doi.org/10.7717/peerj-cs.1137
https://peerj.com/computer-science/


SCIFACT three-way classification
Experiment setup
The SCIFACT dataset is much smaller than the FEVER dataset, originally with only 809
claims for training and 300 claims for development (the test set being withheld for a shared
task is not yet available at the time of writing). For each n-shot setting, we randomly
sample n instances for each class out of “Support”, “Contradict” and “Neutral”, which are
used as the train set. Given the imbalanced nature of the development set (i.e., 138, 114 and
71 pairs for each class), we randomly sample 70 instances for each class in the development
set and use them for evaluation. We again compare SEED and FT in these experiments.

Results
Figure 4 shows again an expected increase in performance for both methods as they use
more training data. Despite taking a bit longer to pick up, SEED still starts its performance
boost early on. Increasing from 2 to 10 shots, SEED gains a substantial increase in
performance. In addition, the FT method performs similarly to a random guess at around
33% accuracy when given 10 or fewer shots. When given 20 shots, FT still falls behind
SEED, which differs from the trend seen with the FEVER three-way claim verification.
SEEDBERTB and SEEDBERTL peak at around 45%, while SEEDBERTNLI peaks at around 50%
with only 20 shots. At 30-shots and 40-shots, SEED still shows competitive performance,
where FTBERTL outperforms two of the SEED variants, but still falls behind SEEDBERTNLI .
FTRoBERTaL outperforms SEED with vanilla BERT models at 50-shots and FTBERTB and
FTRoBERTaB achieves that at 100-shots. Similarly, performance on SCIFACT dataset leads to
positive answers to our research questions: sentence embeddings from pretrained language
models can be effectively utilised to compute semantic differences and make positive
contributions to few-shot claim verification task.

Figure 3 Comparison of few-shot accuracy performance on the FEVER dataset.
Full-size DOI: 10.7717/peerj-cs.1137/fig-3
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The accuracy scores on the SCIFACT dataset are noticeably lower than on the FEVER
dataset. The FT method is again more demanding on the number of shots and experiences
a noticeable delay to overtake SEED, more so on SCIFACT than on FEVER. This
highlights the challenging nature of the SCIFACT dataset, where SEED still remains the
best in few-shot settings.

Classwise F1 performances
We present classwise F1 performance here for further understanding of the results.
Figure 5 sheds light on addressing the task of FEVER binary claim verification. Both SEED
and FT method gain improved performance on both classes with more data. The SEED
method and PB method have significant performance advantages on the “Support” class,
when given 10 or fewer shots. Despite that the PB method initially achieves very high
performance on the “Support” class at around 60%, it then experiences a performance drop
and ends at around 55% for BERT-base and 58% for BERT-large.

Figures 6 and 7 show consistent classwise performance patterns in tackling three-way
claim verification on both FEVER and SCIFACT. Both figures indicate that SEED has
better overall performance in all three classes when given fewer than 20 shots, where
performance on the “Support” class always has absolute advantages over the FT method
and performance on the “Neutral” class experiences the biggest boost. At around 20-shots
the FT method starts to overtake largely due to improved performance on the
“Neutral” class. Interestingly, within SEED, SEEDBERTB outperforms SEEDBERTL , which
in turn outperforms SEEDBERTNLI .

Furthermore, classwise F1 performance also sheds light on the interesting SEED
performance difference noted previously: SEEDBERTB outperforms SEEDBERTL in three-way
claim verification with noticeable margin on FEVER three-way claim verification. Figure 6
shows that SEEDBERTB has clear performance advantages over SEEDBERTL on the

Figure 4 Comparison of few-shot accuracy performance on the SCIFACT dataset.
Full-size DOI: 10.7717/peerj-cs.1137/fig-4
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“Contradict” and “Neutral” classes on FEVER three-way claim verification, which may be
the main cause of the performance difference. When conducting binary claim verification
on FEVER where the “Contradict” and “Neutral” classes are merged together, the
performance advantages from SEEDBERTB over SEEDBERTL are trivial. Otherwise,
SEEDBERTB does not outperform SEEDBERTL on the SCIFACT dataset as shown in Fig. 4.
Meanwhile, Fig. 7 does not demonstrate SEEDBERTB ’s performance advantages on
distinguishing the “Contradict” and “Neutral” classes on SCIFACT. We conjecture that
SEEDBERTB is better at capturing simple differences between “Contradict” and “Neutral”
classes while SEEDBERTL is better at capturing complex differences due to their size

Figure 5 Comparison of few-shot classwise F1 performance on the binary FEVER dataset.
Full-size DOI: 10.7717/peerj-cs.1137/fig-5

Figure 6 Comparison of few-shot classwise F1 performance on the FEVER dataset. Full-size DOI: 10.7717/peerj-cs.1137/fig-6
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difference. Given that FEVER is a synthetically generated dataset, it is to be expected that it
includes more cases of simpler differences.

In general, classwise F1 performance shows consistent performance patterns with
overall accuracy performance. The SEED method has significant performance advantages
when given 10 or fewer shots in all classes. The PB method has very good performance on
predicting the “Support” class initially but struggles to improve with more data. The FT
method has underwhelming performance on all classes when given very few shots and gain
big improvements over training data increase, especially on the “Neutral” class.

Statistical significance
We present statistical significance test results conducted based on McNemar’s test to
demonstrate robustness of SEED, compared with FT. For demonstration purposes, results
are calculated in 20-shot setting with the sampling seed set as 123 across three task
formulations. For fair comparison, we use vanilla BERT-base as the base model for both
SEED and FT methods.

Table 2 presents p values. The p values are always smaller than 0.005, indicating
statistical significance for performance improvements obtained by SEED across three task
formulations. Noticeably the p value calculated on binary FEVER and three-way FEVER
are much smaller than the p value on SCIFACT, which suggests that the performance
advantages are less significant. It correlates well with task difficulty: SCIFACT is more
challenging than FEVER. Overall, SEED achieves significant improvements over FT in 20-
shot setting.

Figure 7 Comparison of few-shot classwise F1 performance on the SCIFACT dataset. Full-size DOI: 10.7717/peerj-cs.1137/fig-7

Table 2 Statistical significance test results in 20-shot setting.

Binary FEVER FEVER SCIFACT

p value 4e�38 1e�110 0.00679
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POST-HOC ANALYSIS
Impact of shot sampling on performance
Random selection of n shots for few-shot experiments can lead to a large variance in the
results, which we mitigate by presenting averaged results for 10 samplings. To further
investigate the variability of the three methods under study, we look into the standard
deviations.

Figure 8 presents the standard deviation distribution on Binary FEVER claim
verification, which is largely representative of the standard deviations of the models across
the different settings. We only analyse configurations that utilise BERT-base and
BERT-large for direct comparison across methods. Overall, PB always has the lowest
standard deviation, which demonstrates its low performance variability across random
sampling seeds. Combined with the initial performance boost of SEED in Fig. 2, the high
standard deviation in the beginning implies that the SEEDmethod is able to learn from the
extremely limited number of training data and therefore experiences performance
fluctuations due to different few-shot samples. Meanwhile, when given 10 or fewer shots,
FT’s accuracy performance remains close to random guess (see Fig. 2) and its standard
deviation remains low (see Fig. 8). The low performance and the insensitivity to different
sampling seeds indicates in this scenario that the FT method is not able to effectively learn
from the extremely limited number of data. As the number of training samples further
increases beyond 10 shots, the standard deviation of SEED drastically decreases and its
performance experiences a boost until it converges at around 40 shots. After the initial
performance boost, the SEED method shows robustness to random sampling. When given
more than 10 shots, the standard deviations of FT surpass SEED with a large margin
and its accuracy performance starts to experience a boost, which indicates that the FT
models are able to learn from the given samples in this scenario. However, the FT models
do not converge within the first 100 shots, which leads to high standard deviation
within the range from 20-shots to 100-shots and they remain vulnerable to random
sampling in few-shot settings.

In short, PB is the most robust method to sample variations, despite underperforming
SEED on average; SEED is still generally more robust to random sampling and has higher
learning capacities than the FT method in few-shot settings.

Why does SEED plateau?
As presented in the Results section, the performance improvement of SEED becomes
marginal when given more than 40 shots. Given that SEED learns mean representative
vectors based on training instances for each class, the method likely reaches a stable
average vector after seeing a number of shots. To investigate the converging process of
representative vectors, we measure the variation caused in the mean vectors by each
additional shot added. Specifically, for values of n ranging from 2 to 100, we calculate the
Euclidean distance between n-shot relation vectors and (n − 1)-shot representative vectors,
which measures the extent to which representative vectors were altered since the addition
of the last shot. Figure 9 depicts the converging process with FEVER three-way claim
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verification. Across three different model bases, the amount of variation drops consistently
for larger numbers of n shots, with a more prominent drop for n = {2–21} and a more
modest drop subsequently. From a positive angle, this indicates the ability of SEED to
converge quickly with low demand on data quantity. It validates the use of semantic
differences for verification and highlights its efficiency of data usage in few-shot settings.
From a negative angle, it also means that the method stops learning as much for larger
numbers of shots as it becomes stable, i.e., it is particularly useful in few-shot settings.

The curves of BERT-base and BERT-large largely overlap with each other, while the
curve of BERT-nli does not conjoin until convergence. It corresponds well with the overall
performance advantages of utilising BERT-nli as presented in the Results section. It
implies that using language models fine-tuned on relevant tasks allow larger impact to be
made with initial few shots. Future work may deepen the explorations in this direction. For
example, using a model fine-tuned on FEVER claim verification to address SCIFACT claim
verification.

DISCUSSION
With experiments on two- and three-class settings on two datasets, FEVER and SCIFACT,
SEED shows state-of-the-art performance in few-shot settings. With only 10 shots, SEED
with vanilla BERT models achieves approximately 58% accuracy on binary claim
verification, 8% above FT and 1% above PB. Furthermore, SEED achieves around 56%
accuracy on three-way FEVER, while FT models underperform with a 38% accuracy, an
absolute performance gap of 18%. Despite the difficulty of performing claim verification
on scientific texts in the SCIFACT dataset, SEED still achieves accuracy above 42%,
which is 9% higher than FT. When utilising BERT-nli, SEED consistently achieves
improvements with 10 shots only: 15% higher than FT and 8% higher than PB on FEVER

Figure 8 Standard deviation comparison on binary FEVER claim verification.
Full-size DOI: 10.7717/peerj-cs.1137/fig-8
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binary claim verification; 23% higher than FT on FEVER three-way claim verification
and 17% higher than FT on SCIFACT three-way claim verification. Further, detailed
analysis on classwise F1 performance also shows that improved performance is consistent
across classes.

Our experiments successfully address our research questions that sentence embeddings
from pre-trained language models can be effectively utilised to compute pairwise
semantic differences between claims and their associated evidences with limited labelled
instances (RQ1). The proposed method leads to positive contributions with improved
performance on the task of claim verification in few-shot settings (RQ2). In comparison
with PB, SEED has better learning capacities, higher few-shot performance, and most
importantly, it is more flexible for doing multi-way claim verification, enabling in this case
both two-class and three-class experiments. With respect to FT, SEED is better suited and
faster to deploy in few-shot settings. It is more effective regarding few-shot data usage,
generally more robust to random sampling, and it has lower demand on data quantity and
computing resources.

The main application scenario of SEED is few-shot pairwise classification, i.e., when the
input involves text pairs. While we have demonstrated its effectiveness on few-shot claim
verification, future work may study the effectiveness of SEED on other pairwise
classification tasks, e.g., natural language inference, stance detection, knowledge graph
completion and semantic relation classification between documents. Furthermore, SEED
also offers the potential to be used for annotation quality evaluation: SEED is sensitive
to data sampling within 10 shots and it may be utilised as a good metric to determine
whether the annotated data is of high quality or not with only a few samples. Moreover,
SEED can be applied to do task difficulty estimation: SEED’s few-shot performance on
SCIFACT is significantly lower than FEVER, which correlates well with the fact the

Figure 9 SEED converging on three-way FEVER claim verification with increasing number of shots.
Full-size DOI: 10.7717/peerj-cs.1137/fig-9
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SCIFACT is more challenging than FEVER. In future studies, one may conduct few-shot
experiments without gradient update using SEED on a new dataset and a familiar dataset
to gain valuable initial understanding on the difficulty of the new dataset.

While SEED demonstrates the ability to learn representative vectors that lead to
effective claim verification with limited labelled data and computational resources, its
design remains simple and its performance plateaus with larger numbers of shots. Future
studies may further develop the method by utilising more advanced sentence embeddings.
For example, while our proposed SEED calculates mean values of all tokens for sentence
embeddings, future work may obtain syntactically aware sentence embeddings by
calculating weighted average values with reference to syntactic parse trees. In addition,
further exploration into SEED’s potential to further improve its performance when more
training samples are observed would also be a valuable avenue of future research. One
possibility to achieve this could be by extending SEED with the use of gradient descent.

CONCLUSIONS
We have presented an efficient and effective SEED method which achieves significant
improvements over the baseline systems in few-shot claim verifications. By comparing it
with a perplexity-based few-shot claim verification method as well as a range of fine-tuned
language models, SEED achieves state-of-the-art performance in the task on two datasets
and three different settings. Given its low demand on labelled data and computational
resources, SEED can be easily applied, for example, to new domains with limited labelled
examples. Future research may further extend SEED with more sophisticated sentence
embeddings. While our focus here has been on few-shot learning, future research could
focus on building a capacity to more effective learning from larger numbers of training
samples.
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