
Submitted 27 May 2022
Accepted 26 September 2022
Published 24 October 2022

Corresponding authors
Baozhu Jia, jiabzh@gdou.edu.cn
Jin Xu, jinxu@gdou.edu.cn

Academic editor
Giovanni Angiulli

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.1133

Copyright
2022 Chen et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Oil spill identification in X-band marine
radar image using K-means and texture
feature
Rong Chen1,*, Bo Li1,*, Baozhu Jia1,2, Jin Xu1, Long Ma1, Hongbo Yang1 and
Haixia Wang3

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, Guangdong, China
2Technical Research Center for Ship Intelligence and Safety Engineering of Guangdong Province, Guangdong,
China

3Navigation College, Dalian Martime University, Dalian, Liaoning, China
*These authors contributed equally to this work.

ABSTRACT
Marine oil pollution poses a serious threat to themarine ecological balance. It is of great
significance to develop rapid and efficient oil spill detection methods for the mitigation
of marine oil spill pollution and the restoration of the marine ecological environment.
X-band marine radar is one of the important monitoring devices, in this article, we
perform the digital X-band radar image by ‘‘Sperry Marine’’ radar system for an oil
film extraction experiment. First, the de-noised image was obtained by preprocessing
the original image in the Cartesian coordinate system. Second, it was cut into slices.
Third, the texture features of the slices were calculated based on the gray-level co-
occurrence matrix (GLCM) and K-means method to extract the rough oil spill regions.
Finally, the oil spill regions were segmented using the Sauvola threshold algorithm.
The experimental results indicate that this study provides a scientific method for the
research of oil film extraction. Compared with other methods of oil spill extraction
in X-band single-polarization marine radar images, the proposed technology is more
intelligent, and it can provide technical support for marine oil spill emergency response
in the future.

Subjects Computer Vision, Graphics, Real-Time and Embedded Systems, Spatial and Geographic
Information Systems, Neural Networks
Keywords Oil spill extraction, GLCM, Texture feature, K-means, Local adaptive threshold

INTRODUCTION
With the development of maritime shipping, oil pipeline transportation, and drilling
platform, the frequent occurrence of oil spills brought about by the increase of
offshore transportation accidents and the enhancement of offshore oil and gas resources
development capacity is one of the important threats to marine ecological safety. Therefore,
the rapid and effective extraction of the location of oil film and its drifting and spreading
range has become an important prerequisite for oil spill management (Sun et al., 2013).

Remote sensing is the most common way to monitor oil spills, which mainly includes
optical remote sensing and microwave remote sensing. There are many studies of oil
spill monitoring methods based on satellite remote sensing data such as Modis, NOAA,
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and LANDSAT (Hu et al., 2003; Casciello et al., 2011; Taravat & Frate, 2012). These optical
sensors have the advantages of a wide monitoring range, low capital investment, high
timeliness, and rich spectral information, and have become an important technical means
for marine oil spill detection. However, owing to the limitation of spatial resolution, these
types of sensors are not capable of accurate extraction of small-scale oil spill regions (Liu et
al., 2017). Synthetic Aperture Radar (SAR) is an active microwave high-spatial resolution
imaging sensor, the SAR revisit time may be critical but new technologies and new SAR
constellations can mitigate such a problem (Mdakane & Kleynhans, 2022). Polarimetric
SAR observations lead to a significant improvement in sea oil slick observation since they
allow distinguishing oil slicks from a broad class of lookalikes in an unsupervised way
(Migliaccio, Nunziata & Buono, 2015). Using X-band dual-polarization co-polarization
SAR images, the effects of imaging parameters and environmental conditions on oil spill
observation were comprehensively analyzed to study the oil spill area for a long time
series (Nunziata et al., 2019). Comparative analysis of C-band and X-band SAR data for
marine oil spill observation using statistical properties and selected multi-polarization
(HH, VV) parameters (Skrunes et al., 2015). Considering the performance of amplitude
coherence and co-polarization phase difference (CPD) standard deviation in offshore oil
slick observation, a study of offshore oil observation using dual-polarized X-band SAR
data was carried out, and the results showed the advantages of the CPD method and the
effectiveness of TerraSAR-X dual-polarization products in oil spill monitoring applications
(Lehner et al., 2011). With the continuing advances in information technology, airborne
oil spill monitoring based on optical cameras, video cameras, and infrared sensors began
to develop (Sudhir et al., 2008; Liu, Li & Gao, 2014; Vagata, Pinho & Hengstermann, 2016).
Airborne detection has the advantage of high flexibility, and it can continuously monitor
oil film variation over a period of time (Collins et al., 2015). However, the monitor range
is limited and greatly affected by illumination and meteorological conditions (Eliza et al.,
2011). Marine radar, also known as navigation radar, can cooperate with vessels to clean
up the oil spills and obtain the oil spill pollution regions within a certain range around the
ship in an all-weather, real-time, and efficient manner. It can overcome certain harsh sea
conditions and carry out oil spill monitoring emergency treatment on the ship, which has
significant prospects for application and plays an important role in oil spill monitoring
(Wang, Liu & Cheng, 2017; Xu et al., 2020; Zhao et al., 2020). In 1971, the United States
first used marine radar to observe oil spill in the Gulf of California, after that, the research
on marine radar oil spill monitoring began to increase. The oil spill monitoring capability
of marine radar was evaluated during a cruise off the coast of Nova Scotia, Canada
(Tennyson, 1988). The X-band marine radar tracked and recorded the oil spill along the
Black Sea coast, and various parameters describing the characteristics of the oil spill were
evaluated (Atanassov et al., 2002). At present, there are a few studies on oil spill extraction
by shipboard radar images. A texture feature analysis method that used a marine radar
image as input has been proposed, in which the oil film was accurately extracted by a
threshold segmentation algorithm (Liu et al., 2019). However, the whole image is traversed
and classified using a sliding window; although the oil film extraction accuracy is very
high, the amount of calculation is very large. Another method of analyzing a marine radar
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image used the Otsu algorithm and obtained the region of the oil spill (Zhu, Li & Liu,
2015). This method is simple and it can quickly identify oil spill targets and false positive
targets. However, the algorithm is based on a global threshold, and it is greatly affected by
illumination, which may cause inaccurate segmentation.

With the development of image processing technology, machine learning has been
well applied in oil spill image classification and target extraction. Applications such as
K-means, support vector machine (SVM), K-nearest neighbor (KNN), artificial neural
network (ANN), and convolutional neural network (CNN) have been used in testing oil
films, and the results showed that the oil film area can be accurately predicted by machine
learning (Li et al., 2021). Based on the multi-polarization characteristics of the SAR image
and the K-means algorithm, the oil film was extracted. It was proved that the feature-based
K-means classification is considered to be at least as good as the standardWishart clustering
of the covariance matrix (Skrunes, Brekke & Eltoft, 2014). A modified K-means clustering
was used to detect and segment the oil spill in the ocean (Ganesan, 2015). By using
a combination of LBP and K-means, the oil spill extraction experiment was operated
successfully (Xu et al., 2021a; Xu et al., 2021b). Two different artificial neural networks
were employed to detect oil spills of SAR images which classified objects into oil spills or
look-alikes (Singha, Bellerby & Trieschmann, 2013). Employed by the convolutional neural
network method and infrared imaging camera, an oil spill accident at night was detected
(Kerf et al., 2020). A deep convolutional neural network was used for oil spill detection from
SAR Image, the classification performance of which was significantly improved compared
to that of traditional machine learning (Zeng & Wang, 2020). Based on the polarization
decomposition characteristics of the SAR image, a support vector machine was employed
for oil spill detection (Zou et al., 2016). A novel method was proposed to discriminate
different kinds of spilled oil, which was the qualitative analysis model based on the support
vector machine and can work for rapid identification of spilled oil (Tang, Bi & Zhao, 2011).
Based on multispectral satellite data, the K-nearest neighbor was used to classify the oil
image objects to monitor large oil slick dynamics (Pieralberto et al., 2014). By adopting
object-based classification KNN and visual interpretation, the semi-automatic detection
and discrimination of oil spills, and natural seepage slicks were tested in the Caspian region
(Emil, Martin & Manfred, 2018). Also, a multi-class neural network was used tomonitor an
oil spill at sea and improved the oil pollution cleaningmethod, which is of great significance
to preventing and controlling marine pollution (Ghorbani & Behzadan, 2021).

In recent years, many oil spill identification studies are about SAR and multispectral
visible light images, while there are fewer reports on marine radar oil spill extraction.
One of the important reasons is that the number of marine radar oil spill images is
limited. Marine radar oil spill monitoring is an important means, based on the sea clutter
characteristics, the ability of marine radar to monitor oil spills is because when the sea
surface is covered with an oil film, the oil film can suppress capillary waves and make the
seawater surface smoother, thus reducing the backward scattering intensity of radar waves,
resulting in a lower gray value on the radar image and forming a dark area on the image
that is significantly darker than the surrounding environment. Although the backscatter
echo signal varies with the oil type, it is reflected in the image as a dark target, but with
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different intensities. Meanwhile, marine radar can carry out real-time online monitoring
and alarm for all-weather oil spills, and the application of oil spill identification technology
to shipboard radar can facilitate emergency response departments. What needs to be clear
here is that the emergency treatment of oil spill accidents emphasizes fast and efficiency,
and it needs to identify and extract oil film in a way with universality and fast operation
speed. Since the radar image is a grayscale image, it is not convincing to identify oil film
and non-oil film only by the difference in gray-scale values. So, texture features need to
be introduced to reduce the identification error. Considering the accident in our study is
crude oil spills, we use threshold segmentation based on the gray value of the image. In
these contexts, this article proposes an intelligent identification method for oil spills of
marine radar data. Based on comparisons of texture features, local adaptive thresholds,
oil spill identification methods, slice window sizes, and machine learning classifiers, an
oil spill film identification method combining the texture feature of GLCM theory and
the K-means clustering algorithm is proposed, which provides an approach for oil spill
extraction from marine radar images.

MATERIALS & METHODS
Study area and experimental data
Study area
On July 16, 2010, a CNPCoil pipeline nearDalianXingang, China, caught fire and exploded,
causing a crude oil leak. As a result, at least 50 square kilometers of the nearby sea were
polluted by crude oil. Although the departments took immediate emergency response
measures, the uncertainty of the crude oil drifting and spreading on the sea surface brought
pressure and challenges to the clean-up work. After the oil spill accident, we conducted oil
spill photography through marine radar. Through experiments, we proposed an efficient
and intelligent oil spill identification method, thus facilitating future emergency response
work on the sea.

Experimental data
In our study, the ‘‘Sperry Marine’’ radar system was used to monitor and record the wave
clutter signals. The signals output from the radar transceiver was directly connected to the
computer processing system, and the image was displayed by the monitor after processing.
With the rotation of the radar antenna, the radar system can digitize and store radar
images of the sea surface. Table 1 displays the main parameters of radar. In this work, the
experimental data is the X-band horizontal polarization image collected at 23:19 on July
21, 2010, by the teaching-practice ship Yukun of Dalian Maritime University (Fig. 1). The
image size was 1,024 × 1,024 pixels with a detection range of 0.75 nautical miles (NM),
and the actual area represented by each pixel is 7.36 m2.

Data preprocess
The collected experimental image adopts the polar coordinate system, which needs to be
converted into the Cartesian coordinate system to facilitate subsequent processing. The
image after the coordinate transformation takes the azimuth angle as the horizontal axis
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Table 1 The parameters of radar.

Parameter Value

Band X-band
Detection distance 0.5/0.75/1.5/3/6/12/24 NMs
Range resolution 3.75m
Antenna type Waveguide split antenna
Polarization mode Horizontal
Horizontal detection angle 360◦

Rotation speed 28–45 revolutions/min
Length of antenna 8ft
Pulse recurrence frequency 3,000 Hz/800 Hz/785 Hz
Pulse width 50n/ns/ns
Automatic image acquisition speed 28 images/min
Spatial resolution 7.36 m2

Figure 1 Experimental data.
Full-size DOI: 10.7717/peerjcs.1133/fig-1

and distance as the vertical axis. The image size is 512 × 2,048 pixels (Fig. 2). The bright
line in Fig. 2 is the co-frequency vertical interference noise, and the lighter-colored areas at
the bottom of the image are wave echoes and oil film targets. The original image needs to be
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Figure 2 Original radar image.
Full-size DOI: 10.7717/peerjcs.1133/fig-2
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Figure 3 Preprocess scheme.
Full-size DOI: 10.7717/peerjcs.1133/fig-3

Figure 4 De-noised image.
Full-size DOI: 10.7717/peerjcs.1133/fig-4

preprocessed to extract the oil film region successfully. The pretreatment process referred
to the methods adopted by Xu et al. (2021a); Xu et al. (2021b), and the specific process is
shown in Fig. 3. First, the vertical noise detection operator is used to convolve with the
image in the Cartesian coordinate system. Second, the Otsu algorithm is used for detecting
vertical noise processing. Third, the distance weighted linear interpolation method is used
to suppress the vertical noise. Finally, the de-noised image is obtained (Fig. 4). In this
article, the method of oil film extraction was studied using the de-noised image and based
on the Matlab R2020b platform.
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Figure 5 Process scheme.
Full-size DOI: 10.7717/peerjcs.1133/fig-5

Experimental method
In order to realize an intelligent, and rapid marine oil spill monitoring method, effectively
improve the efficiency of oil spill monitoring, we compared and tried to select a feature in
GLCMwith typical machine learning classificationmethods, and then it combined with the
local adaptive threshold to effectively extract oil film information from the marine radar
image. The experiment process is shown in Fig. 5. First, the denoised image was cut into
slices the size of the local window. Second, the texture features of each slice were calculated
based on the GLCM. Third, according to the texture features, the K-means clustering
algorithm was used to extract the effective oil spill area from the cut images. Finally, using
the Sauvola algorithm, the oil film was segmented, and the final extracted oil film region
was overlapped on the image.

Texture feature extraction based on the GLCM
The texture is caused by the different physical attributes of the object surface and mainly
reflects the diversity of grayscale or color information. Image texture is one of the
attributes of images, which usually be represented by the gray distribution of a pixel
and its surrounding spatial neighborhood (Mohanaiah, Sathyanarayana & Gurukumar,
2013). GLCM is a common method to describe texture by studying the spatial correlation
characteristics of gray. It is defined as the probability that two pixels with step distance d and
direction θ appear in the image (Barburiceanu, Terebes & Meza, 2021), which is expressed
as formula Eq. (1), the mechanism of GLCM is shown in Fig. 6. Through the GLCM, the
image texture features can be extracted, and Table 2 lists the calculation formula of each
texture feature characterization quantity.

pij =
p(i,j,d,θ)∑M

i=0
∑N

j=0p(i,j,d,θ)
(1)

K-means clustering algorithm
The K-means clustering algorithm is an iterative algorithm based on unsupervised learning.
It is widely used in data classification because of its simple realization, strong explanatory
power, and effective clustering effect (Nitta et al., 2020). The algorithm process is as follows
(Hartigan & Wong, 1979): (1) K initial cluster center ci ( i= 1, 2, 3,. . . ,K) is selected for the
sample set S, where S = { x1, x2 ,. . . , xn}. (2) The Euclidean distance between each object
and K cluster centers is calculated, and the data object to the cluster that is closest to the
cluster center is classified. (3) The mean value of data objects in each cluster is calculated,
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Figure 6 The mechanism of GLCM.
Full-size DOI: 10.7717/peerjcs.1133/fig-6

Table 2 Texture features formula.

Texture feature Formula

Angular second moment fASM =
∑M

i=0

∑N
j=0p(i,j,d,θ)

2

Entropy fENT =−
∑M

i=0

∑N
j=0p

(
i,j,d,θ

)
logp(i,j,d,θ)

Contrast fCON =
∑M

i=0

∑N
j=0

(
i− j

)2p(i,j,d,θ)
Mean fMEAN =

∑M
i=0

∑N
j=0i∗p(i,j,d,θ)

Homogeneity fHOM =
∑M

i=0

∑N
j=0

p(i,j,d,θ)
1+(i−j)2

Dissimilarity fDIS=
∑M

i=0

∑N
j=0

∣∣i− j∣∣p(i,j,d,θ)
Correlation fCOR=

∑M
i=0

∑N
j=0

(i−µ)(j−µ)p(i,j,d,θ)
σ 2

Variance fvar =
∑M

i=0

∑N
j=0(i−µ)

2p(i,j,d,θ)

Notes.
µ=

∑M
i=0
∑N

j=0i×p(i,j,d,θ), σ
2
=
∑M

i=0
∑N

j=0(i−µ)
2p(i,j,d,θ), whereµrepresents mean, σ 2 represents variance.

and the mean value is taken as the new cluster center.

ci=
1
|Si|

∑
xj∈xi

Xj (2)

where |Si| isthe total number of instances that are in cluster i.
(4) The distance of each data object to the newK initialization cluster centers is calculated

and redivided.
(5) The next iteration proceeds until the object category stops changing and the clustering

ends.

Local adaptive threshold segmentation algorithm
The local adaptive threshold segmentation algorithm is based on the distribution of pixel
gray values in the window. The gray mean s(i,j) and gray standard deviation m

(
i,j
)
were
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used to calculate the threshold T
(
i,j
)
. Compared with global thresholds, local adaptive

thresholds can avoid segmenting the noise in images as well as deal with the problem of
low-resolution images.

Niblack (1986) proposed a local threshold method for the image pixel-level process. This
process involves adjacent pixel values within a region window. The threshold T(i,j) can be
estimated as:

T
(
i,j
)
=m

(
i,j
)
+ks(i,j) (3)

where k is a constant.
Sauvola & Pietikinen (2000) improved on the Niblack algorithm. Its expression is as

follows:

T (i,j)=m(i,j)×

[
1+k

(
s
(
i,j
)

R
−1

)]
(4)

where R is the dynamic range of standard deviations, and k is the influence factor of
standard deviation, which reflects the intensity of the influence of standard deviation on
the threshold T (i,j). The range is between 0 and 1.

Phansalkar et al. (2011) modified the Sauvola local adaptive threshold segmentation
algorithm, which is used for processing low-contrast images. T

(
i,j
)
can be expressed as

follows:

T
(
i,j
)
=m

(
i,j
)[

1+pe−q·m(i,j)+k

(
s
(
i,j
)

R
−1

)]
(5)

where p and q are constants.
After comparing the experiments, the Sauvola algorithm was chosen for oil film

identification in our work.

RESULT
Image slices
The size of the each slice is generally the common factor of the length and width of the
image, and the commonly used sizes are 8 × 8 pixels, 16 × 16 pixels, 32 × 32 pixels,
64 × 64 pixels, 128 × 128 pixels, and 256 × 256 pixels (Xu et al., 2021a; Xu et al., 2021b).
Considering the accuracy and efficiency, In this article, the de-noised image is cut into
64 × 64 pixels and 256 sub-images are generated.

Texture feature extraction and selection
According to the definition of the GLCM model and the requirements of eigenvalue
calculation, parameters of the texture feature extraction algorithm based on the GLCM are
selected as follows:
(1) Selection of gray level.

The commonly used gray levels are 16, 64, 128, and 256. To reduce the amount of
computation, in our work 16 is chosen as the gray level.
(2) Selection of step length.
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Figure 7 Entropy index value of local window.
Full-size DOI: 10.7717/peerjcs.1133/fig-7

The step size adopted in this article was d = 1, that is, the central pixel and its adjacent
pixels were calculated.
(3) Selection of direction.

Generally, θ is 0◦, 45◦, 90◦, and 135◦. However, considering that the differences between
the four directions are not obvious, this article takes the average values of these four
directions.

According to the formula in Table 2, the characteristic values of each texture were
calculated for the de-noised image. GLCM was used to extract texture features of each
slice. In this article, texture feature entropy was selected as the classification feature. Figure
7 shows the output result of the entropy value.

Image classification
The K-means clustering algorithm was adopted to classify the sliced images. The final
clustering result of this algorithm depends on the arbitrary selection of the cluster center
and the size of the K value. Different texture features have different abilities to identify
targets. In our work, texture feature entropy was taken as the input feature of the classifier.
In general, marine radar images mainly record the regions with valid waves, weak wave
echo signals, and wave disturbance (Liu et al., 2021). To classify these three regions and lock
the oil films position, the initial number of clustering K = 3 and the number of iterations
50 were set to classify images. The result of classification is shown in Fig. 8A. Black is the
disturbance zone, white is the valid wave area and gray is the region with weak wave echo
signals. Considering that the oil films appear on the valid waves, and the wave is at the
bottom of the image, the white part of the classification result is retained and superimposed
with the de-noised image. The oil film target region is finally generated (Fig. 8B).

Threshold segmentation
The Sauvola algorithm as used to segment oil spill images, the window size was set to 32×
32 pixels with the dynamic range of standard deviations R= 128 and the influence factor of
standard deviation k= 0.5. The oil spill image was segmented to obtain the initial resulting
image, as shown in Fig. 9A. There are lots of small spots in the preliminary result. Because
the oil film is usually continuous, the small areas of black spots were removed. Then the
image is inversed, repeating the segmentation operations to remove small areas of white
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Figure 8 K-means clustering process. (A) Classification results. (B) Classification results on de-noised
image.

Full-size DOI: 10.7717/peerjcs.1133/fig-8

spots. The final oil film extraction result is obtained by superposition with the classification
diagram (Fig. 9B). And the image is converted into coordinates. Figure 10 shows the oil
spill identification results in the polar coordinate system.

Validation
In our work, the visible light image (Fig. 11A) and thermal infrared image (Fig. 11B) were
used to validate the result. Because the collection time of the radar image was at night,
it is impossible to capture the same real-phase offshore oil film with the visible sensor.
Figure 11A shows the visible image near the acquisition location taken during the daytime,
and it is obvious that an oil film exists. Figure 11B shows the oil film captured with the
thermal infrared sensor at the same location as in the radar image, and the grayscale value
of the area where it is located is slightly lower than the grayscale value of the neighboring
area. Meanwhile, some scholars have conducted studies on this oil spill, and eight scenes
of remote sensing images of the oil pollution impact area were collected by the HJ1 A/B
satellite during the critical period of oil spill response (July 16, 2010–August 2, 2010) (Lan,
Ma & Chen, 2012). These images from different sensors proved that oil spill films were
present in the sea at that time.
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Figure 9 Oil film segmentation process. (A) Segmentation results. (B) Oil film extraction results.
Full-size DOI: 10.7717/peerjcs.1133/fig-9

DISCUSSION
Comparison of texture features
Multiple texture features were extracted using the GLCM method. Ma, Li & Niu (2010)
selected texture feature correlation and mean as the texture feature index for oil spill
extraction from SAR image. In our work, these two texture features were used as the input
to the K-means algorithm to classify the images. Figures 12A and 12C are the visualizations
of the texture feature correlation and the mean value. The extracted effective oil spill
areas are shown in Figs. 12B and 12D. The results obtained by selecting these two features
have the problem of missing oil film, while using the texture feature entropy as the input
classifier, the oil film regions are effectively extracted, and the main two strip-shaped oil
films remain intact, as shown in Fig. 8B.

Comparison of local adaptive thresholds
Xu et al. (2021a); Xu et al. (2021b) used the Phansalkar algorithm for the segmentation
of marine radar images to extract oil films. Yu et al. (2017) adopted the improved Otsu
algorithm for oil spill detection on SAR images. In our work, the improved Otsu and
Phansalkar methods were used to segment the de-noised image to compare with the
Sauvola method, the parameters of the Phansalkar method recommend k = 0.25, R= 0.5,
p= 2, and q= 10, the window size of the Otsu method is set to 128× 128 pixels., The Otsu
algorithm for segmentation could not identify the oil film well, as shown in Fig. 13A. There
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Figure 10 Oil film extraction results in polar coordinate system.
Full-size DOI: 10.7717/peerjcs.1133/fig-10

Figure 11 Images of oil spill site. (A) The visible light image. (B) The thermal infrared image.
Full-size DOI: 10.7717/peerjcs.1133/fig-11

were many noises mistakenly segmented out. As shown in Fig. 13B, oil film can be extracted
by the Phansalkar algorithm. However, some false positive targets were produced. The final
oil spill results extracted by the three methods are displayed under the polar coordinate
system (Fig. 14), and the oil pixel number and the area of the oil are counted as shown
in Table 3. The area calculation shows that the area of the oil film obtained by the Otsu
algorithm is much larger than the extraction results of the other two methods, which is
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Figure 12 Results based on comparison of texture features. (A) Correlation. (B) Classification result
based on correlation. (C) Mean. (D) Classification result based on mean value.

Full-size DOI: 10.7717/peerjcs.1133/fig-12

caused by a large number of false positive targets being misclassified into oil films. The
extracted oil film area by the Phanlakar method is also larger than that of the Sauvola
method. Therefore, the proposed Sauvola algorithm is superior to the other two algorithms
in segmentation accuracy, and it is suitable for the extraction of marine oil films.
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Figure 13 Comparisons of thresholds. (A) Otsu segmentation. (B) Phansalkar segmentation.
Full-size DOI: 10.7717/peerjcs.1133/fig-13

Figure 14 Oil spill identification results from different methods. (A) Sauvola. (B) Phansalker. (C) Otsu.
Full-size DOI: 10.7717/peerjcs.1133/fig-14

Table 3 Pixel number and area of oil films identified under different threshold methods.

Threshold
method

Number of
oil films pixels

Oil film
area (m2)

Otsu 23,751 175,282.38
Phansalkar 6,097 44,995.86
Sauvola 3,581 26,427.78
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Figure 15 The result of support vector machine and local adaptive threshold method. (A) Gray distri-
bution matrix. (B) The effective wave range. (C) Oil spill identification result.

Full-size DOI: 10.7717/peerjcs.1133/fig-15

Comparison with other methods in oil spill identification
Xu et al. (2020) adopted the support vector machine and local adaptive threshold method
to identify and extract oil spills from shipboard radar (hereafter referred as Method 1). In
our work, we use the same method for oil film extraction experiments. First, the support
vector machine method is used to distinguish waves from the background. Then the
image is processed by image restoration techniques to generate a gray distribution matrix
(Fig. 15A). Second, the gray distribution matrix threshold is set to ‘‘100’’ to obtain the
effective wave monitoring range (Fig. 15B). Finally, the oil spill identification result is
obtained after adaptive threshold segmentation of the effective wave area and removal of
small spots (Fig. 15C). Also, in this method, the effective wave region is segmented by
manually selecting threshold, which is not an intelligent approach, in other words, the
option of threshold value affects the extraction range of the oil film directly.
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Figure 16 The result of LBP and K-means method. (A) K-means result. (B) The valid wave region.(C)
Oil spill identification result.

Full-size DOI: 10.7717/peerjcs.1133/fig-16

Xu et al. (2021a); Xu et al. (2021b) conducted an oil spill extraction experiment using
a combination of LBP and K-means (hereafter referred as Method 2). Here we use the
same method to complete our experiment, the sliding window size is set to 128 pixels.
The classification result, the effective oil spill range, and the final oil film identification are
shown in Fig. 16, although this method can reject the interference of ship wake flow, there
is a problem that many oil films are missing.

The final oil spill extraction results of Method 1 and Method 2 in the polar coordinate
system are shown in Fig. 17. The area of oil films and the compute time are obtained
in Table 4. Compared with the result in this article (Fig. 10) can get, the oil film area
identified by Method 1 is slightly smaller than that obtained by the method used in this
article. However, from the extraction effect, although the two strip-shaped oil films were
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Figure 17 Oil spill identification result in polar coordinate system.
Full-size DOI: 10.7717/peerjcs.1133/fig-17

Table 4 Area of oil films and compute time under different methods.

Method Number of
oil films pixels

Oil film
area (m2)

Compute
time (s)

Method 1 3,314 24,457.32 30.17
Method 2 4,217 31,121.46 10.06
our method 3,581 26,427.78 11.46

completely recognized, there were also many small noises. The oil film area identified by
Method 2 is larger than the result obtained by the method adopted in this article. The
reason is that some false-positive targets were misclassified, and a large number of oil
films were missing, the integrity of two-strip oil films is poor. In terms of computing time,
Method 1 takes a long time, because when oil-water separation is performed by the support
vector machine, foreground samples and background samples will be selected, which will
consume a certain amount of time. AlthoughMethod 2 takes the shortest time, it is inferior
to the method used in this article in extraction accuracy. In a word, the method used in
this article avoids the problems of the above two methods. Two obvious strip-shaped oil
films were extracted as well as fewer non-oil films.

Comparison of texture feature slice window sizes
The selection of texture feature local window size is 64 × 64 pixels, as Fig. 8A. The texture
feature window size is reduced to 32 × 32 pixels, and the same method is used to extract
oil film regions in Fig. 18A. The effective wave area is shown in Fig. 18B after classification.
From the extracted results, the smaller texture feature window is unable to distinguish
the oil film targets from the ship wake interferences, some invalid wave monitor regions
may influence the segmentation as well. Table 5 shows the time consumption in different
texture feature local window sizes, when the window becomes smaller, the required slice
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Figure 18 Results using a 32× 32 pixels local window. (A) Classification result. (B) The effective wave
area.

Full-size DOI: 10.7717/peerjcs.1133/fig-18

Table 5 Time consumption in different local feature window size.

Slice window
size

Tiles time
generation (s)

Feature map
generation (s)

64× 64 2.82 2.63
32× 32 5.81 3.52

time and feature map generation time will increase. Therefore, in the selection of texture
feature window size, we prefer 64 ×64 pixels to have the experiment.

Comparison with other machine learning classifiers
According to the same experimental process, the SVM and KNN classifier were used to
process the radar image, to test the effect of the K-means adopted in this article. From the
experimental results in Figs. 19 and 20, some invalid wave areas were classified, resulting
in false positive targets and ship of wake in the final oil spill identification. In general, the
classification results of these two methods depend on the selection of samples, which is
subjective and random. So in terms of extracting effective oil spill areas, the K-means is
recommended for classification in our study.

CONCLUSION
In this article, the K-means clustering model combining the texture feature and local
adaptive threshold segmentation is constructed to identify oil spills. Although studies of oil
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Figure 19 Oil spill identification by SVM and the Sauvola segmentation. (A) SVM result. (B) Oil spill
result by the Sauvola threshold method.

Full-size DOI: 10.7717/peerjcs.1133/fig-19

Figure 20 Oil spill identification by KNN and the Sauvola segmentation. (A) KNN result. (B) Oil spill
result by the Sauvola threshold method.

Full-size DOI: 10.7717/peerjcs.1133/fig-20
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spill extraction based on SAR image polarization parameters are one of the main directions,
considering that the original data of our study is X-band marine radar image, we adopt
texture features, classifiers, and thresholds for oil spill extraction from the image processing
perspective. The results of the experiment show that the advantages and significance of
this method are obvious. At present, most of the research on oil spill extraction by X-band
marine radar uses semi-automatic extraction ways, such as global threshold segmentation,
and manual threshold selection. Compared with these extraction methods, the proposed
method realizes full-automatic identification of an oil film which improves the technology
of marine radar oil spill extraction. On the one hand, the algorithm is simple and fast
running, it improves the efficiency of oil spill identification and plays an important role
in marine oil spill emergency response work, on the other hand, it can cooperate with the
emergency cleanup work and has specific practical significance, once an oil spill accident
occurs, accurate identification of oil films and rapid decontamination can effectively avoid
the aggravation of marine pollution. Therefore, the experimental process in this article
can provide a reference for marine oil film extraction from X-band marine radar images.
In the future, we will engage in oil spill extraction experiments from the perspective of
polarization characteristics and experiments on identifying the type of oil. Besides, image
classification and segmentation algorithms will be further improved by supplementation
with measured data to improve the accuracy of oil film identification.
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