
Quality assuring the quality assurance tool: A case study on
applying safety-critical concepts to test framework
development
Jonathan Thörn Corresp., 1 , Per Erik Strandberg 1, 2 , Daniel Sundmark 2 , Wasif Afzal Corresp. 2

1 Westermo Network Technologies AB, Västerås, Sweden
2 Mälardalen University, Västerås, Sweden

Corresponding Authors: Jonathan Thörn, Wasif Afzal
Email address: jonathan.thorn@westermo.com, wasif.afzal@mdh.se

Quality of embedded systems is demonstrated by the performed tests. The quality of such
tests is often dependent on the quality of one or more testing tools, especially in
automated testing. Test automation is also central to the success of agile development. It
is thus critical to ensure the quality of testing tools. This work explores how industries with
agile processes can learn from safety-critical system development with regards to the
quality assurance of the test framework development. Safety-critical systems typically
need adherence to safety standards that often suggests substantial upfront
documentation, plans and a long-term perspective on several development aspects. In
contrast, agile approaches focus on quick adaptation, evolving software and incremental
deliveries. This paper identifies several approaches of quality assurance of software
development tools in functional safety development and agile development. The extracted
approaches are further analyzed and processed into candidate solutions, i.e., principles
and practices for the test framework quality assurance applicable in an industrial context.
An industrial focus group with experienced practitioners further validated the candidate
solutions through moderated group discussions. The three main contributions from this
study are: (i) 48 approaches and 25 derived candidate solutions for test framework quality
assurance in four categories (development, analysis, run-time measures, and validation
and verification) with related insights, e.g., a test framework should be perceived as a tool-
chain and not a single tool, (ii) the perceived value of the candidate solutions in industry
as collected from the focus group, (iii) proposed guidelines to implement the candidate
solutions, which augment the agile process with sequential mini V-models, and a
comparison with hybrid development that combines agile and non-agile development
aspects.

PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Quality assuring the quality assurance tool:1

A case study on applying safety-critical2

concepts to test framework development3

Jonathan Thörn1, Per Erik Strandberg1,2, Daniel Sundmark2, and Wasif4

Afzal25

1Westermo Network Technologies AB, Västerås, Sweden6

2Mälardalen University, Västerås, Sweden7

Corresponding author:8

Jonathan Thörn, Wasif Afzal9

Email address: jonathan.thorn@westermo.com, wasif.afzal@mdh.se10

ABSTRACT11

Quality of embedded systems is demonstrated by the performed tests. The quality of such tests is often

dependent on the quality of one or more testing tools, especially in automated testing. Test automation is

also central to the success of agile development. It is thus critical to ensure the quality of testing tools.

This work explores how industries with agile processes can learn from safety-critical system development

with regards to the quality assurance of the test framework development. Safety-critical systems typically

need adherence to safety standards that often suggests substantial upfront documentation, plans and

a long-term perspective on several development aspects. In contrast, agile approaches focus on quick

adaptation, evolving software and incremental deliveries. This paper identifies several approaches of

quality assurance of software development tools in functional safety development and agile development.

The extracted approaches are further analyzed and processed into candidate solutions, i.e., principles

and practices for the test framework quality assurance applicable in an industrial context. An industrial

focus group with experienced practitioners further validated the candidate solutions through moderated

group discussions. The three main contributions from this study are: (i) 48 approaches and 25 derived

candidate solutions for test framework quality assurance in four categories (development, analysis,

run-time measures, and validation and verification) with related insights, e.g., a test framework should

be perceived as a tool-chain and not a single tool, (ii) the perceived value of the candidate solutions

in industry as collected from the focus group, (iii) proposed guidelines to implement the candidate

solutions, which augment the agile process with sequential mini V-models, and a comparison with hybrid

development that combines agile and non-agile development aspects.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 INTRODUCTION31

The quality of embedded systems, both the software solution and the hardware platform, is often demon-32

strated by the results of performed tests and assured by the quality of the solution used to perform them.33

Frameworks for software testing1 can also be considered mission-critical, since development decisions34

rely on the correctness of and confidence in the produced results. Poor test framework quality may lead35

to the introduction of, or failure to detect errors, as well as unreliable test results that reduces feedback36

quality, which in turn impedes the development process (Asplund, 2014; Shahin et al., 2017).37

In this paper, we explore ways for non-safety related development with agile processes to be inspired38

by safety-related development to develop reliable frameworks for software testing. Thus, the research39

assumes that strategies for increased confidence and quality in tools used for automated software testing40

in non-safety development may be found or created from concepts and strategies related to safety-critical41

development, while maintaining agile and efficient processes.42

1A test framework is in this case a software development tool for automated software testing. This contains testware with

software, documentation, test cases, test data and test environments, which may include physical test-systems that run the software

under test (ISTQB, 2016; Strandberg, 2021).

PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

System System

Subsystem Subsystem

Item Item

Analysis
 and In

tegratio
n

Requirements and Design

Dev.

Implementation

Verification

Verification

Validation

Figure 1. The V-model software development process.

The concept of functional safety relates to absence of unacceptable risks and protection against human43

errors, hardware failures and environmental factors. It involves the identification of possible failures and44

assigning a tolerance to those (Smith and Simpson, 2004). Standards for functional safety often rely on a45

plan-driven process with predefined phases. The production of substantial amounts of documentation and46

artifacts is used as evidence to argue that the system is acceptably safe. Agile and plan-driven development47

approaches have historically been seen as each other’s counterparts. Plan-driven approaches are focused48

on discipline in long term prospects and agile approaches on improvising and using history to adapt to49

new environments and opportunities. Agile approaches are based on a model where software is evolved50

and continuously delivered through short iterative cycles. Therefore, the extensive upfront plans, designs51

and documentation related to plan-driven development are not considered as valuable (Boehm and Turner,52

2004; Nerur and Balijepally, 2007). Available research on combining agile and plan-driven methods53

is mostly from the perspective of utilizing agile practices in existing plan-driven processes. There is a54

research gap with respect to implementing plan-driven practices in agile processes to increase confidence55

and quality, the goal of this paper is to fill parts of that gap.56

This case study started with a literature study to identify how quality assurance of software develop-57

ment tools is performed with regards to functional safety development, as well as applied methodologies58

in agile or hybrid development philosophies. The extracted approaches and additional knowledge gained59

were then further processed and analysed into a compiled set of candidate solutions - principles or60

practices for increased quality of and confidence in an automated software test framework. The candidates61

were iteratively validated and refined both to suit the industrial context of an intended application and to62

increase general applicability.63

The key findings are: (i) 48 approaches for quality assurance identified from previous work and64

standards – e.g. to re-develop from scratch while following standards (Section 5). The approaches were65

derived into 22 candidate solutions for test framework quality assurance in the categories of development,66

analysis, run-time measures, and verification and validation – e.g. to apply measures to avoid development67

faults introduced by misconceptions (Table 1). (ii) Industrial value of the approaches as perceived by68

a focus group which also identified an additional three candidate solutions (Section 5.5). Finally, (iii)69

proposed guidelines which augment the agile process with plan-driven elements through sequential mini70

V-models (Section 7).71

2 BACKGROUND72

Plan-driven development is based in a well-defined, formal, and specific process to achieve a predictable73

result; great emphasis is placed on layers of traceable requirements, risk management, verification74

and validation (Hanssen et al., 2018a). Even before any construction has begun, the properties of the75

final product are known and can be precisely defined. A number of roles are typically defined and76

independence between these is often required as a factor of control (Linz, 2014; Hirsch, 2005). Standards77

for functional safety (Section 2.1) often assume the use of documentation-heavy plan-driven processes,78

where development is a strictly sequential process through predefined phases (Jonsson et al., 2012).79

Popular among safety standards is to describe this sequential flow through the V-model (Asplund, 2014),80

illustrated in Figure 1.81

In contrast to plan-driven development, agile development does not rely on high degrees of documen-82

2/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

...

Dev. Test DoneSprint

Backlog

Product

Backlog

Scrum

K
an
ba
n

Figure 2. Illustration of an agile board.

tation or rigid processes. Instead, agile approaches are based on a model where software is evolved and83

continuously delivered through short iterative cycles with continuous feedback (Linz, 2014). An important84

aspect of agile is to embrace and respond to changes. Therefore, extensive upfront plans and designs85

are not considered as valuable. Working software that adds value is prioritized over comprehensive86

documentation. Important aspects of agile approaches are continuous improvements and code integration,87

resulting in continuous delivery. Rituals like daily stand-up meetings, demonstrations and reflections88

provide progress tracking, feedback and process improvements (Nerur and Balijepally, 2007; Dingsøyr89

et al., 2012). Two popular implementations are Scrum and Kanban (Fowler et al., 2001). Both use phases90

which items from the product backlog traverse through, before being packaged for release, e.g. build, test,91

and done. Both use an agile board to track progress as illustrated in Figure 2. However, the methodologies92

differ in the events occurring between the product backlog and the customer (Linz, 2014; Saleh et al.,93

2017; Matharu et al., 2015).94

2.1 Industry Standards for Functional Safety95

Among the standards for functional safety, the transportation domain is often considered important with96

respect to tools used during development (Asplund, 2014, 2015; Asplund et al., 2012; Conrad et al., 2010;97

Ekman et al., 2014; Krauss et al., 2015; Notander et al., 2013). IEC 61508:2010 is a generic industrial98

standard covering the lifecycle activities for systems in this domain. The standard also serves as a template99

for other standards. ISO 26262:2018 is the domain-specific adaption of IEC 61508 for the automotive100

domain (this, and many other standards, exist in several editions, and much literature instead investigate101

older version(s) such as ISO 26262:2011). EN 50128:2011 is the domain-specific adaption of IEC 61508102

for railway control and protection applications. Derived from this standard is EN 50657:2017, which is103

an adaption of EN 50128 for application in the rolling stock domain. EN 50657 was partially created to104

ease work with non-safety related software after the changed definition of SIL 0 made in EN 50128:2011105

compared to EN 50128:2001. The former definition of SIL 0 “no safety impact” was changed to “lowest106

level of safety impact,” rendering some confusion on how to handle products with no safety impact. EN107

50657 therefore replaces SIL 0 with Basic Integrity (BI) for software that is not safety related (Nordström,108

2017). Although more previous work has been done on EN 50128 when compared to EN 50657, we focus109

on EN 50657 due to its importance for the industry partner.110

RTCA/DO-178C is a set of recommendations for compliance with regulations of civil aviation au-111

thorities, such as the Federal Aviation Administration (FAA) and the European Aviation Safety Agency112

(EASA). These guidelines are not derived from IEC 61508. The C-version was released in 2011 as the113

successor of DO-178B and simultaneously introduced DO-330 “Software Tool Qualification Considera-114

tions,” which provides guidance on tool qualification. DO-330 is very similar to DO-178C but adapted115

with objectives and requirements suitable to software tools (Rierson, 2017).116

Safety Integrity Levels (SILs) are a classification of risk and criticality, used similarly between117

standards. IEC 61508 defines, from low to high level, SIL 1 to 4, and ISO 26262 similarly uses ASIL118

A to D (Ekman et al., 2014). EN 50128 defines SIL 0 to 4, a scale also used by EN 50657 but with119

SIL 0 replaced by BI (Nordström, 2017; EN 50657:2017, 2017). Finally, DO-178C uses Development120

Assurance Levels (DALs) E to A, a scale also used by DO-330 (Rierson, 2017).121

According to Asplund (2014) and Notander et al. (2013), safety standards can be divided into two122

main groups based on their view on how trust in a tool shall be ensured. The first group focuses on means,123

where trust is established by generic measures such as thorough specifications and assessments during124

3/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

development of the tool, suggested or enforced by the standard. IEC 61508 and standards derived from125

it belong to this group. The second group focuses on objectives to be fulfilled, where trust in a tool is126

ensured by the applied constraints on its development process. DO-178 and DO-330 belong to this group127

but provides limited practical guidance on how that is to be achieved (Notander et al., 2013). Applying128

constraints on the development process was seen as less compatible with agile development, which is why129

this article focuses on standards in the first group.130

2.2 Tool Qualification131

Tools may eliminate, reduce or automate processes in development of embedded systems. Malfunctions132

in the tool may lead to introduction of errors, or failure to detect errors, in the system. Therefore, tool133

qualifications or certifications are used to increase confidence in the tools. Qualification is sometimes134

required by standards. A tool certification can be defined as a complete set of activities to assert that an135

end product possesses a set of predefined characteristics, whereas tool qualification is a subset of these136

activities, ensuring that the confidence in the tool is at least equal to the confidence in the activities it137

eliminates, reduces or automates (Asplund, 2014). Tools are categorized according to the SIL of the138

tool or (sub-) system. The method of classification and different categories varies between the standards.139

IEC 61508, EN 50128, and EN 50657 all divide tools into either being on-line or off-line tools. On-line140

tools have a direct influence on the system during run-time and off-line tools do not. Tools categorised as141

off-line are then further divided into the three classes T1, T2, and T3, based on their potential impact on142

the system (e.g. a text editor is T1 because its output does not directly impact running code, but compilers143

are T3 because they do).144

ISO 26262 instead classify according to Tool Confidence Level (TCL), based on determined Tool145

Impact (TI) and Tool error Detection (TD). TI is the possibility that a malfunction in the tool can introduce146

or fail to detect errors in the system and has two levels based on whether or not it can be argued that147

such a risk exists. TD measures the confidence in prevention from, or detection of, any shortcomings. If148

determination of TI or TD is not clear, estimation should be performed conservatively.149

2.3 Software Testing150

In an embedded system, software is a major component, making software testing an important part of the151

development. The main purposes of software testing can be quality assessment and reduction of risk for152

software failures. Other typical objectives of testing are verification of specified requirements, validation153

of complete and correct functionality, enabling informed decisions with confidence in the quality level,154

verification of compliance with regulatory requirements or standards, or just feedback (ISTQB, 2011;155

Garousi et al., 2018; ISTQB, 2015; EN 50657:2017; Strandberg, 2018). To achieve efficient and correct156

testing many strategies, tools, and frameworks have been proposed over the years (Garousi et al., 2018).157

Besides the actual execution of predefined test cases, the testing process includes activities such as158

planning, analysis, design and implementation of tests, reporting test results, and quality assessing the159

tested object. When execution of the component or system is part of the testing process it is referred to as160

dynamic testing, contrasted by static testing that only involve reviews of work products such as source161

code and requirements. The concept of quality assurance focuses on compliance with suitable processes162

to provide confidence in the achieved level of quality, and should not be confused with testing which is163

one of several inherent activities. Testing is a mean to achieve quality in different ways, while quality164

assurance deals with the entire process and is the enabler of correct testing (ISTQB, 2011).165

By automating test execution with software, available resources can be utilized more efficiently,166

repeatability increases, costs decrease, and development efficiency improves. Test automation is, therefore,167

an important factor in agile development that enables fast feedback to developers and stakeholders,168

and it allows tests to be performed by a diverse pool of employees (Wiklund et al., 2017). Common169

concepts in agile development such as continuous integration (Stolberg, 2009) and automated acceptance170

testing (Haugset and Hanssen, 2008) heavily rely on test automation (Wiklund et al., 2017). For the171

implementation of test cases, monitoring and control of execution, and reporting and logging of results,172

it is necessary for test automation to involve the design of testware. This should include software,173

documentation, test cases, test environments and test data. The concept of test automation includes using174

purpose-built tools for control and setup, test execution, and evaluating differences between required and175

actual results (ISTQB, 2016).176

Test automation of embedded systems may require a number of tools and a non-trivial flow of177

information (Strandberg et al., 2019). E.g. subtoolA may generate a test suite, subtoolB may initialize178

4/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Test Generation

 - requirements

 - test case design

Test Automation Framework

Test Definition

 - suite building

 - condition

 - procedures

 - cases

 - test data

 - test scripts

Test Execution

 - setup

 - execution

 - logging

 - reporting

 - tear down

Test Adaption

 - device interaction

 - device monitoring

 - simulations

Test Automation

Figure 3. Illustration of a test automation architecture.

Traditional AgileHybrid

A

D

C B

Figure 4. Illustration of a three types of related work (A, B and C), and our study (D).

test cases one after the other, subtoolC may allocate the required subset of a test system, subtoolD179

communicates with each Device Under Test (DUT), test results are reported to a test results database180

(subtoolE) using subtoolF, and subtoolG is used to generate reports from the database (Strandberg, 2021).181

Based on the generic test automation architecture provided by (ISTQB, 2016) and the architecture at the182

industry partner (Strandberg, 2021), an example of a test automation architecture can be seen in Figure 3.183

This illustrates a Test Automation Framework (TAF), which can be seen as a set of different tools with184

specific tasks that interact with each other.185

3 RELATED WORK186

Common for all identified publications on the subject of combining agile and plan-driven methods is the187

perspective of utilizing agile practices into an already existing plan-driven development process. Regarding188

studies of agile, traditional (plan-driven) or hybrid, there seems to be three common types of related189

studies (illustrated in Figure 4). First (A), studying how to move development from a traditional approach190

towards a more agile approach. An example of this is presented in Hanssen et al. (2018b), regarding191

development of safety critical software with the agile scrum approach. Another line of research (B) is192

to explore what agile software development is and how it is done; an example is a survey by Diegmann193

et al. (2018), where they identified that previous research on agile has focused on topics such as agile194

methods and practices; IT capability and agility; project, team and knowledge management; risk control195

and success factors; social interactions and behaviors; etc. A more recent line of research (C) is on hybrid196

methods, e.g. research by Kuhrmann et al. (2017, 2018) and Tell et al. (2021) in a large research project197

called Helena. They argue that most processes are hybrid, in the sense that they are traditional with some198

agility plugged in, e.g. they observed that a typical hybrid process is traditional in risk and configuration199

management, but agile in coding and testing. Furthermore, they identified that “these initiatives aim to200

bring more flexibility to processes. . . ”, which implies that these methods somewhat overlap with research201

going from the traditional to the agile (A). Also, Tell et al. (2021) argue that “Traditional models are202

vanishing from researchers’ focus”. Related to these three strains of research, the paper at hand (D) starts203

in an agile context and strives to go “backwards” in the sense that we try to explore what agilists could204

learn from traditionalists. We were unable to identify previous work incorporating plan-driven practices205

into an agile development process in order to increase confidence and quality in products and processes,206

5/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

which is the objective of this study.207

Several publications study approaches, challenges, and impediments related to combining plan-driven208

and agile methods. Notander et al. (2013) conclude that agile development can co-exist with plan-driven209

development provided that identified challenges are addressed. Heeager (2014) identifies nine practice210

areas of meshing methods from the different development processes. These areas are management strategy,211

customer relations, people-issues, documentation, requirements, development strategy, communication212

and knowledge sharing, testing, and culture. Documentation is determined to be the hardest, while213

requirements, testing and customer relations is considered difficult to combine. Development strategy,214

and communication and knowledge sharing were found to be combinable without impeding challenges.215

Heeager and Nielsen (2020) focuses on the four areas of documentation, requirements, life-cycle, and216

testing. Challenges and proposed approaches related to these areas are identified to enable understanding217

of possibilities and difficulties in performing safety-critical software development using agile methods.218

Hanssen et al. (2017) outline an approach for extending agile methods, in particular Scrum, to achieve219

the objectives of the safety standard DO-178C (presented in Section 2.1). The main idea is a distribution220

of the DO-178C process steps as sprints with the sequenced Scrum phases: preparation, development,221

and closure. Hanssen et al. (2018a) present SafeScrum, a variant of Scrum which attempts to be a222

valid approach for development of safety-critical systems, based in compliance with IEC 61508. This is223

achieved by mapping Scrum activites to applicable steps in the V-model, while omitting system level risk224

and safety analysis, and validation, from the sprints. Ghanbari (2016) suggest that accumulated technical225

debt can be identified and managed, or even avoided, by utilizing agile practices in critical plan-driven226

software development. The author identifies that debt caused by e.g. requirement ambiguity, diversity227

of projects, inadequate knowledge management, and resource constraints may be mitigated by applying228

common agile practices such as small releases with continuous testing, iterative development, burndown229

charts and backlogs, and stand-up and review meetings.230

Conrad et al. (2010) analyze differences in tool qualification or certification in transportation domain231

standards (we further evaluate this work in Section 5). The authors conclude DO-178 to be the most232

stringent among the studied safety standards and emphasize the differentiation between development and233

verification tools, and that verification tools are less demanding to qualify. Regarding IEC 61508, they234

conclude that confidence in tool output should be achieved by certification when possible, but that the235

standard provides limited guidance on how to actually certify a tool in practice. When comparing DO-178236

with ISO 26262, there are significant differences in how to conduct tool qualification. ISO 26262 has237

detailed guides on how to provide evidence that a tool is suitable for safety-related development.238

Ekman et al. (2014) analyze qualification of existing tools as an alternative to the regular certification239

process provided by transportation domain standards (we further evaluate this work in Section 5). Ac-240

cording to the authors, tools used for development and test are commonly not developed according to the241

processes depicted in safety standards meant for certification.242

Asplund et al. (2012) propose a method for qualifying software tools as part of tool-chains based243

on nine identified safety goals. The method is based on integration of tools in a tool-chain by using244

a hierarchy of organisation levels where lower levels are controlled by constraints from higher levels,245

thereby reducing complexity at lower levels. Using the reference workflow of Conrad et al. (2010) and246

the concept of Safety Element out of Context from ISO 26262, Asplund et al. suggest four steps for247

guiding and limiting the qualification effort. These include pre-qualification of both tools and tool-chain248

by representative use-cases and requirement deduction respectively. In a later publication, Asplund (2015)249

studies the relation of software faults to weaknesses in the support environments used, in relation to safety250

standards within the transportation domain. The author argues that standards often only concern tools251

in isolation which may lead to risks introduced by tool integration being ignored, a concern also raised252

by Conrad et al. (2010).253

4 RESEARCH METHODOLOGY254

This study was performed as an industrial case study (Runeson and Höst, 2009), and the purpose of this255

section is to describe the essential elements of the case study design.256

4.1 Research Questions257

Together with the industrial partner and for the case-specific test framework, we formulated two research258

questions. An underlying assumption is that strategies for increased confidence and quality regarding tools259

6/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

used for automated software testing in non-safety development can be found or created from concepts and260

strategies related to safety-critical development, while maintaining agile and efficient processes.261

RQ1: Based on the approaches proposed in relation to relevant safety standards, what strategies for262

increased confidence in software tools can be found or constructed?263

RQ2: Which of the above strategies are applicable and practical regarding quality assurance of frame-264

works for automated software testing?265

4.2 Case and Units of Analysis266

The industrial partner in the case study, Westermo Network Technologies AB2 (Westermo), specializes267

in industrial communication equipment for domains with high demands on robustness and availability,268

such as train, oil and gas, maritime, and water treatment. Thus, many customers have to comply with269

a functional-safety standard, which imposes demands of high quality on products acquired. Different270

devices for robust data communication are developed, e.g. robust Ethernet switches. Each device is an271

embedded system, running the Westermo Operating System (WeOS), developed at Westermo. While272

based on GNU3 and Linux4, WeOS also includes other open-source software libraries and proprietary273

code. This accumulates to a source code base of millions of lines of code.274

To ensure the quality of the products, Westermo applies automated testing, conducted on several275

test systems each night. Further, there is risk-based testing, where identified risks are used to conduct276

manual testing or to construct new test cases, as well as release testing using third-party robustness and277

performance tools in combination with reviews.278

A test framework has been developed, implemented and maintained over several years. The framework279

consists of testware and different setups of devices into several physical test systems with varying layouts,280

each containing 4 to 25 devices with hardware, firmware and software. The in-house developed testware is281

used to configure and control the devices, which are running some version of WeOS. Further, the testware282

contains all test scripts, configurations and procedures, and is also used for activities surrounding the tests283

such as test case selection, setup, tear-down, and logging. The framework allows for both manual and284

automated testing, simulating installation scenarios and hardware/software combinations to test e.g. a285

software feature, a physical device, or a customer-specific case (Strandberg, 2021).286

The studied case in the research is defined as the industrial partner and the products developed. The287

unit of analysis is defined as the development and maintenance of the test framework, utilized at the288

industrial partner for the execution of manual and automated tests of produced products.289

4.3 Methods of Data Collection and Analysis290

Two methods of data collection (literature study and focus group) were used in this study. The data291

collected from the literature study was analyzed qualitatively, while the data from the focus group was292

analyzed both qualitatively and quantitatively.293

4.3.1 Literature Study Method294

The literature study was based on guidelines on literature studies and snowballing Kitchenham and295

Charters (2007); Wohlin (2014). The process started using an initial set of papers identified using Google296

Scholar or authors’ prior knowledge (Shahin et al. (2017); Asplund (2014); Notander et al. (2013);297

Ghanbari (2016); Conrad et al. (2010); Garousi et al. (2018); Mårtensson et al. (2016); Strandberg298

et al. (2019); Wiklund et al. (2013); Zhi et al. (2015)). Papers were included if they (i) discussed tool299

qualification in relation to a safety standard, (ii) covers challenges related to test automation, tools or300

frameworks, or (iii) covers challenges in combining safety-critical plan-driven development with agile301

processes. For backward snowballing, the reference list of an already included publication was studied302

to identify additional publications to be included. For forward snowballing, citations were identified in303

the later publications back to an already included publication. Citing and cited publications were then304

evaluated for inclusion or exclusion. Further, to find missed clusters of publications, additional searches305

were performed in parallel to the snowballing process.306

From the papers, we identified approaches based on two criteria: (C1) approaches that could be307

extracted directly from the paper, or (C2) approaches that could be derived from the paper. Based on the308

2https://www.westermo.com
3https://www.gnu.org/
4https://www.kernel.org

7/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

initial set of papers, a total of 32 papers were processed, and nine included based on the inclusion criteria309

– three of which were in the initial pool of papers.310

The literature study further included the review of three standards used in the transportation domain,311

specifically the sections/clauses addressing software development tools, which gave a set of approaches312

additional to C1 and C2. The relevance of these standards is motivated in Section 2.1, and therefore no313

further inclusion criteria were applied. The approaches were further analyzed to identify similarities in314

concepts and to merge duplicates into candidate solutions. A candidate solution is a principle or practice315

derived for increasing quality of and confidence in an automated software test framework. Four main316

groups were identified: development, analysis, validation and verification, as well as run-time measures317

(Section 5.5).318

4.3.2 Focus Group Method319

The method used for conducting the focus group was based on guidelines presented by Morgan (1996) and320

a literature study on focus group methodologies by Hylander (1998). The focus group was a self-contained321

activity containing both a qualitative and a quantitative part. In order to prepare the participants, we first322

introduced the purpose and structure of the focus group, the concept of a candidate solution, and the323

tool-chain concept (see Section 5.4).324

Qualitative data was collected through moderated group discussions structured according to the four325

identified main aspects of candidates; development, analysis, run-time measures, as well as validation326

and verification. Each aspect was initiated with a short free discussion based on an open question on the327

subject of the current aspect. The objective of this activity was to have the participants introduced to328

the main subject and warmed up to get the correct mindset before presenting the candidates for further329

discussions. A discussion guide to stimulate discussions, if needed, had been prepared. The candidates330

in each group were then presented individually and accompanied by more detailed examples and/or331

considerations regarding the specific candidate. As base for discussions, the same three open questions332

were used for all candidates regardless of group:333

– What would this concept mean in the context of this company?334

– Is it a good idea?335

– Why is it, or is it not, a good idea?336

This process was iterated four times, once for each aspect, thereby covering all main aspects and the337

candidates.338

The objective of the quantitative part was to obtain an indication of the perceived value of the339

candidates and create a perception of prioritization for further and future work. The method used was340

inspired by Planning Poker (Grenning, 2002) and the Delphi-method (Dalkey and Helmer, 1963). The341

participants were asked to imagine having 200 man-hours to invest in candidates of their choice. They342

could choose to invest all in only one candidate or to distribute their investment over several candidates.343

All candidates were then collectively presented and the participants were given time to reflect individually344

and write down their answer. Finally, the participants presented their choices and motivations one by one,345

and the results were simultaneously summarized and presented in a spreadsheet for all to see. The idea346

with this procedure was to stimulate discussion over choices and motivations.347

The focus group ended with a summarizing event, asking the participants if there were any candidates348

they had expected to be presented but that were missing, and if they could share any other thoughts or349

ideas regarding the material that had been presented to them. Due to the Coronavirus outbreak, the focus350

group was executed as partly remote with some participants on link. The presentation was simultaneously351

displayed physically and shared over the tool used to host the remote meeting.352

Participants: Aiming at diversity in terms of experience and specialization, we recruited a stratified353

convenience sample of six individuals for the focus group: one manager for the software test team who is354

responsible for the framework, one manager for the WeOS team, three developers from the test team, as355

well as one developer from the WeOS team.356

Execution Roles: The focus group was driven by three execution roles: (i) The first author was357

responsible for preparing and running the presentation, and further to introduce and explain presented358

activities, concepts, and candidates. (ii) The second author acted as moderator during discussions, i.e. by359

keeping track of coverage regarding both topics and speakers, and asking for further elaborations when360

necessary while trying to maintain fluent and self-driven conversations. (iii) The third author acted as361

8/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

support of the execution by clarifying the purpose, assisting in understanding the purpose, and step in if362

needed to keep the activities in line with the goals.363

Data Collection: All qualitative data collection was conducted by taking notes during the discussions,364

instead of making recordings for later analysis. As suggested by Krueger (2014), recordings are not365

mandatory for data collection in regards to focus groups, since analysis can be performed on the basis366

of memory and notes alone. To mitigate risks of missed or misunderstood discussions, redundancy was367

provided by the three first authors simultaneously taking notes during the session.368

Data Analysis: The first step of analysis was to merge the handwritten notes taken by all three369

execution roles. The merged notes were then further processed and summarized, removing duplicates,370

clarifying expressed opinions by the collective notes on the same subject, and identifying which participant371

had made what statements where such coding was missing in some of the notes. The resulting merged and372

processed notes where then analysed in the context of the group being the unit under analysis instead of373

the individuals of which the group consisted. Group opinions were differentiated from individual opinions374

by attempting to identify consensus reached within the group. Further analysis attempted to identify and375

understand which comments were reactions to direct questions, and which were spontaneous reactions376

to the ongoing discussion between participants. The results of the analysis is presented in Section 6.1.377

Notes regarding the quantitative part where analyzed using the same process as described above to allow378

comments and motivations during these activities provide for a deeper understanding of the results, which379

are presented in Section 6.2.380

5 IDENTIFICATION OF CANDIDATE SOLUTIONS381

This section describes the candidate solutions derived from the literature study. Based on the inclusion382

criteria, we identified approaches (Ap.1, Ap.2, . . .) that could be directly derived from the literature in 5.1,383

approaches that could be constructed by aggregating actions or techniques in 5.2, as well as approached384

that came from standards in 5.3. We also discuss seeing a test tool or framework as a tool-chain in 5.4.385

The 48 approaches were analyzed in order to identify similarities and grouped into 22 candidate solutions386

in four categories – development, analysis, run-time measures, as well as validation and verification (or387

test phase). These are presented in Table 1 with traces back to original approaches (Ap.1, Ap.2, . . .).388

5.1 Directly Extracted Approaches389

Conrad et al. (2010) investigate standards to qualify two existing tools in accordance with ISO 26262. A390

directly extracted approach is to use a reference workflow from the existing tool (Ap.1). They identified391

the following steps for the qualification: requirements, specification, the model for code generation,392

generated code, and object code. Derived from this approach is the use of intermediate results in the chain393

of work steps to apply appropriate checks. The reference workflow is used to describe and limit tool use394

cases and lists available means for the detection of malfunctions and erroneous outputs. The reference395

workflow shall also describe verification and validation methods for each step in the workflow which may396

also identify means for error detection and prevention.397

Wang et al. (2012) propose a semi-automated qualification method for verification tools that include398

hardware-in-the-loop test benches, for qualification of a new system or qualification after modifications.399

Their method is based on fault injection and monitoring (Ap.2), where faults are injected and the test400

system monitored for detection of the fault. According to the authors, applying the method on a new401

system requires the ability to run all test-cases both with and without fault injection. Failure of detection402

can be used to identify shortcomings in the testware of the verification tool. If no systematic faults are403

present in the testware, then one ought analyze requirements conformance in order to identify design404

errors or insufficient requirements.405

Ekman et al. (2014) propose approaches for tool qualification in the transportation domain. They406

target a tool for dynamic instrumentation based on binary modification. Several approaches were derived.407

First, to develop from scratch (Ap.3) by re-developing the entire tool or by constructing a complete safety408

case for the existing tool. Second, to qualify in accordance with a standard, e.g. by formally proving409

(Ap.4) that tool output conforms to specification, by automated correctness checks (Ap.5) of the tool410

output, by implementing a tool error detection system (Ap.6), or by applying design diagnostics (Ap.7)411

based on, e.g. Failure Mode and Effect Analysis to detect identifiable failures in the output. Their third412

approach is to design a protection harness (Ap.8) that detects and acts on errors in the tool, preventing413

them from propagating to failures. To implement a protection harness one has to consider the tool as414

9/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Id Candidate Based on Ap. # Qual. Quan.

D Main aspect: Development

D.1 Apply measures to avoid development faults introduced by miscon-

ceptions

9, 22, 24 & 42 :-) 13%

D.2 Apply restrictions on tool usage 29 & 42 :-| –

D.3 Apply measures to avoid potential errors introduced by users 22, 28 & 34 :-) –

D.4 Develop the test framework based on requirements 12, 14, 21, 23 & 40 :-(–

D.5 Apply measures of rigour to the development process 20 & 25 :-| –

D.6 Re-develop the entire test framework with a suitable safety standard 3, 11, 18 & 48 :-(–

A Main aspect: Analysis

A.1 Perform formal risk and impact analysis 1, 5, 9, 24, 27, 29 & 33 :-) 10%

A.2 Analyze the tools using a tool error checklist 9 :-| –

A.3 Perform analysis with regards to abnormal operating conditions 16, 26, 27 & 45 :-) –

A.4 Analyze using well defined peer-reviews during development 15, 17 & 42 :-) 18%

A.5 Analyze the tools with static analysis 15 & 42 :-) 5%

A.6 Perform sufficient root-cause analysis on detected errors – :-) –

R Main aspect: Run-time measures

R.1 Develop automated sanity checks of important tool actions 6, 29 & 41 :-| 5%

R.2 Implement checks of output from a preceding tool in the tool-chain 6, 10 & 41 :-| –

R.3 Develop a monitoring system for error detection and prevention 7, 8, 19 & 41 :-) 15%

R.4 Develop protection against identified abnormal operating condi-

tions

16, 22, 26 & 45 :-) 5%

R.5 Implement redundancy in tools and tool-chain 29, 36 & 41 :-| –

R.6 Halt execution on detection of errors or erroneous conditions – :-) –

V Main aspect: Test Phase

V.1 Utilize a suitable safety standard to validate the tool and related

processes

3, 31, 37 & 47 :-(–

V.2 Formally prove that tool outputs conforms to specification 4 :-) –

V.3 Base tool confidence on history of successful use 30, 35, & 46 :-| –

V.4 Use a customized tool validation test suite for critical use cases 44 :-) –

V.5 Perform tests based on fault injection 2 & 43 :-) 10%

V.6 Perform unit tests on modules and tools in tool-chain(s) 15 :-) 19%

V.7 Implement requirement-based testing – :-) –

Table 1. Candidate solutions for quality assurance of a quality assurance tool (22 from the literature

study, and 3 from the focus group). The third column links back to main text and the approaches described

in section 5. The two rightmost columns describes qualitative and quantitative appraisal from the focus

group, explained in section 6 – Qual. indicates good idea ‘:-)’, bad idea ‘:-(’ or indifferent opinion ‘:-|’,
whereas Quan. shows percentage of effort the focus group would like to invest in the approaches.

a tool-chain of sub-tools (described in 5.4 below). The protection harness is based on evaluating all415

intermediate results present in the tool-chain before letting the process proceed to the next step.416

Hillebrand et al. (2011) propose a stepwise method tightly coupled to the V-model that we generalize to417

fit the scope of this paper (Ap.9): (i) Describe all essential workflow steps with purpose and dependencies.418

(ii) Describe the used tool(s) and input/output for each step. (iii) Create and use requirement based419

checklists for each step to detect or prevent development errors. (iv) Break down the steps into use cases420

describing any user interaction, as well as different input/output or tool sequence scenarios. (v) Continue421

with identifying possible errors based on provided generic tool error types. (vi) Collect all previous steps422

in a checklist that includes detection/prevention/mitigation measures. Finally, the authors propose that the423

tool-chain structure (Ap.10) can be used to construct tests in a tool in order to detect errors by another424

preceding tool (again, see 5.4).425

Krauss et al. (2015) evaluate requirements for qualification of software tools for hazard and risk426

analysis, that they compare with safety standards in the transportation domain. The authors provide three427

approaches: They suggest that development according to DO-330 life-cycle is a valid tool qualification428

method than can be used as guidance also in other domains (Ap.11). Secondly, validation by requirements-429

based testing (Ap.12). And finally, checks of completeness and correctness (Ap.13) of tool output should430

10/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

be achieved by a proper verification process.431

Lloyd and Reeve (2009) report on their experience as assessors for certification according to IEC432

61508. Their focus was on complete systems, but they provide lessons learned for both unsuccessful and433

successful cases that can be applied to tool development. Experiences from unsuccessful cases show that434

showing coverage at acceptance testing was not possible due to missing requirements specification or435

requirements that were not traceable through the lifecycle. The authors argue that structuring, tagging, and436

handling requirements can be made manageable by automating traceability (Ap.14) with a traceability437

matrix generated from a requirements database, or by using a requirement tracking tool. There was438

a lack of awareness and knowledge regarding static analysis techniques, with development teams not439

being aware of the benefits. The authors argue static analysis to be essential, with a need for several440

techniques such as i.a. control flow, data flow, range checking and unsafe code detection, and shared441

resource analysis. The authors argue that unit testing (Ap.15) should be preceded by static analysis and442

peer review, focusing on assumptions of pre- and postconditions. Difficulties in integration were found to443

often arise from defective or erroneously assumed module interfaces. They also emphasise the importance444

of configuration management and change control (Ap.16), and that reviews and issue tracking should be445

supported by workflow tools (Ap.17).446

The main issue was legacy code, often developed over years without sufficient documentation.447

Bringing this code up to standard in retrospect would not be economically feasible. For small amounts448

of code, the authors recommend to re-develop from scratch in accordance with IEC 61508 (Ap.18). For449

large amounts of legacy code, they recommended to develop a monitoring and shut-down device for the450

main product (Ap.19), similar to the safety-shell mentioned by Ekman et al. (2014).451

One approach for successful assessments mentioned by Lloyd and Reeve was to use a sequence of452

“mini-waterfalls” (Ap.20) for software releases with increasing capability, similar to combining plan-driven453

and agile development proposed by Hanssen et al. (2017). Another successful approach is to invest effort454

into understanding the requirements (Ap.21) and knowledge-sharing by prototyping parts of the software.455

Other successful approaches mentioned are to use reviews in all stages of development, conduct research456

in tools and techniques and invest in training and development of good practices.457

5.2 Derived Approaches458

Asplund et al. (2012) and Asplund (2014) explore tool integration, i.e. automation supporting interaction459

between software tools or between tools and users in a tool-chain. They also survey four standards in460

the transportation domain. Asplund et al. and Asplund defines two models that are combined to identify461

risks and derive causal factors. First, the conceptual model, that consists of four levels focusing on risks462

related to tools and support environments which define how higher levels control lower levels. Second, the463

reference model (an extension of work by Wasserman (1990)), that describes aspects of tool integration by464

identifying relationships and borders for tool integration. The reference model covers five aspects of tool465

integration for supporting interactions – platform, control, data, process, and presentation. By combining466

the conceptual model and the reference model, and the risk analysis proposed by Asplund we identify467

ten safety-related characteristics of tool-chains that should be managed to mitigate risks (Ap.22). This468

approach includes: (i) Data integrity, to guard against internal data corruption and safeguard users from469

choosing bad artifacts. (ii) Data mining, to extract and present relevant information. (iii) Traceability, to470

know that the design supports the requirements and also how faults relate to each other if they combine to471

create a failure. (iv) Well defined data semantics, to allow users with different roles to understand each472

other. (v) Process notifications, for the tool-chain to notify users. (vi) Process control, the tool-chain473

shall provide automated process control, e.g. by checking for new versions and blocking or highlighting474

when something has been found to be erroneous. (vii) Customizable GUIs, to enable correct actions by475

users with different roles, knowledge, or expertise. (viii) Coherent time information, to enable correct476

comparison of artifacts from different systems, a global clock should be used. (ix) Automated tool usage,477

to avoid manual work when proceeding between tools. (x) Automated transformations of data, to avoid478

manual involvement in transforming data.479

Notander et al. (2013) explore challenges in implementing agile methods in plan-driven development480

of safety-critical systems. The authors conclude that some of the main challenges are differences in docu-481

mentation focus, tight collaboration with test-teams contrasted with requirements of independent testers,482

and that many small releases conflict with heavy certifications of each release. Complete requirements483

are central for the development of both safety-critical and non-critical systems and should be elicited by484

11/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

an iterative process. Traceability is mandated by safety standards and maintaining it may come with a485

high cost. However, maintained traceability can support agile and flexible development by identifying486

dependencies that need to be addressed during evolution. Having a clear and layered architecture with a487

generic bottom and building up with specific adaptions that cannot affect lower layers supports isolation488

of changes and minimizes re-certification needs. Derived from these insights were the following two489

approaches. (i) Construct requirements on tools used in the test framework that are elicited from, and490

traceable back to, the tested software and top-level functional requirements (Ap.23). (ii) Adopt a clear,491

dependency layered and continuously maintained architecture of the test framework where the potential492

impact of changes can be easily derived (Ap.24).493

Wiklund et al. (2017) identify impediments related to automated software testing in general. They494

emphasize that development of a test tool is software development, and should be treated as any other495

software project and involve adequate treatment of standards, quality criteria, requirements, architecture,496

documentation, testability, and maintainability. Insufficient considerations of these factors may lead to497

poor test tool quality, and failure to detect defects. Low confidence in the test results may also lead to498

doubts whether failed tests are caused by the test environment or the tested software. The authors further499

identify the importance of ensuring that the environment is not difficult to use in a way that may lead500

to difficulties or confusion in performing or managing configurations. Tests executed on unknown or501

erroneous configurations can harm repeatability and impede detection of defects caused by unstable or502

misinterpreted results. We derived the approach to: Develop the test framework with at least the same503

rigour as the tested software (Ap.25), with special regards taken to address potential problems with504

performing or managing configurations (Ap.26).505

In addition to approaches extracted directly, Hillebrand et al. (2011) also contained an approach that506

could be derived: the potential generic use of the proposed tool error types. They provide six basic error507

types for generic error classification (Ap.27) applicable to software tools: input errors, processing errors,508

process configuration errors, operating environment errors, misconceptions by user, and implementation509

errors by user. These generic errors do not provide mitigation strategies on their own, but may be suitable510

for use with the other proposed approaches to identify errors.511

5.3 Approaches for Tool Confidence Extracted from Standards512

Common to the guidelines provided by IEC 61508:2010, EN 50128:2011, and EN 50657:2017 is that513

offline support tools shall be categorized into one of the three classes (discussed in Section 2.2). For tools514

in the strictest class (T3), the standards list different types of evidence that can be used to show that a515

tool conforms to its specification or that failures in the output are detected. If a tool does not make direct516

or indirect contributions to the software under test, it will never be in the strictest class, but instead e.g.517

T2. According to these standards, “evidence listed for T3 may also be used for T2 tools in judging the518

correctness of their results.” Furthermore, tools shall be able to cooperate, such that output from one tool519

can be input for another.520

The three main aspects of requirements for software support tools in IEC 61508-3 are degree of521

support for production of software according to requirements, clarity of operation and functionality, as522

well as repeatability and correctness of the output. Tools for stricter systems (T2 and T3) should have a523

specification or product documentation (Ap.28). Risks that these tools might affect executable software524

shall be determined by assessment, identifying failure mechanisms and applying mitigation measures525

(Ap.29). Other mitigation approaches are avoiding known bugs, restricted use of tool functionality,526

checking tool output, and using diverse tools. For the strictest applications (T3 tools), IEC 61508 suggests,527

as evidence for conformance: successful history of use (Ap.30) and validation (Ap.31). Or, if evidence is528

not available: effective measures to control failures (Ap.32).529

EN 50657(c 6.7.4) addresses requirements on support tools in order to reduce the likelihood of530

introducing or not detecting faults during development. The standard mentions identification of potential531

failures (Ap.33) in tool output and measures to avoid or handle such failures. T2 and T3 tools shall532

have a manual or specification where tool behaviour, instructions, and constraints of use is defined533

(Ap.34). As evidence of conformance (for T3), EN 50657 provides more alternatives than IEC 61508,534

e.g.: history of successful use (Ap.35), diverse redundant code for detection and control of failures535

(Ap.36), tool validation (Ap.37), compliance with SILs derived from risk analysis (Ap.38) of process and536

procedures, and other appropriate measures for avoiding or handling failures (Ap.39). If such evidence is537

not available, there shall be effective measures to control failures resulting from faults in the tool.538

12/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Framework, i.e. the Tool

Sub-chain of Tool Y

Tool Y.1
intermediate

results
Tool Y.2

intermediate

results
Tool Y.3

Tool X
intermediate

results
Tool Y

intermediate

results
Tool Z

Sub-chain of Framework

Figure 5. Conceptual visualization of a framework tool-chain model.

ISO 26262:2018 (part 8, ch.11) handles confidence in the use of software tools, with the objectives539

to determine the required level of confidence, and means for qualification when applicable. The main540

goals are to minimize the risk of systematic faults in the end product due to a tool introducing or failing to541

detect errors, and that usage of software tools does not affect compliance with the standard. The term542

“software tool” is deemed ambiguous, in the sense that it can vary from a single software package to an543

integrated suite of tools in a tool-chain, and also be applied to a variety of tools, such as commercial, open544

source, or in-house developed tools. As mentioned (in Sections 2.2 and 3), there are no distinctions made545

regarding how a tool is used or the possible effects on executable code as is the case for the previously546

mentioned standards.547

ISO 26262 states that requirements on the tool (Ap.40) shall depend on its role, related risks, and SIL.548

As internal prevention and detection measure (Ap.41) monitoring is suggested, and as external measures549

(Ap.42), guidelines, tests, and reviews. For verifying compliance to its evaluation, the standard suggests550

operating the tool with measures for error detection or prevention in combination with, e.g. fault injection551

(Ap.43) (similar to suggestions by Wang et al. (2012)). Also, verification of appropriate tool functionality552

in the user environment can be conducted by running a tool validation test suite (Ap.44). To ensure553

proper evaluation of usage, the standard suggests comparing outputs of redundant tools, performing554

tests, static analysis or reviews, log file analysis, and avoidance of problematic tool functionalities. The555

measures apply to both known and potential errors in the tool output. For evaluating the tool by analysis,556

prevention or detection can be achieved by redundant tasks or tools, or by rationality checks within a557

tool. Additionally, a tool can be used to verify the output of another precedent tool, implying a tool-chain558

structure.559

If a tool is determined to have confidence level TCL 2 or 3, then qualification is necessary according560

to ISO 26262. For this procedure, the standard provides four different methods: (i) Validation, aimed at561

providing evidence for either absence of, or detection of assessed errors. From the method of validation,562

stand-alone strategies could be extracted as using a customized test-suite, and examination of reactions to563

anomalous operating conditions (Ap.45) such as foreseeable misuse, incomplete input data, incomplete564

update, and use of prohibited combinations of configuration settings. (ii) Increased confidence from565

use (Ap.46), requiring i.a. unchanged specification, sufficient data obtained from accumulated use, and566

malfunctions accumulated systematically. (iii) Evaluation of the tool development process (Ap.47), which567

should be based on an appropriate standard. (iv) Development in accordance with a safety standard568

(Ap.48), however “No standard is fully applicable to the development of software tools. Instead, a relevant569

subset of requirements of the safety standard can be selected.”570

5.4 The Test Tool as a Tool-chain571

A “meta-approach” common in the literature is to see the test tool (e.g. a test framework), not as one572

entity, but as a tool-chain built up of the tools of the framework, (see Figure 5). The reference workflow573

from Conrad et al. (2010) and workflow steps from Hillebrand et al. (2011) are based on a flow through a574

chain of tools, where use cases with possible errors, validation and verification means, as well as failure575

mitigation measures are applied to each step through the chain. This approach is also supported by, e.g.576

using the tool-chain to detect errors (Hillebrand et al., 2011), the safety shell approach Ekman et al.577

13/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

(2014), the importance of tool integration emphasised by Asplund (2014), that tools shall be able to578

cooperate (IEC 61508:2010; EN 50657:2017), and that a tool can be “a suite of software tools integrated579

into a tool-chain” (ISO 26262:2018). In practice this could be understood as an automated test tool-chain580

consisting of several different tools, performing different tasks, that as a whole result in a complete test581

framework. For each individual tool in the tool-chain, different approaches are suitable depending on582

the nature of the tool and the task it performs and should be applied accordingly. Therefore, a basis for583

interpreting, understanding and applying the proposed candidate solutions, presented in Table 1, is to view584

them through a “tool-chain lens.” In particular, what is an individual tool in a tool-chain at one level, can585

be seen as separate tool-chain when evaluated closer. Different levels of tool-chains may exist depending586

on the complexity of the system. The idea that a tool can be a tool-chain when looking at the inherent587

parts is supported by the definition of a tool in DO-330, as quoted by Rierson (2017): “A software tool588

can be a complete program, or a functional part of a program.”589

The tool-chain model also implies that if classification based on the possibility to introduce errors590

or fail to detect them, is to be performed in accordance with an applicable standard, the classification591

should be applied to each individual tool in the chain based on analysis of the specific tool where possible592

errors are identified. Analogously, determination of Tool Confidence Level could be performed on each593

individual tool. Assessment of the complete framework could then be derived from motivations applied594

for the classification of each individual tool, aspects considered for integrating the tools, and the results595

on framework level of failure mitigation measures applied for each individual tool or interactions between596

tools. Thus, confidence in the complete framework should be argued as the sum of measures applied to597

sub-tools, and the confidence in their results and interactions.598

5.5 Candidate Solutions599

The 48 approaches extracted from previous work and standards were analyzed in order to identify600

similarities. We grouped them into 22 candidate solutions suitable for test framework quality assurance,601

and identified four main groups: development, analysis, run-time measures, as well as validation and602

verification. Table 1 presents the candidate solutions with traces back to original approaches. These 22603

final candidates are further discussed in the upcoming sections.604

6 VALIDATION OF CANDIDATE SOLUTIONS WITH FOCUS GROUP605

In this section we describe the validation of the candidate solutions, i.e. preparing and conducting a606

focus group. The results are presented as both qualitative and quantitative outcomes, complemented by607

additional suggestions of candidates.608

6.1 Qualitative Results of Focus Group609

The qualitative results of the focus group are presented based on the main aspect of the candidates (devel-610

opment, analysis, run-time measures as well as validation & verification). Interpretation of qualitative611

results, based on discussion analysis, was performed by applying a three-step scale: Good idea with high612

value, indifferent or ambiguous opinion, or unappreciated idea with little or no value, as presented in the613

Qual.-column in Table 1.614

6.1.1 Development615

The introductory discussion was based on the question “thinking back, do you know of any events, positive616

or negative, that could be linked to the development process?” The answers tended to focus more on617

negative aspects, with mentions of a rapid development pace leading to missed test results, or even no618

results at all, after updates or to the testware. Adding tests in simulated environments and more extensive619

reviews was argued to be potentially beneficial in this aspect. Extending the development process with620

added phases was also mentioned with considerations of cost and productivity, and how to gain the best621

effect. Developers experienced that sometimes tests were missing, requesting testing of the tests. The622

focus group also emphasised differentiating between development and production environments.623

D.1 Apply measures to avoid development faults introduced by misconceptions. The focus group624

found this to be a good idea, they suggested to clearly define what a review is, and what is expected during625

the review. To emphasize the importance of documentation to be understood by different people and after626

long periods of time. To use checklists as a mean to achieve clarity. To have a clear architecture in order627

to easily see dependencies and the effect of changes. To conduct analyses of errors to gain statistical data628

14/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

and derive the root cause to avoid similar issues in the future. They also suggested that making complete629

predictions on potential faults is difficult, and wondered whether FMEAs would be applicable to mitigate630

this.631

D.2 Apply restrictions on tool usage. The focus group had mixed opinions, and felt that applying632

these types of measures initially had a low priority. However, benefits could be seen regarding third-party633

software with known issues, and that a policy on what parts of a tools to use for a specific purposes, and634

what functionalities to avoid, could be beneficial.635

D.3 Apply measures to avoid potential errors introduced by users. The focus group found this to be a636

good idea. It could be beneficial in the aspects of masking complexity for the users, and also minimizing637

manual configurations to the greatest extent possible. Complexity that grows over time can result in638

mistakes which could lead to lost test results.639

D.4 Develop the test framework based on requirements. Here the focus group had a mixed but mostly640

negative view. A higher focus on requirements is a reasonable approach from a long-term perspective,641

since it could yield a more testable and correct product. However, too high focus on requirements could642

have a negative effect if the requirements are not complete, thus giving rise to missed aspects. Clarity in643

requirement elicitation and ownership is important.644

D.5 Apply measures of rigour to the development process. The focus group found it reasonable645

and beneficial to apply the same test strategy on the test framework as what is conducted regarding the646

software to be tested. They consider extending the framework development process to include more unit647

tests. Also, they argued that one needs to determine a reasonable level of quality assurance and rigour in648

the context of the test framework and integrity of produced test results.649

D.6 Re-develop the entire test framework in accordance with a suitable safety standard. The focus650

group argued that this was not applicable due to e.g. the high amounts of waste and significantly increased651

costs, and that this would not necessarily yield any increased quality.652

6.1.2 Analysis653

The introductory activity based on the open question “what are your thoughts on analysis to identify654

potential problems in advance?” was mainly positive. The focus group saw benefits in focusing efforts in655

advance. They saw value in being able to determine effects of changes in advance, and gave examples656

of difficulties with current tools that could benefit from more analysis before deployment. They also657

mentioned difficulties in capturing all possible events, in identifying events that may never actually occur,658

and the importance of keeping analysis at a reasonable level. Further, they discussed the importance659

of performing root-cause analysis when errors occur, in order to identify proper measures for avoiding660

similar errors in the future.661

A.1 Perform formal risk and impact analysis. The participants were positive to this approach, in662

particular to risk-based testing. They also argued that by using the same approach for test framework663

work as with any other development, this could also yield enhanced cooperation, communication and664

understanding.665

A.2 Analyze the tools using a tool error checklist. The focus group interpreted this as Definition of666

Done (DoD)5, with general aspects and measures to be assured. A benefit could be to not miss relevant667

activities, but the focus group has a hard time imagining how to create generic checklists from a risk668

analysis.669

A.3 Perform analysis with regards to abnormal operating conditions. The participants saw this670

approach as having great value, and made references to historical events where this could have been useful.671

Errors of this kind should be analysed for similar potential events to determine counteracting measures.672

A.4 Analyze using detailed peer-reviews during development. The focus group were very positive to673

this approach, and in the quantitative appraisal this was one of their favourites. They saw it as highly674

important with potential to create a basis for many developing benefits, such as, definitions of what to look675

for, knowledge sharing, the low cost compared to the introduction of faults in the product, and decreased676

risk of potential errors in the product. They saw great value in pair-design and pair-programming as review677

a method, as well as presenting your solution to someone else. However, the phrase “detailed” should be678

clarified, interpreted as the specification of review execution, included activities, and expected outcomes.679

Also, this approach could potentially block development progression if reviews are not prioritized, and680

there is a risk that reviews become just a “tick-in-the-box.”681

5DoD is an agile concept, a set of criteria to define if a deliverable is done (Silva et al., 2017).

15/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

A.5 Analyze the tools with static analysis. In general, the focus group saw static code analysis as a682

good idea, but the value of analysis tools should be evaluated for each specific case. They had positive683

experiences of linting6 tools as a method of performing static code analysis. They mentioned that false684

positives created by a tool could render a lack of trust in produced results over time.685

6.1.3 Run-time Measures686

The introducing discussion was based on the question “what is your spontaneous interpretation of a687

run-time measure in the context of the test automation framework?” The conversations mainly revolved688

around measures to avoid potential problems, such as overloading a server, full disks, and no access to689

databases. Current implementations, such as redundancy in writing to a database, were also mentioned.690

R.1 Develop automated sanity checks of important tool actions. The focus group felt that this was691

mostly redundant if risk-based testing is correctly introduced, except for dynamic aspects of the framework.692

The group mentioned that it is important to verify the correctness of the environment preconditions before693

testing. Historically, an error in one test-suite has sometimes led to the failure of several sequential suites,694

which potentially could be mitigated by ability to reset the system upon failures and then start at the next695

step.696

R.2 Implement checks of output from a preceding tool conducted in a subsequent tool in the tool-chain.697

The participants mentioned that this could be hard to implement, since many things could potentially go698

wrong, but it should be possible to determine and exceed a minimum level of appropriate checks. The699

discussions focused the value of assuring that the correct conditions exist from the previous step in the700

current context. By having this in place, a benefit could be to more easily distinguishing between errors in701

the software under test and the testware, since incorrect conditions for a test could be misinterpreted as an702

error in the tested software.703

R.3 Develop a monitoring system for error detection and prevention. The focus group saw this as704

a good approach, and discussed work on historic issues. If there is a lack of history of the data-flow705

chain then this could impede troubleshooting of errors. The focus group speculated about the benefits of706

visualisations in a global log management system to which all tools/subsystems could report their status707

and problems, and compared this to Lauterbach7 and Jeager8. They saw clear benefits to monitoring and708

notifications of test progression, especially during the final testing at release-time.709

R.4 Develop protection against identified abnormal operating conditions. The focus group requested710

that test execution could be halted if errors were detected. Such that these could be resolved before711

continuing, and that a failure in a test should not affect subsequent testing. The group desired the ability712

to reconfigure a physical test system and the included tests in the event of a lost part of a test system, and713

that the testware should automatically restart certain services. The group also mentioned the potential714

use of AI to analyze sequences and find problematic patterns and then trigger a reset, thereby allowing715

the suite to continue without errors. The focus group were of the opinion that detected errors should be716

cherished as a potential source of information and that it could lead to improvements.717

R.5 Implement redundancy in tools and tool-chain. For the focus group it was unclear how to interpret718

redundancy in the context of the test framework, e.g. does unequal multiple test systems constitute719

redundancy, and is the purpose to have availability or correctness? Also, work on redundancy was720

ongoing, e.g. implementations with Kubernetes9 and Docker10 with supervised and distributed test721

resources that implies redundancy.722

6.1.4 Validation & Verification723

The opening discussion on the question “what comes to mind when thinking about achieving confidence724

in intended behaviour?” brought up that confidence is the outside experience of the framework. Responsi-725

bilities to write sufficient tests lie on the software developers, and to facilitate the tests lie on the test team726

developing and maintaining the test framework. Trust in the produced test results is essential to avoid e.g.727

developers being reluctant to question their implementation and instead argue for errors in the framework728

when a test fails.729

6A linter is a static code analysis tool that detects suspicious constructions, e.g. incorrect assignments, out of bounds indexing,

and dangerous data type combinations Jones (2018).
7https://www.lauterbach.com
8https://www.jaegertracing.io
9https://kubernetes.io

10https://www.docker.com

16/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

V.1 Utilize a suitable safety standard to validate the tool and related processes. The group felt730

that being influenced by a safety standard may be good for some specific problems, but utilizing a731

complete standard for the test framework is not relevant as long as the tested software is not considered732

safety-critical.733

V.2 Formally prove that tool outputs conforms to specification. The focus group argued that it is734

crucial to provide evidence of correct functionality for company-specific tools. E.g. the performance of735

the case company’s regression test selection tool (Strandberg et al., 2016), an in-house solution anchored736

in years of research and crucial to the applied test strategy.737

V.3 Base tool confidence on history of successful use. At first, the focus group argued that this was738

not applicable given the frequent code changes of their internal testware. However, this approach was739

seen as applicable to third-party solutions as a mean of resource management, spending less time on tools740

where confidence already exist. The group emphasised that this is a valuable approach when selecting741

new third-party solutions to build into the testware.742

V.4 Create a customized tool validation test suite for all use cases. The focus group saw it as valuable743

to identify a subset of critical use cases to validate intended behaviour, but objected to the phrase “all”,744

since they saw it as unreasonable to identify and test all possible use cases.745

V.5 Perform tests based on fault injection. The participants saw this as a small, and relatively easy746

approach to implement, with potential to generate significant value – and that this could help developers747

in understanding how robust the system actually is.748

V.6 Perform unit tests on all modules and tools in tool-chain(s). The focus group saw this as a very749

valuable approach, and this was also one of the most liked approaches in the quantitative appraisal.750

However, the focus group also objected to the phrasing “all”, as it is not reasonable and also potentially751

costly to perform.752

6.2 Focus Group Quantitative Appraisal753

During the focus group, the members could vote for the candidates they preferred (as described in 4.3.2).754

The development candidates received the least interest with 13% of votes, whereas the other three groups755

were about as popular with between 25 and 33%.756

Derived from comments and motivations during the quantitative activity were the following primary757

insights. Establish a baseline to define a lowest bar of acceptance where guidelines and checklists for758

reviews are important means to achieve a unified view of how reviews are conducted; what is included in759

a review, and what development artifacts should be reviewed. One suggestion concerning checklists was760

to create a proposal for a DoD. Unit tests are important, especially combining unit tests with Continuous761

Integration and possible implementations in staging environments. Monitoring is important to help derive762

where an error has occurred and enable alerts of errors to provide awareness. Root cause investigations763

were emphasised with proposals for error investigation commissions, extended root-cause analysis and764

issue tracking. Further, the group expressed an expectation for requirement-based testing to be explicitly765

stated as a candidate. The importance of durability over time and scalability were also emphasised.766

Overall, the candidates were perceived as valuable and a suitable base for further discussions.767

6.3 Additional Candidates Identified by Focus Group768

By analyzing the data from the focus group, three additional candidates were identified: First, to implement769

requirement-based testing. This candidate was found in the literature study, but had, by mistake, been770

overlooked. Without the focus group, the mistake would probably not have been discovered (V.7 in771

Table 1). Second, to perform sufficient root-cause analysis on detected errors. The focus group suggested772

to, e.g., initiate error investigation commission, perform post-hoc analysis on occurred failures, or to773

utilize a tool for issue tracking (A.6 in Table 1). Third, to halt execution on detection of errors or erroneous774

conditions. Sometimes it was deemed relevant to pause the test execution instead of continuing with the775

next test-case in current suite (R.6 in Table 1).776

6.4 Summary of Results and Final Candidates777

Table 1 contains the final refined candidates and summarizes the associated results from the activities778

of the focus group in the right columns. Due to its design, the quantitative part did not further address779

any of the unappreciated candidates or other negative aspects. Therefore, all candidates included in the780

result of the quantitative part can be considered perceived as good with value bringing aspects. Additional781

17/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Verification

Validation

Planning

Dev.

Test

D
oD

D
oD

Validation

Test Suite

Proposed

change(s)

D
oD

Figure 6. A suggested mini V-model controlled by DoDs.

candidates derived from the summarizing discussion were added and treated equally to the qualitative782

results. The candidates have been rephrased in accordance with the focus group results.783

From analysis of the collected data, aspects and concepts that were repeatedly mentioned in different784

contexts during discussions were identified. These can be summarized as follows: (i) Measures intended785

for increased safety does not necessarily entail increased quality. (ii) Quality assurance and rigour applied786

regarding the test framework has to be reasonable in relation to the tested software. (iii) Confidence in787

results created by the framework from all stakeholders is very important from several perspectives. (iv)788

The required cost and effort have to be in balance with the expected gained effect. (v) A baseline should be789

established by setting a lowest bar of acceptance. On the more practical side, there were also reoccurring790

discussions, summarized as: (i) The expected content and execution of reviews, documentation, and791

similar activities has to be clearly defined. (ii) The environmental and other conditions regarding the792

execution of the test framework must be sufficiently ensured. (iii) Errors related to execution of a test-case793

cannot be allowed to have any effect on subsequent test-cases or test suites. (iv) It is important to be able794

to distinguish errors in testware from errors in the tested software.795

Also, comprehensive root-cause analysis upon detection of occurred errors were repeatedly discussed796

as important to identify other similar possible errors. In Section 5.3, only chapters related to tool797

qualification/certification were included. These chapters did not reveal any similar concepts.798

7 PROPOSED GUIDELINES799

This section describes a suggested implementation of the previous results as proposed guidelines. To800

achieve this, we refined the agile development phases with a set of Definition of Done (DoD) items based801

on the candidate solutions in Section 6.1. For the industry partner, DoDs were considered a suitable802

application, where also similar work was ongoing regarding the software under test. Thus, updated803

development process definitions, test policy, and test strategy documentation were reviewed. Therefore,804

these guidelines are motivated by candidate D.5, as well as focus group results related to candidate A.1.805

Candidates related to run-time measures are not included since they were determined as not applicable to806

the generic nature of activities to be listed in a DoD. Implementation of such candidates are therefore left807

for future work.808

7.1 Augmented Agile Process Suggestion809

Three phases for framework development were identified: (i) planning, (ii) development, and (iii) test,810

where the DoD for each phase acts as a gate, listing activities to be completed before a task may transition811

to the next phase. Based on both the related work and the presented candidates, we propose an agile812

process augmented with influences from safety-critical development. The defined phases and activities in813

the Definition of Done can be seen as a process controlling document, rather than as guidelines only. With814

the verification link between the planning phase and the test phase, we argue for a sequence of mini-v:s –815

a V-augmented agile development in three phases as illustrated in Figure 6. For the industry partner, we816

proposed DoDs related to the planning phase, the development phase, and the test phase, as summarised817

in Table 2, and described in detail in Appendix A.818

The proposed process provides an agile flow of new features, where testing can be performed in819

parallel to development. Development of new features and changes are isolated from each other, and820

18/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Id DoD-Item Discussion

Planning Phase

P1 Branch(es) created -

P2 Proposed change(s) clarified as “top-level” requirements D.1, D.4, V.7

P3 Important framework interaction sequences identified D.1

P4 Third party functionalities identified and suitable libraries and tools selected V.3, D.2

P5 Preliminary risk and impact analysis performed and documented A.1, A.3, A.6

P6 Lower level requirements elicited and allocated to framework components D.1, D.4, V.7

P7 Development impediments identified and mitigated D.1

Development Phase

D1 Complete implementation according to requirements and development guidelines D.1

D2 Static code analysis only giving “low level” remarks A.5

D3 Unit tests written V.6

D4 Tests written to verify compliance with requirements D.4, V.7

D5 Behaviour, instructions and constraints defined in documentation D.3

D6 Peer-reviews completed and documented A.4

D7 Issues found by peer-reviews corrected A.4

Test Phase

T1 Unit tests performed V.6

T2 Unit-integration tested -

T3 Requirement-based tests performed D.4, V.7

T4 Fault injection tests performed V.5

T5 All detected issues managed -

T6 Risk and impact analysis documentation completed A.1, A.3

Table 2. List of suggested definition of done items based on focus group discussions.

Feature A

D
P T

A? A!

Feature C

D
P T

C? C!

Maintained and Stable Solution

Feature B

Figure 7. Simplified development trace of V-augmented agile development.

are conducted in independent mini-v:s with separate priority, time plans and code branches. There is821

always a stable framework for production since changes are made in small isolated branches. A simplified822

illustration is presented in Figure 7.823

The process combines change-driven and plan-driven development to achieve higher quality of the test824

framework. The change-driven aspects of the process define which new features to implement, enhancing825

the agility. The plan-driven aspects act within each branch to ensure the quality of each new or altered826

feature, adding rigour to the process. Several isolated mini-v developments can be performed in parallel,827

and prioritized individually. Each mini-v is validated against the state of the main solution at the time of828

merge.829

7.1.1 Tool Validation Test Suite830

The tool validation test suite is a dynamic part of the stable framework solution, supposed to grow and831

shrink in coherence with its increments. The suite should be used at the end of each mini-v, when832

functionality is to be merged from a development branch into the main branch. This is performed by833

regression testing using test cases accumulated from both functional-related and risk-related requirement-834

based testing from previous development activities. Also, tests accumulated from fault-injection can be835

used. The tool validation test suite relates to candidates V.4 and V.5.836

Between the time of proposing changes and running the tool validation test suite (illustrated with837

dashed boxes in Figure 7), a significant amount of time may have passed, and many changes may have838

19/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Planning

Development

Test

P2? P3 P4 P5 P6 P7

D6

D7

D1 D3

D4 D5

D2

T1T2T3T4!

Figure 8. Worst-case relation and dependency between DoD activities.

occurred to the test framework. Therefore, the tool validation test suite is not part of the test phase of839

a mini-v, because it is not independent of the framework state in the stable branch. Activities in the840

test-phase within a mini-v may be performed at any time, because they are isolated from other v:s and the841

stable production framework. At merge-time, the state of the stable framework may be different from842

what it was when the development of the change started, and new tests from other mini-v:s may have843

been added to the validation test suite. Therefore, it is important for all changes to be validated against the844

current (most recent) state of the stable branch, at the time of merge.845

7.1.2 Activity Dependencies and Relationships846

As mentioned in Section 7.1, some sequentiality is inevitable within the phases, which may be undesirable847

from an agile development perspective. Figure 8 illustrates this in terms of a “worst-case scenario”848

dependency between activities. For example, it may not be possible to correctly identify framework849

interactions in P3 without complete requirements from P2. Further, without identified interactions, it850

may not be possible to determine functionalities and suitable libraries in P4, which in turn affects the851

possibilities to conduct the analysis in P5, etc. However, the DoDs only specify when activities should852

have been completed at the latest, the order may depend on what is suitable for the development task853

at hand. Also, activities may be initialized at any time, e.g. requirement based tests may be written854

during the planning phase, which could make the code more testable. Furthermore, as exemplified by855

the recursive arrows between development and test phases for T1 and T2 in Figure 8, some tests can be856

conducted continuously during development and therefore only have to be finalized in the test phase to857

be considered done. The following test activities in T3 and T4 may have a waterfall structure due to858

interdependence and a dependency for activities in T1 and T2 to be completed.859

7.2 Comparing the Proposed Guidelines with Related Work860

One could argue that a V-shaped model cannot have fewer than two layers – requirements and tests on861

the top layer, and code at the bottom. The one illustrated in Figure 1, or the one discussed by Spillner862

et al. (2014), has a well-defined number of levels – we illustrated four (system, subsystem, item and863

development), whereas Spillner et al. discuss five (testing on the levels of acceptance, system, integration864

and component as well as programming). However, Hull et al. (2010) suggest that requirements modeling865

(and thus also the V-model), can be seen as a generic, layered process. In our mini-V, we propose a model866

with three layers – the lower two represent the feature to be implemented. Had the tool only needed one867

feature then a V-shaped model of only two layers could have been used. However, the upper level is868

needed for maintaining the stability of the tool over time, resulting in three layers.869

Most hybrid development models are either combinations of different agile practices, or start as870

traditional models with agility plugged in. The models are based on experience collected over time and871

changes are typically not, as one could perhaps expect, driven by company size, domain or external872

standards (Kuhrmann et al., 2017, 2018). A generic hybrid model would have backlog management and873

three of the following four methods: code review, coding standards, refactoring, and release planning;874

whereas a “water-scrum-fall” method would involve prototyping, and iteration/sprint review as well as875

two or the following three methods: code review, coding standards and release planning (Tell et al., 2021).876

20/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

This is similar to the proposed definition of done and many approaches overlap (e.g., code reviews).877

However, a difference between their hybrid models and our suggested DoD, is that we do not mention e.g.878

daily standup meetings. We speculate that this is such an obvious part of daily work at the company that it879

was never mentioned. Furthermore, our model is clearly feature-driven, which, based on more than 300880

answers in a study by Tell et al. (2021), seems to involve almost all identified methods, i.e. code reviews,881

coding standards, release planning, prototyping, backlog management, refactoring, automated unit testing,882

continuous integration, iteration planning, user stories, design reviews, as well as end-to-end-testing (see883

Figures 4 and 9 in Tell et al. (2021)).884

In their 2018 book, Hanssen et al. (2018b) propose an incremental safety critical software development885

process. At the core are two parallel backlogs, one functional product backlog and another one for safety;886

as well as rigorous traceability between artifacts, and separation of roles into teams and a dedicated887

team for safety. One obvious advantage is, of course, that feature growth can be incremental (instead of888

specifying all of the system before implementing the first line of code). This is similar to our proposed889

model: all artifacts of feature A are isolated from feature B, and code branches are at the core of this in890

both models. An important difference is that their model is used for developing safety-critical systems,891

and moves from the traditional towards the agile, whereas there are no strict requirements on safety for892

our model, and we move “backwards” from agile to traditional.893

8 DISCUSSION, THREATS AND FUTURE WORK894

In this section, we summarize and discuss the results of the research questions. Later, we also discuss the895

threats to the validity of the study as well as the future work.896

8.1 Strategies for Increased Confidence in Software Development Tools (RQ1)897

Through a literature study targeting both safety standards and related work, we identified 48 approaches898

for test framework quality assurance (Section 5), which after refinement resulted in 25 candidate solutions899

(Table 1). The analysis of the literature identified that, as a basis for interpreting the candidates, the tool or900

the framework should be seen as a tool-chain build up of sub-tools and tasks – a point of view highlighted901

by e.g. Asplund et al. (2012), Asplund (2015) and Ekman et al. (2014). Depending on the nature of the902

sub-tool/tool-chain and the task it performs, different approaches may be suitable. Identifying interaction903

sequences enables for tests to be written at an early stage, as soon as there is access to intermediate results,904

instead of later testing the entire framework from a black-box perspective. When applying a standard,905

the inherent sub-tools and tool-chains can be classified on an individual basis and confidence argued906

as the sum of applied measures to individual parts and the integration between them. By proposing to907

do separate classifications of sub-tools, we extend the findings of Ekman et al. (2014) and Conrad et al.908

(2010). However, this is not aimed at dressed up classifications, but rather to enable a more efficient909

resource management and focus of efforts.910

Combined with this insight, the candidates constitute a list of general measures, in four aspects:911

development, analysis, validation and verification, and run-time measures. For industrial practitioners, the912

candidates may provide guidance by proposing activities for quality assurance of in-house tools. It is also913

possible that subcontractors to companies in the safety-critical domain may find the results valuable, e.g.914

through facilitated communication and understanding concerning audits, etc.915

8.2 Applicability and Practicality of Identified Strategies (RQ2)916

The implications and perceived industrial value of the refined candidates were evaluated in a focus group,917

conducted in collaboration with the industry partner. The focus group perceived that measures applied918

for increased safety do not necessarily lead to higher quality, and that the level of rigour applied on a919

development tool has to be reasonable in relation to that of the tested product – there has to be a balance920

between cost, effort and gained effect. The focus group highlighted that it is important to set a lowest bar921

of acceptance, and that the expected content in reviews and documentation has to be clearly defined. Also,922

it is important to ensure correct conditions in the tool environment, and to have the ability to differentiate923

between errors in testware and tested software. Finally, errors in one test case cannot be allowed to924

affect subsequent tests or suites. These insights can be considered to complement research on shifting925

plan-driven development towards agile processes, e.g. previous work performed by Notander et al. (2013),926

Heeager (2014), and Heeager and Nielsen (2020), by providing aspects from the opposite perspective.927

21/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

The candidates were evaluated qualitatively and quantitatively (Table 1). The unappreciated candidates928

were those entailing the most effort where little or no gain could be seen. For several of the candidates929

considered as high value the discussion involved historical or current events. This result also provides930

information that indicate where initial efforts should be placed, which could be potentially be utilized931

in other industrial contexts than the case-specific. In addition to validation of identified candidates, the932

focus group also proposed additional candidates perceived as missing (which led to the rediscovery of a933

candidate lost in the process).934

The proposed guidelines are a suggested solution with general applicability, a possible application935

of the results. First, we suggest an augmented agile process inspired by mini-waterfalls: development936

in isolated entities with added rigour through mini V-models controlled by DoDs (Section 7.1). This is937

intended to be applicable, not only for development of software tools in particular, but to any software938

development in general. This process can be made case-specific by defining the content of the DoDs939

which control the transition between phases. Second, we propose a case specific implementation of the940

process (Appendix A).941

8.3 Threats and Limitations942

The process of extracting data in the literature study was performed in a subjective way and may have been943

biased by prior education and existing knowledge. The size of the initial set of included publications could944

be perceived as inadequate. This was partially addressed during the study by performing searches for945

new publications in parallel with the snowballing process. It can also be argued that the extraction of data946

led to concepts being taken out of their contexts and presented in a subjective way. First, in the process947

of merging concepts during the analysis of the literature, we increased the level of abstraction of the948

candidates and applied a context specific for the industry partner. Also, candidates presented in different949

main aspects often have a sequential dependency where they build on each other, making it unfeasible to950

cherry-pick candidates perceived as adding the most value. Finally, the identified candidates depend on951

the relation to the presented perspective of tool-chains, meaning that existing and future tool-chains in the952

framework has to be identified to derive practical implications.953

One threat related to the focus group is that we only used one group, and only performed one954

session. Having only one group eliminates the possibility to compare results and detect anomalies or955

misconceptions. However, it could be argued that the participants’ perception of the candidates was to956

some extent validated by the quantitative part at the end of the focus group session, where any major957

misconceptions would have been picked up and rectified. Performing only one session also eliminated the958

possibility to alter the questions and the structure of the focus group if shortcomings had been discovered.959

Having an on-line session may have affected the discussions since most non-verbal communication is960

presumed to have been lost. Furthermore, one participant had to leave before the session was completed.961

Overall, it was sometimes hard for the participants to stay on the specific subject of a presented candidate962

during the discussions.963

A concern with the implementation of suggested Definition of Dones is the fact that it has been964

influenced by already ongoing work regarding DoDs related to WeOS development. The identified phases965

may, for instance, have been different if the influence from reviewing preliminary WeOS DoDs did not966

exist. Finally, some activities rely heavily on external support documentation that may not yet exist.967

Therefore, the validity of these activities is dependent on the quality of the produced documentation.968

8.4 Future Work969

The findings of this study could be extended in several ways. First, the literature study could be extended970

to include a larger set of standards and a wider range of publications, to capture industrial perspectives971

from several different safety-related domains. For more generalizable results, the focus group could be972

expanded to capture several different industrial contexts. Further refinement of candidates based on input973

from a diverse set of groups and industrial contexts would likely increase the general applicability.974

Future work could also investigate dynamic validation of the general solution, the candidates, as well975

as the DoDs in particular. Future work could also investigate any positive outcomes of the proposed DoDs,976

e.g. in terms of reduced amounts of occurred errors or invalid test results etc. Also negative outcomes977

such as increased lead-times or reduced innovations could be investigated.978

22/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

9 CONCLUSIONS979

The quality of embedded systems is often demonstrated by test results. Test framework risks are related980

to masking of problems from detection, erroneous test-system hardware configurations, and omitted981

feedback on failed tests. These risks may be mitigated with approaches from safety-critial development.982

However, safety-critical development is often in conflict with agile development. In this case study, we983

explore how quality assurance for a test framework in an agile non-safety development context could be984

enhanced by strategies found in safety-critical development. By processing the results of a literature study,985

candidate solutions to quality assuring the quality assurance tool were identified and divided into four986

aspects. We also identified the importance of perceiving a test framework, not as a single tool, but as a987

tool-chain. The interaction sequences through sub-tools can be utilized for analysis and identification988

of applicable measures. In relation to standards, sub-tools can be classified on an individual basis and989

confidence argued as the sum of applied measures throughout the tool-chain that is the framework.990

A focus group provided insights on implications and perceived industrial value of the proposed991

candidates. Qualitative data from the focus group identified considerations from an agile industrial992

perspective: measures for safety do not always entail quality, the level of rigour regarding a tool must993

be reasonable, effort and gained value must be balanced, and a lowest bar of acceptance – a minimal994

set of quality assurance activities – should be set. More practical aspects to consider were: the content995

of reviews and documentation should be clearly defined, the tool environmental conditions should be996

ensured, it should be possible to distinguish between errors in testware from errors in software, and errors997

in one test case should not affect subsequent tests or suites. Candidates considered as high value were998

often related to historical events, while rejected candidates were perceived as having high effort without999

apparent gain. The unified interpretation of qualitative and quantitative results gives a clear indication of1000

what aspects were considered the most important, and where initial efforts should be placed.1001

Furthermore, guidelines for applying the results are provided. These suggest an augmented agile1002

process for increased rigour, where development can be visualized as mini V-models, controlled by1003

DoDs. Finally, these generic guidelines are interpreted in a case-specific implementation of DoDs for1004

development of a test framework.1005

ACKNOWLEDGEMENTS1006

This research was funded by Westermo Network Technologies AB, the Knowledge Foundation grant1007

20150277 (ITS ESS-H), and the European Union’s Horizon 2020 research and innovation program under1008

grant agreement Nos. 871319 & 957212. The work is based on the Master’s thesis (Thörn, 2020) of1009

the first author, where the second and third authors were his supervisors and the fourth author was his1010

examiner.1011

Author Contributions Methodology: JT, PES, & DS. Investigation: JT. Writing, Original Draft: JT.1012

Writing, Review & Editing: JT, PES, DS, & WA. Supervision: PES, DS, & WA.1013

REFERENCES1014

Asplund, F. (2014). Risks Related to the Use of Software Tools when Developing Cyber-Physical Systems:1015

A Critical Perspective on the Future of Developing Complex, Safety-Critical Systems. PhD thesis, KTH1016

Royal Institute of Technology.1017

Asplund, F. (2015). The future of software tool chain safety qualification. Safety science, 74:37–43.1018

Asplund, F., El-khoury, J., and Törngren, M. (2012). Qualifying software tools, a systems approach. In1019

International Conference on Computer Safety, Reliability, and Security. Springer.1020

Boehm, B. and Turner, R. (2004). Balancing agility and discipline: Evaluating and integrating agile and1021

plan-driven methods. In The 26th International Conference on Software Engineering. IEEE.1022

Conrad, M., Munier, P., and Rauch, F. (2010). Qualifying software tools according to ISO 26262. In1023

Giese, H., Huhn, M., Phillips, J., and Schätz, B., editors, Dagstuhl-Workshop MBEES: Modellbasierte1024

Entwicklung eingebetteter Systeme VI, Schloss Dagstuhl, Germany, 2010, Tagungsband Modellbasierte1025

Entwicklung eingebetteter Systeme. fortiss GmbH, München.1026

Dalkey, N. and Helmer, O. (1963). An experimental application of the Delphi method to the use of experts.1027

Management Science, 9(3):458–467.1028

Diegmann, P., Dreesen, T., Binzer, B., and Rosenkranz, C. (2018). Journey towards agility: Three decades1029

23/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

of research on agile information systems development. In Proceedings of the 39th International1030

Conference on Information Systems (ICIS) 2018. Association for Information Systems (AIS).1031

Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N. B. (2012). A decade of agile methodologies: Towards1032

explaining agile software development.1033

Ekman, M., Thane, H., Sundmark, D., and Larsson, S. (2014). Tool qualification for safety related1034

systems. Ada User Journal, 35(1):47–54.1035

EN 50128:2011 (2011). Railway applications -Communication, signalling and processing systems -1036

Software for railway control and protection systems. Standard, CENELEC, European Committe for1037

Electrotechnical Standardization.1038

EN 50657:2017 (2017). Railway Applications - Rolling stock applications - Software on Board Rolling1039

Stock. Standard, CENELEC, European Committe for Electrotechnical Standardization.1040

Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software Development, 9(8):28–35.1041

Garousi, V., Felderer, M., Karapıçak, Ç. M., and Yılmaz, U. (2018). What we know about testing1042

embedded software. IEEE Software, 35(4):62–69.1043

Ghanbari, H. (2016). Seeking technical debt in critical software development projects: An exploratory1044

field study. In The 2016 49th Hawaii International Conference on System Sciences (HICSS). IEEE.1045

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release planning. Hawthorn1046

Woods: Renaissance Software Consulting, 3:22–23.1047

Hanssen, G. K., Stålhane, T., and Myklebust, T. (2018a). Placing agile in a safety context. In SafeScrum®–1048

Agile Development of Safety-Critical Software, pages 31–64. Springer.1049

Hanssen, G. K., Stålhane, T., and Myklebust, T. (2018b). SafeScrum®-Agile Development of Safety-1050

Critical Software. Springer.1051

Hanssen, G. K., Wedzinga, G., and Stuip, M. (2017). An assessment of avionics software development1052

practice: Justifications for an agile development process. In International Conference on Agile Software1053

Development. Springer, Cham.1054

Haugset, B. and Hanssen, G. K. (2008). Automated acceptance testing: A literature review and an1055

industrial case study. In 2008 Agile Conference. IEEE.1056

Heeager, L. T. (2014). How can agile and documentation-driven methods be meshed in practice? In1057

International Conference on Agile Software Development. Springer.1058

Heeager, L. T. and Nielsen, P. A. (2020). Meshing agile and plan-driven development in safety-critical1059

software: a case study. Empirical Software Engineering, 25:1035–1062.1060

Hillebrand, J., Reichenpfader, P., Mandic, I., Siegl, H., and Peer, C. (2011). Establishing confidence in1061

the usage of software tools in context of ISO 26262. In International Conference on Computer Safety,1062

Reliability, and Security. Springer.1063

Hirsch, M. (2005). Moving from a plan driven culture to agile development. In International Conference1064

on Software Engineering.1065

Hull, E., Jackson, K., and Dick, J. (2010). System modelling for requirements engineering. In Require-1066

ments Engineering, pages 47–76. Springer.1067

Hylander, I. (1998). Fokusgrupper som kvalitativ datainsamlingsmetod. Linköping University Electronic1068

Press.1069

IEC 61508:2010 (2010). Functional Safety of Electrical/Electronic/Programmable Electronic Safety-1070

Related Systems. Standard, International Electrotechnical Comission.1071

ISO 26262:2011 (2011). Road vehicles - Functional safety. Standard, International Organization for1072

Standardization.1073

ISO 26262:2018 (2018). Road vehicles - Functional safety. Standard, International Organization for1074

Standardization.1075

ISTQB (2011). Foundation level syllabus version 2011. Technical report, International Software Testing1076

Qualifications Board.1077

ISTQB (2015). Glossary of testing terms. International Software Testing Qualifications Board.1078

ISTQB (2016). Advanced level syllabus - test automation engineer version 2016. Technical report,1079

International Software Testing Qualifications Board.1080

Jones, N. (2018). How to use lint for static code analysis. [accessed 15-May-2020].1081

Jonsson, H., Larsson, S., and Punnekkat, S. (2012). Agile practices in regulated railway software devel-1082

opment. In The 23rd IEEE International Symposium on Software Reliability Engineering Workshops.1083

IEEE.1084

24/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in1085

software engineering.1086

Krauss, S. S., Rejzek, M., and Hilbes, C. (2015). Tool qualification considerations for tools supporting1087

stpa. Procedia Engineering, 128:15–24.1088

Krueger, R. A. (2014). Focus groups: A practical guide for applied research. Sage publications.1089

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere, K., McCaffery, F.,1090

Linssen, O., Hanser, E., et al. (2017). Hybrid software and system development in practice: waterfall,1091

scrum, and beyond. In Proceedings of the 2017 International Conference on Software and System1092

Process, pages 30–39.1093

Kuhrmann, M., Diebold, P., Munch, J., Tell, P., Trektere, K., McCaffery, F., Garousi, V., Felderer, M.,1094

Linssen, O., Hanser, E., et al. (2018). Hybrid software development approaches in practice: a european1095

perspective. Ieee Software, 36(4):20–31.1096

Linz, T. (2014). Testing in scrum: A guide for software quality assurance in the agile world. Rocky Nook,1097

Inc.1098

Lloyd, M. and Reeve, P. (2009). IEC 61508 and IEC 61511 assessments – some lessons learned. In 4th1099

IET International Conference on System Safety. IET.1100

Mårtensson, T., Ståhl, D., and Bosch, J. (2016). Continuous integration applied to software-intensive1101

embedded systems–problems and experiences. In The International Conference on Product-Focused1102

Software Process Improvement. Springer.1103

Matharu, G. S., Mishra, A., Singh, H., and Upadhyay, P. (2015). Empirical study of agile software1104

development methodologies: A comparative analysis. ACM SIGSOFT Software Engineering Notes,1105

40(1):1–6.1106

Morgan, D. L. (1996). Focus groups. Annual review of sociology, 22(1):129–152.1107

Nerur, S. and Balijepally, V. (2007). Theoretical reflections on agile development methodologies.1108

Communications of the ACM, 50(3):79–83.1109

Nordström, Å. (2017). The effect of the update of the european standard EN 50128 - the management of1110

the safety of the software applications for railway applications. Master’s thesis, Uppsala University.1111

Notander, J. P., Höst, M., and Runeson, P. (2013). Challenges in flexible safety-critical software1112

development–an industrial qualitative survey. In International Conference on Product Focused Software1113

Process Improvement. Springer.1114

Rierson, L. (2017). Developing safety-critical software: a practical guide for aviation software and1115

DO-178C compliance. CRC Press.1116

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case study research in software1117

engineering. Empirical Softw. Engg., 14(2):131–164.1118

Saleh, S. M., Rahman, A., and Asgor, K. A. (2017). Comparative study on the software methodologies for1119

effective software development. International Journal of Scientific & Engineering Research, 8(4):7–11.1120

Shahin, M., Babar, M. A., and Zhu, L. (2017). Continuous integration, delivery and deployment: a1121

systematic review on approaches, tools, challenges and practices. IEEE Access, 5:3909–3943.1122

Silva, A., Araújo, T., Nunes, J., Perkusich, M., Dilorenzo, E., Almeida, H., and Perkusich, A. (2017).1123

A systematic review on the use of definition of done on agile software development projects. In1124

International Conference on Evaluation and Assessment in Software Engineering.1125

Smith, D. and Simpson, K. (2004). Functional safety. Routledge.1126

Spillner, A., Linz, T., and Schaefer, H. (2014). Software testing foundations: a study guide for the certified1127

tester exam. Rocky Nook, Inc.1128

Stolberg, S. (2009). Enabling agile testing through continuous integration. In 2009 Agile Conference.1129

IEEE.1130

Strandberg, P. E. (2018). Automated system level software testing of networked embedded systems.1131

Licentiate thesis, Mälardalen University.1132

Strandberg, P. E. (2021). Automated System-Level Software Testing of Industrial Networked Embedded1133

Systems. PhD thesis, Mälardalen University.1134

Strandberg, P. E., Enoiu, E. P., Afzal, W., Sundmark, D., and Feldt, R. (2019). Information flow in1135

software testing–an interview study with embedded software engineering practitioners. IEEE Access,1136

7:46434–46453.1137

Strandberg, P. E., Sundmark, D., Afzal, W., Ostrand, T. J., and Weyuker, E. J. (2016). Experience1138

report: Automated system level regression test prioritization using multiple factors. In 2016 IEEE 27th1139

25/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

International Symposium on Software Reliability Engineering. IEEE.1140

Tell, P., Klünder, J., Küpper, S., Raffo, D., MacDonell, S., Münch, J., Pfahl, D., Linssen, O., and1141

Kuhrmann, M. (2021). Towards the statistical construction of hybrid development methods. Journal of1142

Software: Evolution and Process, 33(1):e2315.1143

Thörn, J. (2020). Test framework quality assurance: Augmenting agile processes with safety standards.1144

Master’s thesis, Mälardalen University.1145

Wang, Q., Wallin, A., Izosimov, V., Ingelsson, U., and Peng, Z. (2012). Test tool qualification through1146

fault injection. In The 2012 17th IEEE European Test Symposium. IEEE.1147

Wasserman, A. I. (1990). Tool integration in software engineering environments. In Long, F., editor,1148

Software Engineering Environments, Berlin, Heidelberg. Springer Berlin Heidelberg.1149

Wiklund, K., Eldh, S., Sundmark, D., and Lundqvist, K. (2017). Impediments for software test automation:1150

A systematic literature review. Software Testing, Verification and Reliability, 27(8):e1639.1151

Wiklund, K., Sundmark, D., Eldh, S., and Lundqvist, K. (2013). Impediments in agile software devel-1152

opment: An empirical investigation. In The International Conference on Product Focused Software1153

Process Improvement, pages 35–49. Springer.1154

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in1155

software engineering. In The 18th International Conference on Evaluation and Assessment in Software1156

Engineering.1157

Zhi, J., Garousi-Yusifoğlu, V., Sun, B., Garousi, G., Shahnewaz, S., and Ruhe, G. (2015). Cost, benefits1158

and quality of software development documentation: A systematic mapping. Journal of Systems and1159

Software, 99:175–198.1160

A CASE-SPECIFIC DEFINITION OF DONE PROPOSAL1161

This appendix contains the proposed case-specific Definition of Dones for each phase, which are based on1162

the general solution presented in Section 7.1. Each DoD lists activities to be completed before transition1163

to the following phase. Each DoD only acts as a gate in the development, but does not prescribe when1164

activities are to be performed. Thus, flexibility in development is to some extent maintained.1165

A.1 Suggested Supporting Documentation1166

The focus group identified a need for supporting documentation. Thus, identified activities listed in the1167

DoDs may refer to one or more of the following supporting documents: (1) Guidelines for branching in1168

source code version-control systems, (2) Guidelines for writing and documenting requirements, (3) Devel-1169

opment guidelines, (4) Coding style, (5) Development checklist, (6) Guidelines for documentation, as1170

well as (7) Guidelines for conducting peer-reviews.1171

A.2 Planning Phase Definition of Done1172

The suggested activities to be completed during the planning phase, before transitioning to the development1173

phase, are:1174

P1 Branch(es) created. Branching is done at an early stage to enable documentation of requirements1175

during planning, and to isolate it from the stable framework branch.1176

P2 Proposed change(s) clarified as “top-level” requirements. The proposed changes may come from1177

the WeOS teams during their planning phase, identified as new or altered functionalities in the framework,1178

or come from within the test team. Here a requirement means a statement describing a functionality that1179

is expected by the system based on the proposed change.1180

P3 Important framework interaction sequences identified. The purpose of this activity is to describe1181

expected functionality at lower levels, enabling requirement decomposition and allocation, and to ease1182

identification of possible errors and abnormal operating conditions in later risk analysis. The interactions1183

should be based on the expected functionality.1184

P4 Third party functionalities identified and suitable libraries and tools selected. To avoid the use of1185

too many tools (e.g. packet generators), using a tool already in successful use, could be tried before adding1186

a new tool. If a new tool/library is needed, its history should be reviewed and the basis for selection1187

documented.1188

P5 Preliminary risk and impact analysis performed and documented. Utilize the interaction sequences1189

of P3 to identify possible errors and their effects, including internal errors in the framework as well as1190

errors caused by abnormal operating conditions.1191

26/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

P6 Lower level requirements elicited and allocated to framework components. Break down re-1192

quirements into smaller workable and testable units. Allocate these to framework components (e.g.1193

modules/tools/tool-chains), according to identified interaction sequences. Also, requirements derived1194

from the risk analysis should be allocated to suitable components.1195

P7 Development impediments identified and mitigated. Identify factors that may block or delay the1196

development, and find mitigation strategies.1197

A.3 Development Phase Definition of Done1198

The suggested activities to be completed during the development phase, before transitioning to the test1199

phase are defined in the provided list below.1200

D1 Complete implementation according to requirements and development guidelines. Avoidance of1201

faults being introduced by misconceptions, defining e.g. conventions, error handling, and other practises.1202

These could be combined with development checklists to reduce the effort for later reviews.1203

D2 Static code analysis only giving “low level” remarks. Linting11 and/or other static analysis tools,1204

e.g. Coverity12, should be set up to the development branch to enable continuous correction during1205

development.1206

D3 Unit tests written. To test fine-grain logic, unit tests of developed components should be written1207

and refined before, during and after the implementation is performed.1208

D4 Tests written to verify compliance with requirements. In parallel to the implementation, tests to1209

verify compliance with requirements should be developed.1210

D5 Behaviour, instructions and constraints defined in documentation. Proper documentation of system1211

behaviour, usage instructions and system constraints to be ensured.1212

D6 Peer-reviews completed and documented. Definition of methods for peer review, which should1213

include examination of the implementation, tests and documentation.1214

D7 Issues found by peer-reviews corrected. After correction, this should be verified with the reviewer.1215

A.4 Test Phase Definition of Done1216

The suggested activities to be completed during the test phase, before transitioning to the tool validation1217

test-suite and subsequent merge of the new functionality with the maintained stable solution, are defined1218

in the provided list below.1219

T1 Unit tests performed. Verify low level behavior by running the newly developed unit tests (this1220

may be an iterative process, see DoD D3).1221

T2 Unit-integration tested. Test the integration of units as a group, as well as the data transfer between1222

components.1223

T3 Requirement-based tests performed. These tests verify the expected functionality of the framework1224

as described by the requirements.1225

T4 Fault injection tests performed. Fault-injection can be used in two ways, for two purposes. (i)1226

Forced errors in components/sub-tools of the tool-chain can verify the error detection or prevention1227

measures in other parts of the system (e.g. monitoring services, sanity checks, etc.). (ii) Faults could also1228

be introduced in the WeOS code,and when running test cases for WeOS, we expect the framework to1229

detect the problems (test cases should fail).1230

T5 All detected issues managed. After correction, applicable tests should be repeated for verification1231

of sufficient correction.1232

T6 Risk and impact analysis documentation completed. The documentation should be revisited1233

and completed. If necessary, a new analysis can be conducted to validate sufficiency of implemented1234

measures.1235

11Linting is brought up in Section 6.1.2.
12https://scan.coverity.com

27/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:12:68741:0:1:NEW 31 Jan 2022)

Manuscript to be reviewedComputer Science

	Introduction
	Background
	Industry Standards for Functional Safety
	Tool Qualification
	Software Testing

	Related Work
	Research Methodology
	Research Questions
	Case and Units of Analysis
	Methods of Data Collection and Analysis
	Literature Study Method
	Focus Group Method

	Identification of Candidate Solutions
	Directly Extracted Approaches
	Derived Approaches
	Approaches for Tool Confidence Extracted from Standards
	The Test Tool as a Tool-chain
	Candidate Solutions

	Validation of Candidate Solutions with Focus Group
	Qualitative Results of Focus Group
	Development
	Analysis
	Run-time Measures
	Validation & Verification

	Focus Group Quantitative Appraisal
	Additional Candidates Identified by Focus Group
	Summary of Results and Final Candidates

	Proposed Guidelines
	Augmented Agile Process Suggestion
	Tool Validation Test Suite
	Activity Dependencies and Relationships

	Comparing the Proposed Guidelines with Related Work

	Discussion, Threats and Future Work
	Strategies for Increased Confidence in Software Development Tools (RQ1)
	Applicability and Practicality of Identified Strategies (RQ2)
	Threats and Limitations
	Future Work

	Conclusions
	References
	Case-Specific Definition of Done Proposal
	Suggested Supporting Documentation
	Planning Phase Definition of Done
	Development Phase Definition of Done
	Test Phase Definition of Done

