Submitted 20 June 2022
Accepted 15 September 2022
Published 11 October 2022

Corresponding author
Xi Hu, hux@neugq.edu.cn

Academic editor
Rowayda Sadek

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1126

© Copyright
2022 Hu and Huang

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Deep reinforcement learning based
offloading decision algorithm for vehicular
edge computing

Xi Hu and Yang Huang

Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, China

ABSTRACT

Task offloading decision is one of the core technologies of vehicular edge computing.
Efficient offloading decision can not only meet the requirements of complex vehicle
tasks in terms of time, energy consumption and computing performance, but also
reduce the competition and consumption of network resources. Traditional
distributed task offloading decision is made by vehicles based on local states and can’t
maximize the resource utilization of Mobile Edge Computing (MEC) server.
Moreover, the mobility of vehicles is rarely taken into consideration for
simplification. This article proposes a deep reinforcement learning based task
offloading decision algorithm, namely Deep Reinforcement learning based offloading
decision (DROD) for Vehicular Edge Computing (VEC). In this work, the mobility of
vehicles and the signal blocking commonly in VEC circumstance are considered in
our optimal problem of minimizing the system overhead. For resolving the optimal
problem, the DROD employs Markov decision process to model the interactions
between vehicles and MEC server, and an improved deep deterministic policy
gradient algorithm called NLDDPG to train the model iteratively to obtain the
optimal decision. The NLDDPG takes the normalized state space as input and
introduces LSTM structure into the actor-critic network for improving the efficiency
of learning. Finally, two series of experiments are conducted to explore DROD.
Firstly, the influences of core hyper-parameters on the performances of DROD are
discussed, and the optimal values are determined. Secondly, the DROD is compared
with some other baseline algorithms, and the results show that DROD is 25% better
than DQN, 10% better than NLDQN and 130% better than DDDPG.

Subjects Autonomous Systems, Computer Networks and Communications, Data Mining and
Machine Learning, Distributed and Parallel Computing, Mobile and Ubiquitous Computing
Keywords Vehicular edge computing, Offloading decision, Markov decision process, Deep
reinforcement learning, System overhead

INTRODUCTION

Since the introduction of mobile edge computing, its application scenarios are becoming
more and more widespread such as autonomous driving, AR/VR, smart home, industrial
internet, efc. As a typical service scenario of mobile edge computing, the combination of
Internet of Vehicles (IoV) and Mobile Edge Computing (MEC) is called the Vehicular

Edge Computing (VEC). The Vehicular Edge Computing Network not only addresses the
lack of computing power in vehicles themselves, but also the problems of high latency, high
energy consumption and low security in cloud computing. As a result, VEC has become a

How to cite this article Hu X, Huang Y. 2022. Deep reinforcement learning based offloading decision algorithm for vehicular edge
computing. Peer] Comput. Sci. 8:e1126 DOI 10.7717/peerj-cs.1126

http://dx.doi.org/10.7717/peerj-cs.1126
mailto:hux@�neuq.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1126
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

hot topic today (Mao et al., 2017). Computing task offloading is one of the core
technologies in mobile edge computing. It is defined as a technology in which terminal
devices hand over part or all the computing tasks to edge servers or cloud servers to solve
the problem of computing resources, real-time and energy consumption of mobile devices
(Flores et al., 2015). Oftloading decision is one of the core issues of computing offloading
technology. In the Internet of Vehicles environment, the main solution is whether the
vehicular tasks need to be offloaded and where to offload (Zhang ¢ Letaief, 2019).

At present, the offloading decision often takes delay, energy consumption,
comprehensive delay and energy consumption, system utility or custom revenue as the
offloading target to meet real-time needs. Luo et al. (2018) proposed to minimize the delay
as the optimization goal and designed an optimization algorithm based on dynamic
programming to offload the task in Luo ef al. (2018). Hao et al. (2018) proposed to
minimize the energy consumption as the optimization goal and designed an algorithm
based on alternating iterations to offload the task in Hao et al. (2018). Han et al. (2019)
proposed a joint objective optimization problem to minimize delay and energy
consumption by making oftloading decisions based on a heuristic algorithm. Ning et al.
(2020) proposed to maximize the system utility as the goal, comprehensively consider the
constraints of server storage capacity and service execution delay, and design a random
algorithm based on sample average approximation. A new heuristic algorithm is proposed
to transform the task offloading decision problem into a self-defined benefit maximization
in Tran ¢ Pompili (2018). The above works offload tasks from their own needs but ignore
the mobility characteristics of vehicles and the characteristics of channel network
transmission in the IoV. Ideally, they would not only treat the vehicle as a stationary point
before and after the task is offloaded but also sees that the task transmits a good and stable
signal within the range of the MEC server, but this is not the case in practice.

Considering the mobility of the vehicle and the strength of the signal in the task
offloading of the Internet of Vehicles will transform the problem into an NP problem,
which cannot be solved by the traditional static algorithm, so the dynamic offloading
algorithm emerges as the times require, among which the algorithm based on deep
reinforcement learning is particularly important striking. The offloading problem is
proposed as a Markov Decision Process (MDP), and an offloading strategy based on Deep
Q Network (DQN) is designed to dynamically adjust the offloading ratio to guarantee the
latency and energy consumption of the system performance in Li et al. (2021). To achieve
the optimal balance between the task execution delay, processing rate and energy
consumption of vehicle end users, for the edge access environment of the Internet of
Vehicles, Haitao et al. (2020) proposed a computing task distribution and offloading
algorithm based on DQN. In task offloading, the computing power of the MEC server is
not infinite. Considering the computing power of the MEC server, task offloading can be
performed more effectively. Dai et al. (2021) designed a deep Q learning algorithm to solve
the joint optimization problem of bandwidth, computing resource allocation and rental
cost of heterogeneous servers. Wang ¢» Wang (2021) proposed a task allocation and
offloading algorithm for mobile edge computing based on deep reinforcement learning of
AHP-DQN framework to solve the problems of low terminal storage capacity and

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 2/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

diversification of network services during task offloading. Consequently, although the task
offloading based on the DQN algorithm can solve the problem of dynamic offloading, the
task offloading method is only limited to local computing and full offloading, ignoring
various offloading types.

In Li et al. (2020) a deep deterministic policy gradient (DDPG) was proposed to
optimize computational offloading for the complex computational offloading problem in
the collaborative computing of heterogeneous edge computing servers (ECS). A deep
deterministic policy gradient (DDPG) algorithm based on continuous action spaces is
proposed in Chen ¢ Wang (2020) to separately learn decentralized computation offloading
policies for all users, aiming to make the average computational cost in a multi-user
multiple-input multiple-output (MIMO) system less than the power consumption and
buffering delays is minimal. The above work achieved good results in the continuous
action interval task offloading decision in the non-vehicle networking field. With the
increasing complexity of the environment, it has become a hot topic to apply various
emerging neural networks to the field of reinforcement learning. Chen et al. (2021)
proposed to apply one-dimensional convolution and long short term memory network to
DDPG algorithm to solve the problem of resource allocation in Chen et al. (2021). Du et al.
(2021) proposed to apply the long short term memory network to the DDPG algorithm to
solve the problem of road planning and obtained good results.

Based on the above summary and analysis, we find that (1) traditional edge computing
task offloading decisions are made independently by vehicles in a distributed mode, so
MEC servers serve in first-in-first-service mode simply and the resource utilization
efficiency is low. (2) Some characteristics of VEC should be taken into consideration, such
as the high mobility of vehicles, the time-varying channel, and the signal blocking. (3) 0-1
task offloading decision is only suitable to undividable tasks, for those dividable tasks,
partial offloading and the optimal offloading proportion are necessary to be considered.
Therefore, this article proposes an improved DDPG based VEC-suitable central offloading
decision algorithm, namely DROD. DROD can comprehensively solve the problems raised
above compared with other works. The main contributions can be summarized as follows:

e Aiming to VEC environment, the mobility of vehicles, the time-varying channel and the
signal blocking are considered into our optimal problem of minimizing the system
overhead which is defined as the weighted average of time and energy consumption.

e A DROD algorithm based on deep reinforcement learning is proposed to obtain a full
type offloading decision, that is full local computing, full offloading computing or partial
offloading computing. Moreover, for partial offloading computing, the optimal
offloading proportion of task can be determined by MEC server through the interactions
with vehicles in its cell.

e An improved deep deterministic policy gradient algorithm, named NLDDPG, is
proposed to train the neural network model and obtain the optimal decision for the
optimal problem. NLDDPG improves DDPG by taking the normalized state space as
input and introduces the long short term memory (LSTM) structure into the actor-critic
network. The normalized state space eliminates the difference of magnitudes of different

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 3/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

(- \ The communication range of BS ‘a
« / with diameter D IX\\\

i
...... @) PN
i1 Theinscribed square of the X Il
i} communication range of BS with length L TS

'~ o

P . Vehicle to BS/BS to Vehicle '

@ o o ’
- _
2

@ MEC Server

;

.
-
-

.
e
s
.
. o
e
.
-
o
.
.

.

-
Prad
-
g
.
o
-

Figure 1 Vehicular edge computing network structure. Full-size 4] DOT: 10.7717/peerj-cs.1126/fig-1

original states and speeds up training. LSTM adds history state information into Markov
decision system and upgrades the training effect. Experimental simulation based on
Tensorflow platform and verify the effectiveness of the algorithm.

The rest of article is organized as follows. In “System Model and Problem Formulation”,
vehicular edge network system model and problem formulation are presented. “Deep
Reinforcement learning based offloading decision (DROD) algorithm” introduces the
offloading decision model based on NLDDPG algorithm. “Simulation and Result Analysis”
shows the performances of NLDDPG algorithm based on simulations. Finally,
“Conclusion” concludes this article.

SYSTEM MODEL AND PROBLEM FORMULATION
System model

The vehicular edge computing network structure is shown in Fig. 1. In this structure, each
base station (BS) and corresponding MEC server service the vehicles in its cell, and
cooperate with each other in decentralized mode. Our work focuses on the effective
offloading decision in the cell. For the decentralized vehicular decision can hardly achieve
system optimality, the MEC server is selected implement offloading decision for the tasks
generated by vehicles in the same cell. Let N = {1,2,...,n} be the set of vehicles, each

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 (| | 4/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-1
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

vehicle randomly generates a task and sends an offloading request to the BS and its
corresponding MEC server performs the offloading computing. The coverage area of the
BS is a circle with a diameter of D. Considering the overlapping coverage area of adjacent
BS, a square with side length L inscribed in the circle is used to approximate the coverage
area of the MEC server as shown in Fig. 1.

Tasks offloading model
The task offloading ratio x can be used to describe the task offloading decision result in the
VEC system, as shown in Eq. (1).

x =0, Local computing
x=1, Full offloading, (1)
x € (0,1), Partial offloading

e Local computing: Tasks are all calculated on the vehicle.
o Full offloading: All tasks are offloaded to MEC server for calculation.

e Partial offloading: A portion of the task is computed on the local vehicle, while the
remainder is offloaded to MEC server for processing.

Since the connection between tasks and tasks and between tasks and MEC servers has a
significant impact on task offloading decision, this article proposes a centralized decision
scheme performed by MEC server. Without loss of generality, we split the decision time I
of the MEC server into time slots of equal length, and within any time slot i, the MEC
server is able to complete an offloading decision for a task request based on task
characteristics and computing resources. In this way, the MEC server can choose to
complete M task requests from a total of S tasks within the decision time I to make the VEC
system optimal.

In local computing mode, the task is fully computed on vehicular Electronic Control
Unit (ECU). So, the local delay T; and local energy consumption E; are shown in Eqs. (2)
and (3).

(1—x)- M) - s

T, =
! fvehicle (2)
Elz(l_x)'Mj(l)'s.pl, 3)
fvehicle

where, M;(i) is task data size generated by j-th vehicle in i-th time slot. s is the CPU cycles
required to compute each bit. f,enice is the ECU frequency of the vehicle. P; is the unit of
power consumed by the vehicle calculation. At this point, x is 0.

Since the location of the MEC server is fixed (Wang et al., 2019), the location of the
MEC server at time t can be expressed as the coordinate p = [py, p,, H]", where H is the
height of the BS. If the vehicular location at time t can be written as q(t) = [gx(t), g,(t), 0] r
and the driving direction does not change during the time interval At, the vehicular
position q(t + At) is as follows.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 5/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

gt + At) = [qe(t) + v(t) - At - cos B(t),q,(t) + v(t) - At - sin f(£),0])

where, v(t) is the speed of the vehicle and f(¢) is the angle of the vehicle.

As shown in Eq. (5), it is worth noting that only when the vehicular coordinates q(t) at
the current moment, and the coordinate q(t + At) of the elapsed time interval At are both
within the coverage of the MEC server can it participate in the MEC server offloading
computing.

[0,0,0]" < q(t),q(t + At) < [L,L,H]". (5)

Considering that the signal could be blocked during actual transmission, the signal
blocking flag is added to differentiate the signal transmission capability. Therefore, the
wireless transmission rate (Ge ef al., 2020; Wang et al., 2021) is shown in Eq. (6).

. p ‘ a
R.(i) = Bl 1 °
) °g2< o dPun) - alt + A0 —pr!2>’ °

where, « is the channel power gain at a reference distance 1 m. B is channel bandwidth. p is
the transmission power of vehicle. 62 is the noise power. P}, is the transmission loss
power. d;(t) is a flag for signal blocking (d;(t) = 1 indicates the presence of signal
blocking).

di(t) € {0,1}. (7)

The task is transmitted through the wireless channel with the upward transmission
delay T, and the upward transmission energy consumption E, shown in Egs. (8) and (9).

x - M;(i)
T, =", 8
PTOR() ®
_ x- M(i)

where, P, is the unit of power consumed by upward transmission. When x = 1, Egs. (8) and
(9) give the delay and energy consumption for the full offloading. The downward
transmission delay and energy consumption are too small compared to the upward ones,
so they are ignored (You et al., 2016).

The delay T; and energy consumption E; of edge computing are shown in Egs. (10) and

(11).

T, = %’ (10)
Sfumec

E; = L(I)s - P, (11)
fMEC

where, P; is the unit of power consumed by the MEC server calculation.
The time and energy consumption of partial offloading can be expressed as Eqs. (12)
and (13), where 0 <x <1.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 6/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Tpartial = max{ Tla T2 + T3}, (12)
Epartiul =E + E; + E;. (13)

Problem formulation

An optimization problem is given to realize the optimal offloading decision. Its goal is
minimizing the VEC system overhead through the proposed task offloading decision
algorithm as described in Eq. (14).

minD = ZC (max{Ty(i), To(i) + T5(i)}) + Z2(i) - (B (i) + B2 (i) + E3(i))] (14)
S.T

(i) + 22() =1, YA(i), 22() € [0,1], (14a)
max{T\ (i), T2(i) + T5(i)} < Tpmax, (14b)
c<f>=icj<f>:1, Gi) € (0.1}, (140
EI: -C(i) < Fuec, (14d)
zl) e [0, 1], (14e)

where, D is the system overhead. /; (i) is time delay weight and A, (i) is energy
consumption weight. Equation (14a) indicates that the linear sum of the weights of delay
and energy consumption is 1. T}, is the maximum tolerated delay of the current task.
Equation (14b) requires that the total computing delay must be no more than the
maximum tolerated delay of task. C;(i) is the flag whether the j-th task is offloaded or not.
Equation (14c¢) indicates that only one task can be decided by MEC server within each time
slot i. F,,,, is the maximum computing capacity of the MEC server. Equation (14d)
indicates that the total computing resources needed by tasks cannot exceed the maximum
computational capacity of MEC server. The goal of this article is to optimize the variables
x(i) and Cj(i) so that D is the smallest.

Deep reinforcement learning based offloading decision (DROD)
algorithm

Different from traditional distributed offloading decision, the DROD algorithm uses
central decision mode and considers task characteristics and network states
synchronously. With the rich information, it can realize an effective dynamic decision for

the task computing request. The key works include Markov offloading decision model and
NLDDPG based optimal decision.

Markov offloading decision model
The Markov decision process (Wang et al., 2020) (MDP) is a mathematical model
commonly used in decision making. Therefore, combining with VEC scenes, a suitable

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 7/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Action

Policy

Reward

® » < R Ry

N) [N i - 7777:(7—
Return

. G,
Vehicles
—) Vehicular edge
computing environment
State

N s, Sevt

Figure 2 Task offloading decision model based on Markov decision process.
Full-size K] DOI: 10.7717/peerj-cs.1126/fig-2

task offloading decision model is designed. This model contains a set of interactive objects,
such as vehicles, MEC servers and other types of nodes, and five elements, i.e., state, action,
policy, reward and return. As shown in Fig. 2, the interactions work in a closed loop
feedback mode. The details are described as follows.

At a certain time t, vehicle perceives the initial state S, and implements the action A,
according to the policy. After the action has an effect on the edge environment, it enters a
new state S, ; and returns a reward R, to the vehicular edge environment. Subsequently,
the vehicle adopts a new policy m; based on S;;; and continues to interact with the
environment. In this continuous interaction process, the vehicle and the environment will
generate a large amount of data. The vehicle uses these generated data to adjust its own
action policy, interact with the environment, generate new data and use the new data to
improve its own policy. After iterating, the vehicle finally learns the optimal policy for
maximizing the long term return G, of the tasks.

NLDDPG based optimal decision

Based on the above model, this article proposes an improved deep deterministic policy
gradient (NLDDPG) algorithm to solve the optimization problem given by Eq. (14).
NLDDPG is developed from the deep deterministic policy gradient (DDPG) (Ren et al,
2021) algorithm. The main difference is that NLDDPG enables state normalization and
better extraction of task specificity, while DDPG cannot. The state normalization is an
important necessary operation for NLDDPG, because it eliminates the difference in
magnitude of different state values. NLDDPG introduces the LSTM structure into the
actor-critic network and learns the hidden state in the partially observable Markov state

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 8/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-2
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

through memory reasoning, which improves the learning performance of the neural
network. Moreover, compared with the discrete action deep Q learning network (DQN)
(Feng et al., 2021) algorithm, NLDDPG uses high dimensional continuous actions which
results in better optimization, stability, and convergence.

Five basic elements

The deep reinforcement learning method solves the problem with five basic elements.
Normalized state space: In the VEC system, the state space consists of all kinds of states

of MEC server and vehicle that can affect the offloading decisions.

si = (Fremain (i), q;(i), M;(i), d;(i)), (15)

where, g;(i), M;(i) and d;(i) are the coordinates, task data size and block flag of j-th vehicle
in i-th time slot respectively. Femaqin(i) is the remaining computing resources of the MEC
server in the i-th time slot.

In the training process of neural network, the large value range of task data slows down
the training speed. Furthermore, the differences and uncertainties of the value ranges of
different task types will lead to instability and poor convergence of the entire system. So, it
is necessary to normalize the value range for NLDDPG. Then the normalized state can be
expressed as:

51'/: (Fremain(i) q](l)]VIJ(I) d(l)), (16)

)) s Uj
FMEC L Msum

where, Fygc is the maximum computing resource of the MEC server and My,,, is the sum
of the tasks participating in the offloading at the current moment.

Action space: According to the current state, the vehicle chooses a two-dimensional
action. The action a; can be expressed as:

a; = (k(i), x(i)), (17)

where, k(i) is the vehicle selected in the i-th time slot and x(i) is the offloading ratio of
tasks in the i-th time slot.

Reward: Reward is a measure of the performance of the action selected by vehicles in the
current state and it is the decisive factor for evaluating the performance of the algorithm.
This article selects the action based on the merits of the reward. The goal of this article is to
minimize the system overhead. According to the Eq. (14), the reward can be set as:

ri = —D. (18)

Policy: Policy can guide actions, so good policy can make vehicles produce good task
offloading and improve vehicular edge computing environment. The deterministic policy
p adopted in this article is because the efficiency is dozens of times higher than the random
policy, which greatly shortens the training time.

a; = u(s/). (19)

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 9/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

. . . tate normalization
Vehicular edge computing environment ! S < on_ |

O TN Y SN N Lt e, |

n, ' HGs))

Noise

a,= u(s;) I 2(s,,)
1 Critic 1z —

Soft update
—_—

Back
propagation

Paramenter: ¢

Experience repla :
P atter ~ Online Qnetwork

Figure 3 NLDDPG algorithm architecture diagram. Full-size Kl DOT: 10.7717/peerj-cs.1126/fig-3

Return: Return is the accumulation of rewards over time, and is the sum of all rewards
on the timeline. The vehicle can learn the optimal policy through return. The goal of this
article is to maximize return within each time slot.

1
Gi=>Y 7'n, (20)
I=i

where, y is the discount factor.

Framework outline
The architecture diagram of NLDDPG algorithm is shown in Fig. 3.

Actor-Critic network: The role of the actor part is to define parameterized policies and
generate actions based on the observed state of the environment, while the critic part is
responsible for evaluating and criticizing the current policy by processing the rewards
obtained from the environment.

Due to the partial observability of environment, it is difficult for vehicles to obtain
relevant information and MEC server develop successful decision when the deep
reinforcement learning algorithm is trained in a complex dynamic environment. As a
result, some processing of the neural network is required to produce better results. LSTM
can synthesize historical and current information to handle complex state space data well.
We introduce the LSTM structure into the actor-critic network, use memory reasoning to
extract vehicle tasks and environmental information, and conduct effective network
learning by observing the state space and analyzing data features comprehensively.

Experience replay buffer: The experience replay buffer mechanism refers to using a fixed
replay buffer to store the previous transition (s, a;, 1, s;,) and randomly selecting a fixed

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 10/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-3
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

number of transitions from it to update the network each time. It greatly affects the
training speed and final performance of the network.

VEC: VEC is the vehicular edge computing environment including vehicles and MEC
server efc. In VEC, the vehicles interact with the environment and learns actor-critic
network parameters through experience replay buffer to find the action with the highest
rewarding.

NLDDPG description

The purpose of the NLDDPG algorithm is to learn the optimal policy for maximizing long
term return. The input of the NLDDPG algorithm is the vehicular edge computing
environment parameters such as episodes E, time slot I, actor network learning rate o,
critic network learning rate oy, discount factor y, soft update factor 7, experience replay
buffer R, noise 1, and mini-batch N, and the output is the optimal online policy network
weight 0". The NLDDPG algorithm process is as follows. The first step is to randomly
initialize the online policy network and online Q network weight, and copy them to the
corresponding target network parameters. In the second step, the experience replay buffer
is cleared and an iterative mini-batch is set. The third step is to enter the vehicular edge
computing environment and start iterative process. The fourth step is to obtain the optimal
weight of the actor network after the iteration is completed. The operation process of the
NLDDPG algorithm (Lillicrap et al., 2015) is shown in Algorithm 1.

where, Q(s, a BQ) and Q(s, a|0") are the state-action value functions of the critic and actor
network respectively.

DROD algorithm
DROD is a task offloading decision algorithm using NLDDPG, and the details are shown
in Algorithm 2.

SIMULATION AND RESULT ANALYSIS

Simulation environment and parameter setting

We have simulated a MEC environment with Python. In this environment, there are one
MEC server and ten vehicles. The MEC server is allocated besides road, and all vehicles
move along the road with a random chosen angle in the communication region of the
MEC server. In the simulation, vehicles generate task and send requests to the MEC server.
When the MEC server receives these requests, it makes an offloading decision according
DROD algorithm. DROD was tested on Tensorflow platform with Python programming.
All simulation parameters used are shown in Table 1. It should be noted that the specific
numerical parameter values of VEC network used in the simulation are used to verify the
effectiveness of the algorithm. The parameter settings only need to be reasonable in
accordance with the actual environment. Referring to the works (Li et al., 2018; Tran ¢
Pompili, 2018; Wang et al., 2019; Wang, Wang & Liu, 2021), the similar values are set in
our simulations.

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 11/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 NLDDPG

Input:
Output:

Vehicular edge computing environment parameters

Optimal online policy network weight 6"

1: Randomly initialize critic and actor network with online policy network weight 8" and online Q network weight 62

2: Initialize target network with weights 0" = 0", 02 = 02 and experience replay buffer R, mini-batch N
3: Enter vehicular edge computing environment
4: For episode = 1 to E (Max_episode) do
5: Initialize a random process for action exploration
6: Reset the parameters of the vehicular edge computing environment
7: Receive initial observation state s;
8: For each time slot = 1 to T do
9: Normalize state s; to s
10: Execute action a; = ,u(s,—’) + np according to current and exploration noise #,
11: Calculate reward r; based on (18), obtain a new state s;; and Normalize state s;; to s, ™
12: Store transition (s, a;,;,s},,) in experience replay buffer R

If R is not full

Store transition in R

13: Else

Randomly replace any other transition in R

End if

14: Randomly sample N transitions from the replay buffer R as a mini-batch training data
15: Process via LSTM network
16: Calculate the Q value of the online Q network

yi =1+ 9Q(sis1s u(si1")|09)
17: Gradient back propagation update weight of online Q network by using strategy gradient

1Y 2

) = 5 3 v Q)

18: Gradient back propagation update the weight of online policy network
1

Ve R [VaQs, 810 o Vo610
19: Soft update target network

02 =102 4 (1 — 1)0%

O = 0" + (1 — 7)o"
20: End for
21: End for

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126

12/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 DROD

Input: Optimized weights of online policy network 6, Number of time slots 7, Initial state s;
Output: Optimal offloading decision (minimum system overhead, optimal offloading vehicle and optimal offloading ratio)
1: Initialize the vehicular edge environment and the vehicle generates task requests

If task is divisible

If coordinates are within MEC server range when vehicle requests the task and receives result

2
3
4: Perform NLDDPG algorithm to obtain optimized weights of online policy network 6"
5 Get the optimal offloading decision

6 Else

7 Enter step (9)

End if

Else

*®

9: Calculate the system overhead of local computing and full offloading
10: Compare and get the optimal offloading decision
11: End if

Table 1 Related parameters of NLDDPG.

Parameters Values

Neural network LSTM

Layers 2

Neurons 100, 10

Batch size 64

Learning rate 6e-7

Soft update factor 0.01

Episode 600

Maximum MEC calculation capability 10 Gbit
Vehicular speed 10 m/s
vehicles 10

The weight of delay 0.5

The weight of energy consumption 0.5

Computing frequency of the vehicle 1.2 GHz
Computing frequency of the MEC server 5 GHz

The length of the inscribed square L 1,000 m

Task size [1,2], [20,30], [200, 250] Mb
The CPU cycles needed to compute a bit 1,000 cycles/bit

Results and analysis
Selection of hyper-parameters

In the NLDDPG algorithm, the setting of hyper-parameters is very important. Different
hyper-parameters will affect the optimization, convergence and stability of the algorithm.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 13/21

http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

3000 T T T

Learning rate a=6e-8
| Learning rate a=6e-7
2800 Learning rate a=6e-6

2600 [

2400

[t S it i AT G e A e A

System overhead
- N N
[es] o N
o o o
o o o

1600

1400

1200 [

1000
0 100 200 300 400 500 600

Episodes

Figure 4 System overhead vs network learning rate. Full-size K&l DOI: 10.7717/peerj-cs.1126/fig-4

Therefore, this article has done relevant experiments to determine the optimal
hyper-parameters used in the algorithm.

The network learning rate affects the training and updating of the neural network in the
NLDDPG algorithm. A large network learning rate leads to poor optimization and stability
of results, while a small network learning rate leads to poor optimization and slow
convergence. In general, the actor network and critic network are symmetric, so the
learning rate is the same. As shown in Fig. 4, when the learning rate of the network is 6e—6,
the system overhead decreases as the number of iterations increases. But the optimal
solution here is not as good as the learning rate of 6e—7. The reason for this is that a large
learning rate causes both the critic and actor networks to have a large update rate, while the
best solution only requires minimal updates. When the learning rate of the network is
6e—7, the system overhead can obtain a convergent and stable optimal solution. Although
the local optimal solution is obtained at 410 episodes, the global optimal solution can still
be obtained as the number of iterations increases. When the learning rate of the network is
6e-8, the system overhead cannot obtain the optimal solution, which is due to the fact that
a lower learning rate leads to a slower neural network update rate, which requires more
iteration sets to converge. Consequently, the optimal network learning rate in this article is
6e—7. In addition, it can be seen from the figure that after 300 episodes, the system
overhead has a large change. This is because the experience replay buffer is full at this time,
and the neural network learns to have enough useful information for training.

The experience replay buffer affects the training time, optimality, and convergence of
the algorithm. As shown in Fig. 5, the local optimal solution is obtained in 200 episodes or
an experience replay of 4,000. However, the global optimal solution cannot be obtained.
The reason is that the experience replay is too small, which will affect the feature
information of the extracted data and cannot learn the optimal strategy. When the
experience replay is 40,000, the global optimal solution is obtained after 490 episodes.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 14/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-4
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

3000 ; ; . .

R = 4000

R = 40000
2800 | R = 400000
2600 g

System overhead
- N N
[e] o N
o o o
o o o

1600
1400 -
1200 1
1000 . . . L)
0 100 200 300 400 500 600
Episodes

Figure 5 System overhead vs experience replay buffer. Full-size Kal DOI: 10.7717/peerj-cs.1126/fig-5

When the experience replay is 400,000, the optimal solution cannot be obtained. This is
because the buffer is too large and the data cannot be updated and thus the optimal
solution cannot be obtained. In addition, the training time of the algorithm with the
experience replay buffer of 40,000 times is 2.5 times faster than that of the experience
replay buffer of 400,000 times. As a result, this article chooses the best experience replay
buffer as 40,000.

Performance comparison and analysis

To verify the performance of the NLDDPG algorithm, the DQN algorithm, the normalized
DQN algorithm with LSTM network (NLDQN) and the DDPG algorithm were used for
comparison experiments. Figure 6 shows that as the number of iterations increases, the
NLDDPG algorithm has the lowest system overhead and the best stability after 420
episodes. In contrast, the DQN algorithm rises in the other direction after 320 episodes,
since the DQN’s randomization strategy has the opposite impact as the one we want. The
NLDQN algorithm can get the optimal solution after 320 episodes. However, the stability
and convergence of the DLDQN algorithm are poor, and the optimal result cannot be
found. This is because the discrete space of DLDQN cannot precisely determine the
optimal offloading strategy. The DDPG algorithm varies somewhat as the number of
episodes increases, however it has a weak optimality finding algorithm. This is due to the
complex vehicular edge environment, such as the large number of tasks and vehicles,
which exceeds the ability of the neural network and affects the optimization results.
Therefore, adding LSTM network to the neural network to extract features in the
environment and normalizing the state space can improve the effect. As a result, the
NLDDPG algorithm outperforms the DQN algorithm, NLDQN algorithm and the DDPG
algorithm in terms of optimality and stability.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 15/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-5
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

4000 DaN T T T T

NLDQN

DDPG
3500 NLDDPG -1
3000 i

System overhead
N
[o))
o
o

A i IW’I ki

2000 |

1500 - <$N“W

1000

0 100 200 300 400 500 600
Episodes

Figure 6 System overhead of different algorithm under different episodes.
Full-size 4] DOT: 10.7717/peerj-cs.1126/fig-6

5000 T T

I | ocal computing "] Random computing
4500 | [Full oflloading I NLDDPG

4000

3500

System overhead
N N w
o n o
o o o
o o o

1500

1000

500 [

200 400 600 800 1000
Number of executions

Figure 7 System overhead value of different offloading strategy under different executions.
Full-size k&l DOL: 10.7717/peerj-cs.1126/fig-7

To further examine the performance of the NLDDPG algorithm, it is compared to local
computing, full offloading, and random computing. Random computing refers to the
offloading method in which the offloading ratio is randomly selected within [0,1]. In order
to verify the stability and effectiveness of the algorithm, Fig. 7 is used to represent the
relationship between the number of algorithm executions and the system overhead. As
shown in the Fig. 7, the system overhead of local computing, full offloading and NLDDPG
algorithm remains stable as the number of executions increases, but the system overhead of
NLDDPG algorithm remains the lowest. This is because the value of the system overhead is

Hu and Huang (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1126 16/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-7
http://dx.doi.org/10.7717/peerj-cs.1126/fig-6
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

4
2.5 X109 : ; ; . : ,]
--=-%--- Local computing
=== Full offloading
Random computing *
DQN e
2 NLDQN]
—%— DDPG
—O— NLDDPG Es
o -
3 ‘
215} P
s -
>
[e)
I
2
o 1r
>
[}
051 T g
ye | ! |

0 5 10 15 20 25 30 35 40 45 50
The maximum available computing resources of MEC server/Gbit

Figure 8 System overhead of different algorithm under different maximum available computing
resources of MEC server. Full-size K&l DOT: 10.7717/peerj-cs.1126/fig-8

independent of the number of executions. The NLDDPG algorithm obtains the optimal
action in each execution, that is, the optimal offloading ratio, so that the overall system
overhead is minimized. Conversely, random computing fluctuates greatly. Because the
offloading ratio of random computing in each execution is uncertain, it is not suitable as an
offloading method.

Figure 8 shows the changes of the system overheads of different algorithms with the
increasing maximum available computing resources of MEC server. With the increase of
the maximum available computing resources, the system overheads of all algorithms
increase. This is because with the increase of the maximum available computing resources
of the MEC server, the number of vehicle tasks that the system can calculate also increases,
so the overall system overhead increases. The rate of increase for the other algorithms is
approximately constant, except that random computing has an indeterminate proportion
of offloading. This is because the system overhead is positively related to the maximum
available computing resources. To sum up, the NLDDPG algorithm has a significantly
lower system overhead than the other offloading methods, and the advantage increases as
the maximum computation increases.

Figure 9 shows the changes of the system overheads of different algorithms with the
increasing vehicles. The system overhead changes only slightly as the number of vehicles
increases, because the system overhead is closely related to the maximum computation of
the MEC server and not to the number of vehicles. As the number of vehicles increases, the
number of tasks increases, but the number of tasks that can be calculated has an upper
bound, which is limited by the maximum available computing resources of the MEC
server. Therefore, the maximum available computing resources remain unchanged, the
system overhead will not change significantly. Moreover, it can be concluded from the

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 17/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-8
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

4500 T T T T T T T T T

4000

3500

3000 [

System overhead
N N
o (o))
o o
o o
T

-
A
o
o
T

©

1000 |

il --=-¥-=-=- Local computing NLDQN

500 H/ Full offloading —¥%—DDPG

) -=-§---- Random computing —&— NLDDPG
DQN

0 5 10 15 20 25 30 35 40 45 50
Number of vehicles

Figure 9 System overhead of different algorithm under different vehicles.
Full-size 4] DOI: 10.7717/peerj-cs.1126/fig-9

Fig. 9 that the system overhead of the NLDDPG algorithm is much smaller than that of the
local computing, full offloading and random computing for the NLDDPG algorithm
obtains the optimal offloading ratio.

CONCLUSION

The task offloading decision for vehicular edge computing is one of the key technologies to
improve the service capabilities of IoV. The main goal of the proposed task offloading
decision algorithm is to be able to flexibly select the edge computing mode based on the
task characteristics and network status. Different from the distributed decisions by
different independent vehicles in existing work, this article proposes a central vehicular
edge computing task decision algorithm based on deep reinforcement learning. Currently,
deep reinforcement learning techniques are mostly used to solve discrete actions (local
computation and full offloading), such as DQN, in the field of offloading decisions for
connected vehicle edge computing tasks. however, the algorithm proposed in this article
can solve high dimensional continuous actions (partial offloading). Based on the task
characteristics and network status, MEC server can make an optimal offloading decision
for minimizing system overhead. The deep reinforcement learning method is used to
improve the effectiveness and accuracy of decision. Experimental results illustrate that the
decision results of NLDDPG algorithm proposed in this article can effectively reduce
system overhead. At present, we only consider the multi-task decision problem within the
coverage of a single MEC server, so the decision results still have a certain degree of
locality. In the next step, we will study the task offloading decision problem in a multi-
MEC server multi-task request environment and use the collaboration mechanism to
construct a hierarchical hybrid decision strategy.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 18/21

http://dx.doi.org/10.7717/peerj-cs.1126/fig-9
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Natural Science Foundation of China (No.
61501102). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 61501102.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

o Xi Hu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Yang Huang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Github: https://github.com/YYYYYYHuang/Peer]-Computer-
Science.git.

REFERENCES

Chen Z, Wang X. 2020. Decentralized computation offloading for multi-user mobile edge
computing: a deep reinforcement learning approach. EURASIP Journal on Wireless
Communications and Networking 2020(1):1-21 DOI 10.1186/s13638-020-01801-6.

Chen J, Xing H, Xiao Z, Xu L, Tao T. 2021. A DRL agent for jointly optimizing computation
offloading and resource allocation in MEC. IEEE Internet of Things Journal 8(24):17508-17524
DOI 10.1109/JI0T.2021.3081694.

Dai P, Hu K, Wu X, Xing H, Yu Z. 2021. Asynchronous deep reinforcement learning for
data-driven task offloading in MEC-empowered vehicular networks. In: IEEE INFOCOM
2021-IEEE Conference on Computer Communications. Piscataway: IEEE, 1-10.

Du Y, Zhang X, Cao Z, Wang S, Liang J, Zhang F, Tang J. 2021. An optimized path planning
method for coastal ships based on improved DDPG and DP. Journal of Advanced
Transportation 2021:1-23 DOI 10.1155/2021/7765130.

Feng T, Wang B, Zhao H-T, Zhang T, Tang J, Wang Z. 2021. Task distribution offloading
algorithm based on DQN for sustainable vehicle edge network. In: 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft). Piscataway: IEEE, 430-436.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 19/21

https://github.com/YYYYYYHuang/PeerJ-Computer-Science.git
https://github.com/YYYYYYHuang/PeerJ-Computer-Science.git
http://dx.doi.org/10.1186/s13638-020-01801-6
http://dx.doi.org/10.1109/JIOT.2021.3081694
http://dx.doi.org/10.1155/2021/7765130
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Flores H, Hui P, Tarkoma S, Li Y, Srirama S, Buyya R. 2015. Mobile code offloading: from
concept to practice and beyond. IEEE Communications Magazine 53(3):80-88
DOI 10.1109/MCOM.2015.7060486.

Ge L, Dong P, Zhang H, Wang J-B, You X. 2020. Joint beamforming and trajectory optimization
for intelligent reflecting surfaces-assisted UAV communications. IEEE Access 8:78702-78712
DOI 10.1109/ACCESS.2020.2990166.

Haitao Z, Zhang T, Yue C, Houlin Z, Hongbo Z. 2020. Task distribution offloading algorithm of
vehicle edge network based on DQN. Journal on Communications 41:172-178
DOI 10.11959/j.issn.1000-436x.2020160.

Han Y, Zhao Z, Mo J, Shu C, Min G. 2019. Efficient task offloading with dependency guarantees in
ultra-dense edge networks. In: 2019 IEEE Global Communications Conference (GLOBECOM).
Picataway: IEEE, 1-6.

Hao Y, Chen M, Hu L, Hossain MS, Ghoneim A. 2018. Energy efficient task caching and
offloading for mobile edge computing. IEEE Access 6:11365-11373
DOI 10.1109/ACCESS.2018.2805798.

LiJ, Gao H, Lv T, Lu Y. 2018. Deep reinforcement learning based computation offloading and
resource allocation for MEC. In: 2018 IEEE Wireless Communications and Networking
Conference (WCNC). Picataway: IEEE, 1-6.

Li Y, Qi F, Wang Z, Yu X, Shao S. 2020. Distributed edge computing offloading algorithm based
on deep reinforcement learning. IEEE Access 8:85204-85215
DOI 10.1109/ACCESS.2020.2991773.

Li C, Xia J, Liu F, Li D, Fan L, Karagiannidis GK, Nallanathan A. 2021. Dynamic offloading for
multiuser muti-CAP MEC networks: a deep reinforcement learning approach. IEEE
Transactions on Vehicular Technology 70(3):2922-2927 DOI 10.1109/TVT.2021.3058995.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015.
Continuous control with deep reinforcement learning. ArXiv preprint
DOI 10.48550/arXiv.1509.02971.

Luo J, Deng X, Zhang H, Qi H. 2018. Ultra-low latency service provision in edge computing. In:
2018 IEEE International Conference on Communications (ICC). Picataway: IEEE, 1-6.

Mao Y, You C, Zhang J, Huang K, Letaief KB. 2017. A survey on mobile edge computing: the
communication perspective. IEEE Communications Surveys & Tutorials 19(4):2322-2358
DOI 10.1109/COMST.2017.2745201.

Ning Z, Dong P, Wang X, Wang S, Hu X, Guo S, Qiu T, Hu B, Kwok RY. 2020. Distributed and
dynamic service placement in pervasive edge computing networks. IEEE Transactions on
Parallel and Distributed Systems 32(6):1277-1292 DOI 10.1109/TPDS.2020.3046000.

Ren Y, Guo A, Song C, Xing Y. 2021. Dynamic resource allocation scheme and deep deterministic
policy gradient-based mobile edge computing slices system. IEEE Access 9:86062-86073
DOI 10.1109/ACCESS.2021.3088450.

Tran TX, Pompili D. 2018. Joint task offloading and resource allocation for multi-server mobile-
edge computing networks. IEEE Transactions on Vehicular Technology 68(1):856-868
DOI 10.1109/TVT.2018.2881191.

Wang Y, Fang W, Ding Y, Xiong N. 2021. Computation offloading optimization for
UAV-assisted mobile edge computing: a deep deterministic policy gradient approach. Wireless
Networks 27(4):2991-3006 DOI 10.1007/s11276-021-02632-z.

Wang J, Feng D, Zhang S, Tang J, Quek TQ. 2019. Computation offloading for mobile edge
computing enabled vehicular networks. IEEE Access 7:62624-62632
DOI 10.1109/ACCESS.2019.2915959.

Hu and Huang (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1126 20/21

http://dx.doi.org/10.1109/MCOM.2015.7060486
http://dx.doi.org/10.1109/ACCESS.2020.2990166
http://dx.doi.org/10.11959/j.issn.1000-436x.2020160
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/TVT.2021.3058995
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TPDS.2020.3046000
http://dx.doi.org/10.1109/ACCESS.2021.3088450
http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1109/ACCESS.2019.2915959
http://dx.doi.org/10.7717/peerj-cs.1126
https://peerj.com/computer-science/

PeerJ Computer Science

Wang J, Wang L. 2021. Mobile edge computing task distribution and offloading algorithm based
on deep reinforcement learning in internet of vehicles. Journal of Ambient Intelligence and
Humanized Computing 17(12):1-11 DOI 10.1007/s12652-021-03458-5.

Wang K, Wang X, Liu X. 2021. A high reliable computing offloading strategy using deep
reinforcement learning for IoVs in edge computing. Journal of Grid Computing 19(2):1-15
DOI 10.1007/s10723-021-09542-6.

Wang K, Wang X, Liu X, Jolfaei A. 2020. Task offloading strategy based on reinforcement
learning computing in edge computing architecture of internet of vehicles. IEEE Access
8:173779-173789 DOI 10.1109/ACCESS.2020.3023939.

You C, Huang K, Chae H, Kim B-H. 2016. Energy-efficient resource allocation for mobile-edge
computation offloading. IEEE Transactions on Wireless Communications 16(3):1397-1411
DOI 10.1109/TWC.2016.2633522.

Zhang J, Letaief KB. 2019. Mobile edge intelligence and computing for the internet of vehicles.
Proceedings of the IEEE 108(2):246-261 DOI 10.1109/JPROC.2019.2947490.

Hu and Huang (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1126 21/21

http://dx.doi.org/10.1007/s12652-021-03458-5
http://dx.doi.org/10.1007/s10723-021-09542-6
http://dx.doi.org/10.1109/ACCESS.2020.3023939
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/JPROC.2019.2947490
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1126

	Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
	Introduction
	System model and problem formulation
	Simulation and result analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

