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ABSTRACT
Task offloading decision is one of the core technologies of vehicular edge computing.
Efficient offloading decision can not only meet the requirements of complex vehicle
tasks in terms of time, energy consumption and computing performance, but also
reduce the competition and consumption of network resources. Traditional
distributed task offloading decision is made by vehicles based on local states and can’t
maximize the resource utilization of Mobile Edge Computing (MEC) server.
Moreover, the mobility of vehicles is rarely taken into consideration for
simplification. This article proposes a deep reinforcement learning based task
offloading decision algorithm, namely Deep Reinforcement learning based offloading
decision (DROD) for Vehicular Edge Computing (VEC). In this work, the mobility of
vehicles and the signal blocking commonly in VEC circumstance are considered in
our optimal problem of minimizing the system overhead. For resolving the optimal
problem, the DROD employs Markov decision process to model the interactions
between vehicles and MEC server, and an improved deep deterministic policy
gradient algorithm called NLDDPG to train the model iteratively to obtain the
optimal decision. The NLDDPG takes the normalized state space as input and
introduces LSTM structure into the actor-critic network for improving the efficiency
of learning. Finally, two series of experiments are conducted to explore DROD.
Firstly, the influences of core hyper-parameters on the performances of DROD are
discussed, and the optimal values are determined. Secondly, the DROD is compared
with some other baseline algorithms, and the results show that DROD is 25% better
than DQN, 10% better than NLDQN and 130% better than DDDPG.

Subjects Autonomous Systems, Computer Networks and Communications, Data Mining and
Machine Learning, Distributed and Parallel Computing, Mobile and Ubiquitous Computing
Keywords Vehicular edge computing, Offloading decision, Markov decision process, Deep
reinforcement learning, System overhead

INTRODUCTION
Since the introduction of mobile edge computing, its application scenarios are becoming
more and more widespread such as autonomous driving, AR/VR, smart home, industrial
internet, etc. As a typical service scenario of mobile edge computing, the combination of
Internet of Vehicles (IoV) and Mobile Edge Computing (MEC) is called the Vehicular
Edge Computing (VEC). The Vehicular Edge Computing Network not only addresses the
lack of computing power in vehicles themselves, but also the problems of high latency, high
energy consumption and low security in cloud computing. As a result, VEC has become a
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hot topic today (Mao et al., 2017). Computing task offloading is one of the core
technologies in mobile edge computing. It is defined as a technology in which terminal
devices hand over part or all the computing tasks to edge servers or cloud servers to solve
the problem of computing resources, real-time and energy consumption of mobile devices
(Flores et al., 2015). Offloading decision is one of the core issues of computing offloading
technology. In the Internet of Vehicles environment, the main solution is whether the
vehicular tasks need to be offloaded and where to offload (Zhang & Letaief, 2019).

At present, the offloading decision often takes delay, energy consumption,
comprehensive delay and energy consumption, system utility or custom revenue as the
offloading target to meet real-time needs. Luo et al. (2018) proposed to minimize the delay
as the optimization goal and designed an optimization algorithm based on dynamic
programming to offload the task in Luo et al. (2018). Hao et al. (2018) proposed to
minimize the energy consumption as the optimization goal and designed an algorithm
based on alternating iterations to offload the task in Hao et al. (2018). Han et al. (2019)
proposed a joint objective optimization problem to minimize delay and energy
consumption by making offloading decisions based on a heuristic algorithm. Ning et al.
(2020) proposed to maximize the system utility as the goal, comprehensively consider the
constraints of server storage capacity and service execution delay, and design a random
algorithm based on sample average approximation. A new heuristic algorithm is proposed
to transform the task offloading decision problem into a self-defined benefit maximization
in Tran & Pompili (2018). The above works offload tasks from their own needs but ignore
the mobility characteristics of vehicles and the characteristics of channel network
transmission in the IoV. Ideally, they would not only treat the vehicle as a stationary point
before and after the task is offloaded but also sees that the task transmits a good and stable
signal within the range of the MEC server, but this is not the case in practice.

Considering the mobility of the vehicle and the strength of the signal in the task
offloading of the Internet of Vehicles will transform the problem into an NP problem,
which cannot be solved by the traditional static algorithm, so the dynamic offloading
algorithm emerges as the times require, among which the algorithm based on deep
reinforcement learning is particularly important striking. The offloading problem is
proposed as a Markov Decision Process (MDP), and an offloading strategy based on Deep
Q Network (DQN) is designed to dynamically adjust the offloading ratio to guarantee the
latency and energy consumption of the system performance in Li et al. (2021). To achieve
the optimal balance between the task execution delay, processing rate and energy
consumption of vehicle end users, for the edge access environment of the Internet of
Vehicles, Haitao et al. (2020) proposed a computing task distribution and offloading
algorithm based on DQN. In task offloading, the computing power of the MEC server is
not infinite. Considering the computing power of the MEC server, task offloading can be
performed more effectively. Dai et al. (2021) designed a deep Q learning algorithm to solve
the joint optimization problem of bandwidth, computing resource allocation and rental
cost of heterogeneous servers. Wang & Wang (2021) proposed a task allocation and
offloading algorithm for mobile edge computing based on deep reinforcement learning of
AHP-DQN framework to solve the problems of low terminal storage capacity and
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diversification of network services during task offloading. Consequently, although the task
offloading based on the DQN algorithm can solve the problem of dynamic offloading, the
task offloading method is only limited to local computing and full offloading, ignoring
various offloading types.

In Li et al. (2020) a deep deterministic policy gradient (DDPG) was proposed to
optimize computational offloading for the complex computational offloading problem in
the collaborative computing of heterogeneous edge computing servers (ECS). A deep
deterministic policy gradient (DDPG) algorithm based on continuous action spaces is
proposed in Chen &Wang (2020) to separately learn decentralized computation offloading
policies for all users, aiming to make the average computational cost in a multi-user
multiple-input multiple-output (MIMO) system less than the power consumption and
buffering delays is minimal. The above work achieved good results in the continuous
action interval task offloading decision in the non-vehicle networking field. With the
increasing complexity of the environment, it has become a hot topic to apply various
emerging neural networks to the field of reinforcement learning. Chen et al. (2021)
proposed to apply one-dimensional convolution and long short term memory network to
DDPG algorithm to solve the problem of resource allocation in Chen et al. (2021). Du et al.
(2021) proposed to apply the long short term memory network to the DDPG algorithm to
solve the problem of road planning and obtained good results.

Based on the above summary and analysis, we find that (1) traditional edge computing
task offloading decisions are made independently by vehicles in a distributed mode, so
MEC servers serve in first-in-first-service mode simply and the resource utilization
efficiency is low. (2) Some characteristics of VEC should be taken into consideration, such
as the high mobility of vehicles, the time-varying channel, and the signal blocking. (3) 0–1
task offloading decision is only suitable to undividable tasks, for those dividable tasks,
partial offloading and the optimal offloading proportion are necessary to be considered.
Therefore, this article proposes an improved DDPG based VEC-suitable central offloading
decision algorithm, namely DROD. DROD can comprehensively solve the problems raised
above compared with other works. The main contributions can be summarized as follows:

� Aiming to VEC environment, the mobility of vehicles, the time-varying channel and the
signal blocking are considered into our optimal problem of minimizing the system
overhead which is defined as the weighted average of time and energy consumption.

� A DROD algorithm based on deep reinforcement learning is proposed to obtain a full
type offloading decision, that is full local computing, full offloading computing or partial
offloading computing. Moreover, for partial offloading computing, the optimal
offloading proportion of task can be determined by MEC server through the interactions
with vehicles in its cell.

� An improved deep deterministic policy gradient algorithm, named NLDDPG, is
proposed to train the neural network model and obtain the optimal decision for the
optimal problem. NLDDPG improves DDPG by taking the normalized state space as
input and introduces the long short term memory (LSTM) structure into the actor-critic
network. The normalized state space eliminates the difference of magnitudes of different
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original states and speeds up training. LSTM adds history state information into Markov
decision system and upgrades the training effect. Experimental simulation based on
Tensorflow platform and verify the effectiveness of the algorithm.

The rest of article is organized as follows. In “SystemModel and Problem Formulation”,
vehicular edge network system model and problem formulation are presented. “Deep
Reinforcement learning based offloading decision (DROD) algorithm” introduces the
offloading decision model based on NLDDPG algorithm. “Simulation and Result Analysis”
shows the performances of NLDDPG algorithm based on simulations. Finally,
“Conclusion” concludes this article.

SYSTEM MODEL AND PROBLEM FORMULATION
System model
The vehicular edge computing network structure is shown in Fig. 1. In this structure, each
base station (BS) and corresponding MEC server service the vehicles in its cell, and
cooperate with each other in decentralized mode. Our work focuses on the effective
offloading decision in the cell. For the decentralized vehicular decision can hardly achieve
system optimality, the MEC server is selected implement offloading decision for the tasks
generated by vehicles in the same cell. Let N ¼ f1; 2; . . . ; ng be the set of vehicles, each

Figure 1 Vehicular edge computing network structure. Full-size DOI: 10.7717/peerj-cs.1126/fig-1
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vehicle randomly generates a task and sends an offloading request to the BS and its
corresponding MEC server performs the offloading computing. The coverage area of the
BS is a circle with a diameter of D. Considering the overlapping coverage area of adjacent
BS, a square with side length L inscribed in the circle is used to approximate the coverage
area of the MEC server as shown in Fig. 1.

Tasks offloading model
The task offloading ratio x can be used to describe the task offloading decision result in the
VEC system, as shown in Eq. (1).

x ¼ 0; Local computing
x ¼ 1; Full offloading;

x 2 ð0; 1Þ; Partial offloading

8<
: (1)

� Local computing: Tasks are all calculated on the vehicle.

� Full offloading: All tasks are offloaded to MEC server for calculation.

� Partial offloading: A portion of the task is computed on the local vehicle, while the
remainder is offloaded to MEC server for processing.

Since the connection between tasks and tasks and between tasks and MEC servers has a
significant impact on task offloading decision, this article proposes a centralized decision
scheme performed by MEC server. Without loss of generality, we split the decision time I
of the MEC server into time slots of equal length, and within any time slot i, the MEC
server is able to complete an offloading decision for a task request based on task
characteristics and computing resources. In this way, the MEC server can choose to
completeM task requests from a total of S tasks within the decision time I to make the VEC
system optimal.

In local computing mode, the task is fully computed on vehicular Electronic Control
Unit (ECU). So, the local delay T1 and local energy consumption E1 are shown in Eqs. (2)
and (3).

T1 ¼ 1� xð Þ �MjðiÞ � s
fvehicle

; (2)

E1 ¼ 1� xð Þ �MjðiÞ � s
fvehicle

� P1; (3)

where,MjðiÞ is task data size generated by j-th vehicle in i-th time slot. s is the CPU cycles
required to compute each bit. fvehicle is the ECU frequency of the vehicle. P1 is the unit of
power consumed by the vehicle calculation. At this point, x is 0.

Since the location of the MEC server is fixed (Wang et al., 2019), the location of the
MEC server at time t can be expressed as the coordinate p ¼ ½px; py;H�T , where H is the
height of the BS. If the vehicular location at time t can be written as qðtÞ ¼ ½qxðtÞ; qyðtÞ; 0�T
and the driving direction does not change during the time interval Dt, the vehicular
position qðt þ DtÞ is as follows.
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qðt þ DtÞ ¼ qxðtÞ þ vðtÞ � Dt � cosbðtÞ;½ qyðtÞ þ vðtÞ � Dt � sin bðtÞ; 0�T ; (4)

where, vðtÞ is the speed of the vehicle and bðtÞ is the angle of the vehicle.
As shown in Eq. (5), it is worth noting that only when the vehicular coordinates qðtÞ at

the current moment, and the coordinate qðt þ DtÞ of the elapsed time interval Δt are both
within the coverage of the MEC server can it participate in the MEC server offloading
computing.

0; 0; 0½ �T � qðtÞ; qðt þ DtÞ � L; L;H½ �T : (5)

Considering that the signal could be blocked during actual transmission, the signal
blocking flag is added to differentiate the signal transmission capability. Therefore, the
wireless transmission rate (Ge et al., 2020; Wang et al., 2021) is shown in Eq. (6).

RjðiÞ ¼ Blog2 1þ p � a
r2 þ djðiÞPloss
� � � qðt þ DtÞ � pk k2

 !
; (6)

where, α is the channel power gain at a reference distance 1 m. B is channel bandwidth. p is
the transmission power of vehicle. r2 is the noise power. Ploss is the transmission loss
power. djðtÞ is a flag for signal blocking ðdjðtÞ ¼ 1 indicates the presence of signal
blocking).

djðtÞ 2 0; 1f g: (7)

The task is transmitted through the wireless channel with the upward transmission
delay T2 and the upward transmission energy consumption E2 shown in Eqs. (8) and (9).

T2 ¼ x �MjðiÞ
RjðiÞ ; (8)

E2 ¼ x �MjðiÞ
RjðiÞ � P2; (9)

where, P2 is the unit of power consumed by upward transmission. When x = 1, Eqs. (8) and
(9) give the delay and energy consumption for the full offloading. The downward
transmission delay and energy consumption are too small compared to the upward ones,
so they are ignored (You et al., 2016).

The delay T3 and energy consumption E3 of edge computing are shown in Eqs. (10) and
(11).

T3 ¼ x �MjðiÞ � s
fMEC

; (10)

E3 ¼ x �MjðiÞ � s
fMEC

� P3; (11)

where, P3 is the unit of power consumed by the MEC server calculation.
The time and energy consumption of partial offloading can be expressed as Eqs. (12)

and (13), where 0, x, 1.
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Tpartial ¼ max T1;T2 þ T3f g; (12)

Epartial ¼ E1 þ E2 þ E3: (13)

Problem formulation
An optimization problem is given to realize the optimal offloading decision. Its goal is
minimizing the VEC system overhead through the proposed task offloading decision
algorithm as described in Eq. (14).

minD¼
XI
i¼1

CðiÞ � ½k1ðiÞ � ðmaxfT1ðiÞ; T2ðiÞþT3ðiÞgÞþk2ðiÞ � ðE1ðiÞþE2ðiÞþE3ðiÞÞ� (14)

S.T

k1ðiÞ þ k2ðiÞ ¼ 1; 8k1ðiÞ; k2ðiÞ 2 ½0; 1� ; (14a)

max T1ðiÞ;T2ðiÞ þ T3ðiÞf g � Tmax; (14b)

CðiÞ ¼PJ
j¼1

CjðiÞ ¼ 1; CjðiÞ 2 0; 1f g ; (14c)

XI
i¼1

�CðiÞ�MjðiÞ � FMEC; (14d)

xðiÞ 2 ½0; 1�; (14e)

where, D is the system overhead. k1ðiÞ is time delay weight and k2ðiÞ is energy
consumption weight. Equation (14a) indicates that the linear sum of the weights of delay
and energy consumption is 1. Tmax is the maximum tolerated delay of the current task.
Equation (14b) requires that the total computing delay must be no more than the
maximum tolerated delay of task. CjðiÞ is the flag whether the j-th task is offloaded or not.
Equation (14c) indicates that only one task can be decided by MEC server within each time
slot i. Fmax is the maximum computing capacity of the MEC server. Equation (14d)
indicates that the total computing resources needed by tasks cannot exceed the maximum
computational capacity of MEC server. The goal of this article is to optimize the variables
x(i) and CjðiÞ so that D is the smallest.

Deep reinforcement learning based offloading decision (DROD)
algorithm
Different from traditional distributed offloading decision, the DROD algorithm uses
central decision mode and considers task characteristics and network states
synchronously. With the rich information, it can realize an effective dynamic decision for
the task computing request. The key works include Markov offloading decision model and
NLDDPG based optimal decision.

Markov offloading decision model
The Markov decision process (Wang et al., 2020) (MDP) is a mathematical model
commonly used in decision making. Therefore, combining with VEC scenes, a suitable
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task offloading decision model is designed. This model contains a set of interactive objects,
such as vehicles, MEC servers and other types of nodes, and five elements, i.e., state, action,
policy, reward and return. As shown in Fig. 2, the interactions work in a closed loop
feedback mode. The details are described as follows.

At a certain time t, vehicle perceives the initial state St and implements the action At

according to the policy. After the action has an effect on the edge environment, it enters a
new state Stþ1 and returns a reward Rt to the vehicular edge environment. Subsequently,
the vehicle adopts a new policy pt based on Stþ1 and continues to interact with the
environment. In this continuous interaction process, the vehicle and the environment will
generate a large amount of data. The vehicle uses these generated data to adjust its own
action policy, interact with the environment, generate new data and use the new data to
improve its own policy. After iterating, the vehicle finally learns the optimal policy for
maximizing the long term return Gt of the tasks.

NLDDPG based optimal decision
Based on the above model, this article proposes an improved deep deterministic policy
gradient (NLDDPG) algorithm to solve the optimization problem given by Eq. (14).
NLDDPG is developed from the deep deterministic policy gradient (DDPG) (Ren et al.,
2021) algorithm. The main difference is that NLDDPG enables state normalization and
better extraction of task specificity, while DDPG cannot. The state normalization is an
important necessary operation for NLDDPG, because it eliminates the difference in
magnitude of different state values. NLDDPG introduces the LSTM structure into the
actor-critic network and learns the hidden state in the partially observable Markov state

Figure 2 Task offloading decision model based on Markov decision process.
Full-size DOI: 10.7717/peerj-cs.1126/fig-2
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through memory reasoning, which improves the learning performance of the neural
network. Moreover, compared with the discrete action deep Q learning network (DQN)
(Feng et al., 2021) algorithm, NLDDPG uses high dimensional continuous actions which
results in better optimization, stability, and convergence.

Five basic elements

The deep reinforcement learning method solves the problem with five basic elements.
Normalized state space: In the VEC system, the state space consists of all kinds of states

of MEC server and vehicle that can affect the offloading decisions.

si ¼ ðFremainðiÞ; qjðiÞ;MjðiÞ; djðiÞÞ; (15)

where, qjðiÞ; MjðiÞ and djðiÞ are the coordinates, task data size and block flag of j-th vehicle
in i-th time slot respectively. FremainðiÞ is the remaining computing resources of the MEC
server in the i-th time slot.

In the training process of neural network, the large value range of task data slows down
the training speed. Furthermore, the differences and uncertainties of the value ranges of
different task types will lead to instability and poor convergence of the entire system. So, it
is necessary to normalize the value range for NLDDPG. Then the normalized state can be
expressed as:

si
0 ¼ FremainðiÞ

FMEC
;
qjðiÞ
L

;
MjðiÞ
Msum

; djðiÞ
� �

; (16)

where, FMEC is the maximum computing resource of the MEC server andMsum is the sum
of the tasks participating in the offloading at the current moment.

Action space: According to the current state, the vehicle chooses a two-dimensional
action. The action ai can be expressed as:

ai ¼ ðkðiÞ; xðiÞÞ; (17)

where, kðiÞ is the vehicle selected in the i-th time slot and xðiÞ is the offloading ratio of
tasks in the i-th time slot.

Reward: Reward is a measure of the performance of the action selected by vehicles in the
current state and it is the decisive factor for evaluating the performance of the algorithm.
This article selects the action based on the merits of the reward. The goal of this article is to
minimize the system overhead. According to the Eq. (14), the reward can be set as:

ri ¼ �D: (18)

Policy: Policy can guide actions, so good policy can make vehicles produce good task
offloading and improve vehicular edge computing environment. The deterministic policy
μ adopted in this article is because the efficiency is dozens of times higher than the random
policy, which greatly shortens the training time.

ai ¼ l si
0ð Þ: (19)
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Return: Return is the accumulation of rewards over time, and is the sum of all rewards
on the timeline. The vehicle can learn the optimal policy through return. The goal of this
article is to maximize return within each time slot.

Gi ¼
XI
l¼i

cl�iri; (20)

where, γ is the discount factor.

Framework outline
The architecture diagram of NLDDPG algorithm is shown in Fig. 3.

Actor-Critic network: The role of the actor part is to define parameterized policies and
generate actions based on the observed state of the environment, while the critic part is
responsible for evaluating and criticizing the current policy by processing the rewards
obtained from the environment.

Due to the partial observability of environment, it is difficult for vehicles to obtain
relevant information and MEC server develop successful decision when the deep
reinforcement learning algorithm is trained in a complex dynamic environment. As a
result, some processing of the neural network is required to produce better results. LSTM
can synthesize historical and current information to handle complex state space data well.
We introduce the LSTM structure into the actor-critic network, use memory reasoning to
extract vehicle tasks and environmental information, and conduct effective network
learning by observing the state space and analyzing data features comprehensively.

Experience replay buffer: The experience replay buffer mechanism refers to using a fixed
replay buffer to store the previous transition ðs0i; ai; ri; s0iþ1Þ and randomly selecting a fixed

Figure 3 NLDDPG algorithm architecture diagram. Full-size DOI: 10.7717/peerj-cs.1126/fig-3
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number of transitions from it to update the network each time. It greatly affects the
training speed and final performance of the network.

VEC: VEC is the vehicular edge computing environment including vehicles and MEC
server etc. In VEC, the vehicles interact with the environment and learns actor-critic
network parameters through experience replay buffer to find the action with the highest
rewarding.

NLDDPG description
The purpose of the NLDDPG algorithm is to learn the optimal policy for maximizing long
term return. The input of the NLDDPG algorithm is the vehicular edge computing
environment parameters such as episodes E, time slot I, actor network learning rate a1,
critic network learning rate a2, discount factor c, soft update factor s, experience replay
buffer R, noise n0 and mini-batch N, and the output is the optimal online policy network
weight hl. The NLDDPG algorithm process is as follows. The first step is to randomly
initialize the online policy network and online Q network weight, and copy them to the
corresponding target network parameters. In the second step, the experience replay buffer
is cleared and an iterative mini-batch is set. The third step is to enter the vehicular edge
computing environment and start iterative process. The fourth step is to obtain the optimal
weight of the actor network after the iteration is completed. The operation process of the
NLDDPG algorithm (Lillicrap et al., 2015) is shown in Algorithm 1.
where, Q s; a hQ

��� �
and Q s; a hljð Þ are the state-action value functions of the critic and actor

network respectively.

DROD algorithm
DROD is a task offloading decision algorithm using NLDDPG, and the details are shown
in Algorithm 2.

SIMULATION AND RESULT ANALYSIS
Simulation environment and parameter setting
We have simulated a MEC environment with Python. In this environment, there are one
MEC server and ten vehicles. The MEC server is allocated besides road, and all vehicles
move along the road with a random chosen angle in the communication region of the
MEC server. In the simulation, vehicles generate task and send requests to the MEC server.
When the MEC server receives these requests, it makes an offloading decision according
DROD algorithm. DROD was tested on Tensorflow platform with Python programming.
All simulation parameters used are shown in Table 1. It should be noted that the specific
numerical parameter values of VEC network used in the simulation are used to verify the
effectiveness of the algorithm. The parameter settings only need to be reasonable in
accordance with the actual environment. Referring to the works (Li et al., 2018; Tran &
Pompili, 2018; Wang et al., 2019; Wang, Wang & Liu, 2021), the similar values are set in
our simulations.
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Algorithm 1 NLDDPG

Input: Vehicular edge computing environment parameters

Output: Optimal online policy network weight hl

1: Randomly initialize critic and actor network with online policy network weight hl and online Q network weight hQ

2: Initialize target network with weights hl
0 ¼ hl, hQ

0
¼ hQ and experience replay buffer R, mini-batch N

3: Enter vehicular edge computing environment

4: For episode = 1 to E (Max_episode) do

5: Initialize a random process for action exploration

6: Reset the parameters of the vehicular edge computing environment

7: Receive initial observation state s1

8: For each time slot = 1 to T do

9: Normalize state si to s0i
10: Execute action ai ¼ l si

0� �þ n0 according to current and exploration noise n0

11: Calculate reward ri based on (18), obtain a new state siþ1 and Normalize state siþ1 to s0iþ1

12: Store transition ðs0i; ai; ri; s0iþ1Þ in experience replay buffer R

If R is not full

Store transition in R

13: Else

Randomly replace any other transition in R

End if

14: Randomly sample N transitions from the replay buffer R as a mini-batch training data

15: Process via LSTM network

16: Calculate the Q value of the online Q network

yi ¼ ri þ cQ siþ1
0; l siþ1

0ð ÞjhQ� �

17: Gradient back propagation update weight of online Q network by using strategy gradient

L hQ
� � ¼ 1

N

XN
j¼1

yi � Q si
0; aijhQ

� �� �2

18: Gradient back propagation update the weight of online policy network

rhl J � 1
N

XN
j¼1

raQ s; a hljð Þjs¼si 0;a¼l si 0ð Þ hlj rhll sjhlð Þjs¼si 0

h i

19: Soft update target network

hQ
0 ¼ shQ þ 1� sð ÞhQ0

hl0 ¼ shl þ 1� sð Þhl0

20: End for

21: End for
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Results and analysis
Selection of hyper-parameters
In the NLDDPG algorithm, the setting of hyper-parameters is very important. Different
hyper-parameters will affect the optimization, convergence and stability of the algorithm.

Algorithm 2 DROD

Input: Optimized weights of online policy network hl, Number of time slots T, Initial state s1

Output: Optimal offloading decision (minimum system overhead, optimal offloading vehicle and optimal offloading ratio)

1: Initialize the vehicular edge environment and the vehicle generates task requests

2: If task is divisible

3: If coordinates are within MEC server range when vehicle requests the task and receives result

4: Perform NLDDPG algorithm to obtain optimized weights of online policy network hl

5: Get the optimal offloading decision

6: Else

7: Enter step (9)

End if

8: Else

9: Calculate the system overhead of local computing and full offloading

10: Compare and get the optimal offloading decision

11: End if

Table 1 Related parameters of NLDDPG.

Parameters Values

Neural network LSTM

Layers 2

Neurons 100, 10

Batch size 64

Learning rate 6e–7

Soft update factor 0.01

Episode 600

Maximum MEC calculation capability 10 Gbit

Vehicular speed 10 m/s

vehicles 10

The weight of delay 0.5

The weight of energy consumption 0.5

Computing frequency of the vehicle 1.2 GHz

Computing frequency of the MEC server 5 GHz

The length of the inscribed square L 1,000 m

Task size [1,2], [20,30], [200, 250] Mb

The CPU cycles needed to compute a bit 1,000 cycles/bit
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Therefore, this article has done relevant experiments to determine the optimal
hyper-parameters used in the algorithm.

The network learning rate affects the training and updating of the neural network in the
NLDDPG algorithm. A large network learning rate leads to poor optimization and stability
of results, while a small network learning rate leads to poor optimization and slow
convergence. In general, the actor network and critic network are symmetric, so the
learning rate is the same. As shown in Fig. 4, when the learning rate of the network is 6e−6,
the system overhead decreases as the number of iterations increases. But the optimal
solution here is not as good as the learning rate of 6e−7. The reason for this is that a large
learning rate causes both the critic and actor networks to have a large update rate, while the
best solution only requires minimal updates. When the learning rate of the network is
6e−7, the system overhead can obtain a convergent and stable optimal solution. Although
the local optimal solution is obtained at 410 episodes, the global optimal solution can still
be obtained as the number of iterations increases. When the learning rate of the network is
6e−8, the system overhead cannot obtain the optimal solution, which is due to the fact that
a lower learning rate leads to a slower neural network update rate, which requires more
iteration sets to converge. Consequently, the optimal network learning rate in this article is
6e−7. In addition, it can be seen from the figure that after 300 episodes, the system
overhead has a large change. This is because the experience replay buffer is full at this time,
and the neural network learns to have enough useful information for training.

The experience replay buffer affects the training time, optimality, and convergence of
the algorithm. As shown in Fig. 5, the local optimal solution is obtained in 200 episodes or
an experience replay of 4,000. However, the global optimal solution cannot be obtained.
The reason is that the experience replay is too small, which will affect the feature
information of the extracted data and cannot learn the optimal strategy. When the
experience replay is 40,000, the global optimal solution is obtained after 490 episodes.

Figure 4 System overhead vs network learning rate. Full-size DOI: 10.7717/peerj-cs.1126/fig-4
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When the experience replay is 400,000, the optimal solution cannot be obtained. This is
because the buffer is too large and the data cannot be updated and thus the optimal
solution cannot be obtained. In addition, the training time of the algorithm with the
experience replay buffer of 40,000 times is 2.5 times faster than that of the experience
replay buffer of 400,000 times. As a result, this article chooses the best experience replay
buffer as 40,000.

Performance comparison and analysis
To verify the performance of the NLDDPG algorithm, the DQN algorithm, the normalized
DQN algorithm with LSTM network (NLDQN) and the DDPG algorithm were used for
comparison experiments. Figure 6 shows that as the number of iterations increases, the
NLDDPG algorithm has the lowest system overhead and the best stability after 420
episodes. In contrast, the DQN algorithm rises in the other direction after 320 episodes,
since the DQN’s randomization strategy has the opposite impact as the one we want. The
NLDQN algorithm can get the optimal solution after 320 episodes. However, the stability
and convergence of the DLDQN algorithm are poor, and the optimal result cannot be
found. This is because the discrete space of DLDQN cannot precisely determine the
optimal offloading strategy. The DDPG algorithm varies somewhat as the number of
episodes increases, however it has a weak optimality finding algorithm. This is due to the
complex vehicular edge environment, such as the large number of tasks and vehicles,
which exceeds the ability of the neural network and affects the optimization results.
Therefore, adding LSTM network to the neural network to extract features in the
environment and normalizing the state space can improve the effect. As a result, the
NLDDPG algorithm outperforms the DQN algorithm, NLDQN algorithm and the DDPG
algorithm in terms of optimality and stability.

Figure 5 System overhead vs experience replay buffer. Full-size DOI: 10.7717/peerj-cs.1126/fig-5
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To further examine the performance of the NLDDPG algorithm, it is compared to local
computing, full offloading, and random computing. Random computing refers to the
offloading method in which the offloading ratio is randomly selected within [0,1]. In order
to verify the stability and effectiveness of the algorithm, Fig. 7 is used to represent the
relationship between the number of algorithm executions and the system overhead. As
shown in the Fig. 7, the system overhead of local computing, full offloading and NLDDPG
algorithm remains stable as the number of executions increases, but the system overhead of
NLDDPG algorithm remains the lowest. This is because the value of the system overhead is

Figure 7 System overhead value of different offloading strategy under different executions.
Full-size DOI: 10.7717/peerj-cs.1126/fig-7

Figure 6 System overhead of different algorithm under different episodes.
Full-size DOI: 10.7717/peerj-cs.1126/fig-6
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independent of the number of executions. The NLDDPG algorithm obtains the optimal
action in each execution, that is, the optimal offloading ratio, so that the overall system
overhead is minimized. Conversely, random computing fluctuates greatly. Because the
offloading ratio of random computing in each execution is uncertain, it is not suitable as an
offloading method.

Figure 8 shows the changes of the system overheads of different algorithms with the
increasing maximum available computing resources of MEC server. With the increase of
the maximum available computing resources, the system overheads of all algorithms
increase. This is because with the increase of the maximum available computing resources
of the MEC server, the number of vehicle tasks that the system can calculate also increases,
so the overall system overhead increases. The rate of increase for the other algorithms is
approximately constant, except that random computing has an indeterminate proportion
of offloading. This is because the system overhead is positively related to the maximum
available computing resources. To sum up, the NLDDPG algorithm has a significantly
lower system overhead than the other offloading methods, and the advantage increases as
the maximum computation increases.

Figure 9 shows the changes of the system overheads of different algorithms with the
increasing vehicles. The system overhead changes only slightly as the number of vehicles
increases, because the system overhead is closely related to the maximum computation of
the MEC server and not to the number of vehicles. As the number of vehicles increases, the
number of tasks increases, but the number of tasks that can be calculated has an upper
bound, which is limited by the maximum available computing resources of the MEC
server. Therefore, the maximum available computing resources remain unchanged, the
system overhead will not change significantly. Moreover, it can be concluded from the

Figure 8 System overhead of different algorithm under different maximum available computing
resources of MEC server. Full-size DOI: 10.7717/peerj-cs.1126/fig-8
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Fig. 9 that the system overhead of the NLDDPG algorithm is much smaller than that of the
local computing, full offloading and random computing for the NLDDPG algorithm
obtains the optimal offloading ratio.

CONCLUSION
The task offloading decision for vehicular edge computing is one of the key technologies to
improve the service capabilities of IoV. The main goal of the proposed task offloading
decision algorithm is to be able to flexibly select the edge computing mode based on the
task characteristics and network status. Different from the distributed decisions by
different independent vehicles in existing work, this article proposes a central vehicular
edge computing task decision algorithm based on deep reinforcement learning. Currently,
deep reinforcement learning techniques are mostly used to solve discrete actions (local
computation and full offloading), such as DQN, in the field of offloading decisions for
connected vehicle edge computing tasks. however, the algorithm proposed in this article
can solve high dimensional continuous actions (partial offloading). Based on the task
characteristics and network status, MEC server can make an optimal offloading decision
for minimizing system overhead. The deep reinforcement learning method is used to
improve the effectiveness and accuracy of decision. Experimental results illustrate that the
decision results of NLDDPG algorithm proposed in this article can effectively reduce
system overhead. At present, we only consider the multi-task decision problem within the
coverage of a single MEC server, so the decision results still have a certain degree of
locality. In the next step, we will study the task offloading decision problem in a multi-
MEC server multi-task request environment and use the collaboration mechanism to
construct a hierarchical hybrid decision strategy.

Figure 9 System overhead of different algorithm under different vehicles.
Full-size DOI: 10.7717/peerj-cs.1126/fig-9
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