
Deepfake attack prevention using
steganography GANs
Iram Noreen, Muhammad Shahid Muneer and Saira Gillani

Department of Computer Science, Bahria University, Islamabad, Lahore Campus, Pakistan

ABSTRACT
Background: Deepfakes are fake images or videos generated by deep learning
algorithms. Ongoing progress in deep learning techniques like auto-encoders and
generative adversarial networks (GANs) is approaching a level that makes deepfake
detection ideally impossible. A deepfake is created by swapping videos, images, or
audio with the target, consequently raising digital media threats over the internet.
Much work has been done to detect deepfake videos through feature detection using
a convolutional neural network (CNN), recurrent neural network (RNN), and
spatiotemporal CNN. However, these techniques are not effective in the future due to
continuous improvements in GANs. Style GANs can create fake videos with high
accuracy that cannot be easily detected. Hence, deepfake prevention is the need of the
hour rather than just mere detection.
Methods: Recently, blockchain-based ownership methods, image tags, and
watermarks in video frames have been used to prevent deepfake. However, this
process is not fully functional. An image frame could be faked by copying
watermarks and reusing them to create a deepfake. In this research, an enhanced
modified version of the steganography technique RivaGAN is used to address the
issue. The proposed approach encodes watermarks into features of the video frames
by training an “attention model” with the ReLU activation function to achieve a fast
learning rate.
Results: The proposed attention-generating approach has been validated with
multiple activation functions and learning rates. It achieved 99.7% accuracy in
embedding watermarks into the frames of the video. After generating the attention
model, the generative adversarial network has trained using DeepFaceLab 2.0 and has
tested the prevention of deepfake attacks using watermark embedded videos
comprising 8,074 frames from different benchmark datasets. The proposed approach
has acquired a 100% success rate in preventing deepfake attacks. Our code is available
at https://github.com/shahidmuneer/deepfakes-watermarking-technique.

Subjects Artificial Intelligence, Cryptography, Multimedia, Neural Networks
Keywords Deepfake, Encryption, Watermark, Deep learning, Prevention, CNN, Steganographic,
GANs

INTRODUCTION
Data is the new oil of the world. Fake videos and images are increasing on the internet with
the introduction of auto-encoders (Ballard, 1987) and generative adversarial networks
(GANs) (Goodfellow, 2014). Deepfake is a method of swapping faces in images or videos

How to cite this articleNoreen I, Muneer MS, Gillani S. 2022. Deepfake attack prevention using steganography GANs. PeerJ Comput. Sci.
8:e1125 DOI 10.7717/peerj-cs.1125

Submitted 17 May 2022
Accepted 15 September 2022
Published 20 October 2022

Corresponding author
Iram Noreen,
iram.bulc@bahria.edu.pk

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1125

Copyright
2022 Noreen et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/shahidmuneer/deepfakes-watermarking-technique
http://dx.doi.org/10.7717/peerj-cs.1125
mailto:iram.�bulc@�bahria.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1125
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

with a target fake person. Manual detection of deepfakes by the human eye is difficult due
to infusion in the target image. Consequently, it can pose a threat to celebrities, individuals,
and political figures in their personal and professional lives because an attacker can fake
the video for a malicious purpose (Hasan & Salah, 2019). This fake content has raised
concerns about the integrity and authenticity of digital information, e.g., audio, video, and
image content on the internet.

User-friendly deepfake creation applications are easily available, and a naïve user can
also create deepfake easily. Deepfake detection techniques originated in response to
concerns about fake news, misleading, counterfeit images and videos. To combat deepfake
threats to society, deepfake detection techniques have been proposed by several researchers
(Nguyen et al., 1909). Convolutional neural network (CNN) (Nguyen et al., 1909) based
detection has been used to train many videos to detect minor feature changes in fake
videos. Other methods detect deepfakes by either detecting blurred features in an image or
eye blinking (Jung, Kim & Kim, 2020) issues in a video. Besides CNN, recurrent neural
network (RNN) (Guera & Delp, 2019) has also been used for deepfake detection. Another
prominent detection approach uses blockchain and watermarking. A blockchain-based
technique (Hasan & Salah, 2019) authenticates the ownership of the content. A
watermark-based technique (Wang et al., 2020; Alattar, Sharma & Scriven, 2020) embeds
an image with a message as a tag value. This tag value is verified to confirm if the video is
tempered or not. However, mere detection methods are not effective to combat intractable
and challenging deepfake threats (Karras, Laine & Aila, 2018). Deepfake is becoming
increasingly real as a result of GANs. The real cure is prevention, not detection. Therefore,
the need of the hour is to eliminate the chances of deepfake creation (Wang et al., 2020).

The following are the research questions addressed in this study:

1. How can encoder and decoder networks be used to prevent deepfakes?

2. How will watermarks help prevent deepfakes?

This study has investigated the deepfake attack and deepfake detection approaches and
has proposed an encryption-based deep learning approach for the prevention of deepfake
attacks. The main contributions of this study are summarized as follows:

1. A GANs-based deep learning approach is proposed for deepfake prevention.

2. Watermark encryption is combined with deep learning steganography.

3. The proposed approach provides 100% deepfake prevention.

The remaining article is structured as follows: “Materials and Methods” discusses the
related work and details of the proposed approach. “Results” discusses the results of
implementation on bench-mark datasets. “Discussion” provides insight into performance
evaluation and its comparison with state-of-the-art approaches. “Conclusion” concludes
the discussion with the future work intended to further improve and extend this research.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 2/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

MATERIALS AND METHODS
Related work
Deepfake videos are generated by deep learning using a large amount of data in face-
swapping. The more samples, the more realistic deepfake videos are generated. The Obama
video was created by projecting the video for more than 56 h for a sample recording to
make it realistic (Media Update, 2020; Floridi, 2018; Sultanov, Shevtsov & Nikolaev, 2020).
Commonly, auto-encoders (Ballard, 1987) have been used to create deep fakes. In this
method, the latent vector from image “A” is fed to the decoder of image “B”. The image
generated from the decoder is swapped with a faked face image. FaceSwap (torzdf, 2014)
uses auto-encoders to create deep fakes. Face-swap GAN (Shaoanlu, 2018) uses GANs to
create precise deepfakes. The latent vector from the face “A” is generated and compared to
generative models till the loss of both networks becomes equal. This newly generated fake
image is then fed to the decoder network. DeepFaceLab (iperov, 2018) is an extended
version of FaceSwap and generates high-quality, precise deepfakes. It includes either
Multi-Task Cascaded (MTCNN) (Zhang et al., 2016), dlib (King, 2002), or manual
methods for face extraction. The extracted face is then used to generate a deepfake using
GANs or auto-encoder. The DFaker tool uses auto-encoders with the Keras loss function
‘Difference of Structural Similarity Index’ (DSSIM) (King, 2002). StyleGAN (torzdf, 2014;
Yang & Qiao, 2021) is used to create realistic and high-quality deepfakes. Another creation
tool, StarGAN (Choi et al., 2018), is used for image-to-image translation. It creates
deepfakes of a single image with different emotions, i.e., happy, sad, or angry expressions.

Besides deepfake creation, several deepfake detection methods exist to identify or detect
deepfakes. Image-based feature detectors (Wu et al., 2020) are used to detect deepfakes
using histogram oriented gradients by measuring the feature discontinuities. Different
deep learning models, i.e., CNN (Nguyen et al., 1909), RNN (Guera & Delp, 2019), etc., are
used to detect deepfakes. Hongmeng et al. (2020) applied Gaussian blur to remove details
that aren’t required to detect deepfakes. After compressing, videos are classified using the
Resnet50 model. Spatiotemporal (de Lima et al., 2020) neural networks are also used to
detect deepfakes by extracting only targeted features and classifying deepfakes using
different classifiers, i.e., Discrete Fourier Transform (DFT), Recursive Cortical Network
(RCN), 3D Deeper Residual Model (R3D), etc. Guarnera, Giudice & Battiato (2020)
discovered Generative Adversarial Nets by applying a kernel just like a convolutional
network but in reversed order. This process of image creation is different from the process
of cameras. These traces can be examined and verified using the expectation-maximization
algorithm (Moon, 1996). This gives over 90% of accuracy in detecting deepfakes.
FaceNet (Wu et al., 2020) generates a vector representation of the face. It is subjected to
Support Vector Regression (SVM), Gradient Boosting Decision Tree (GBDT), or Logistic
to classify deepfakes. Ding et al. (2020) applied CNN to rank the deepfake detection using
subjective assessment by web users.

The Scale Invariant Feature Transform (SIFT) algorithm (Dordevic, Milivojevic &
Gavrovska, 2019) and eyebrow matching (Nguyen & Derakhshani, 2020) are also used in
deepfake detection to calculate a match error. Nirkin et al. (2021) used the Dual Short Face

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 3/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Detector (DSFD) (Li et al., 2019) method to first capture the segmentation of the face in the
video. Later, they used Xception Layers (Chollet, 2017) with inception architecture
(Szegedy et al., 2017) and trained with the VGGface2 (Cao et al., 2018) dataset to detect
deepfakes. Tariq, Lee & Woo (2021) identified that the detection models lack frame
relationships during deepfake detection, hence missing frame change inconsistencies, i.e.,
changes in brightness, eye size, eyebrows, and lips. This phenomenon makes rendering
unnatural. They used a convolutional LSTM residual network to capture the difference
between real and fake frames for inter and intra-frame consistencies.

XceptionNet has been the best-performing network in the deepfake detection challenge
(Deepfake Detection Challenge, 2020). Korshunov & Marcel (2022) modified XceptoinNet
by replacing the final layer with a fully connected layer with a sigmoid activation function
for the classification of deepfakes. Furthermore, they used EfficientNet Variant B4 for the
detection of fake images or videos. Roy et al. (2022) first trained attention on the dataset to
get the most prominent features of the video and then used I3D, 3D ResNet, and 3D
ResNeXt to detect deepfakes. Kolagati, Priyadharshini & Mary Anita Rajam (2022) used
the multi-layer perceptron to learn the difference between fake and real videos. Also, they
used CNN to extract features. Furthermore, they combined models to detect deepfakes.

Hasan & Salah (2019) used blockchain-based applications to authenticate videos. The
video is shared through a link on the Ethereum-based Interplanetary File System (IPFS).
This video is then shared with the media through this link. Whenever this video is updated,
or a pixel is updated, the server gets notified. Zhong & Shih (2020) embedded watermarks
in images using deep learning. These watermarks aren’t visible but are extracted using
extractor architecture (Zhong & Shih, 2020). The watermark is preserved, and whenever a
deepfake is applied, watermarks change inner values. The variation in values decides if the
video is fake or not. Alattar, Sharma & Scriven (2020) provided a web service to embed a
watermark in video frames and video metadata is updated. When deepfake is performed,
the watermark gets distorted. Upon testing the video with the provided web service, if the
watermark is extractable from the video using the extractor algorithm, then the video is
original; otherwise, deepfake is detected. Yu et al. (2020) created artificial fingerprints using
generative adversarial networks (GANs) that are invisible to the naked eye. These
fingerprints are embedded into the videos just like watermarks, as mentioned above. These
fingerprints can be extracted using a decoder network. The extraction of the fingerprints
determines the detection of deepfakes.

However, these detection methods may not always be effective due to ongoing
advancements in GAN prevention methods that can be a potential solution for resolving
deepfakes issues. Deepfake prevention is more concerned with preventing deepfake attacks
rather than detecting them. In this method, the media is protected with an extra security
layer. Either blockchain or watermarking can be used to prevent deepfakes. The need of the
hour is to make fine use of new technologies and to post responsibly and ethically on
digital media.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 4/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Proposed approach
The proposed prevention approach comprises four stages. In the first phase pre-processed
data is fed to 3D CNN to generate an “attention model”. In the second phase, a
security method of encrypting watermarks is applied to video frames using a generative
adversarial network and a convolutional neural network. This step protects information
inside a video with a defined noise. An array of the watermark is then added to the features
of an object by the GAN deep learning algorithm. An invisible watermark is embedded
in video frames to prevent re-swapping of the same watermark. These watermarks are
placed and transitioned through frames by GANs using the “attention model” created in
the first phase.

Therefore, the once encrypted watermark is embedded in the video frames. It can be
accessed and read-only if the “attention model” recipe is known. This “attention model” is
the trained model with defined noise. Phase 3 shows that when an attacker tries to swap a
fake image, the video will be validated with a watermarking extractor algorithm. The
watermark extracting algorithm requires the same “attention model” to decode the
watermark before the attacker can apply deepfake to the frame. Therefore, in phase 4, with
the availability of the required “attention model”, the watermark presence will be verified
using a presence probability score, i.e., the probability of watermark existence ensures that
the video is not tempered, otherwise it is affected by deepfake. Thus, prevention occurs as
the generated attention model by the proposed approach is not available to the attacker. In
summary, the deepfake attacker cannot create a deepfake unless he has the “attention
model” generated by the proposed approach. The absence of the “attention model” makes
a deepfake attack impossible. The detailed procedure of the proposed approach is
described in the following subsections.

Dataset acquisition
Third-party public research datasets are used in this study. These datasets are available to
developers and the scientific community for use in research and development. The UCF
Action Recognition dataset (Soomro, Zamir & Shah, 2012) has been used for training
watermark embedding. The UCF dataset comprises 101 actions with over 13K videos.
Moreover, to embed watermarks and perform deepfakes A2D (Xu et al., 2015), the
Hollywood2 dataset (Marszałek, Laptev & Schmid, 2009), and the TikTok trending videos
dataset (van de Ven, 2020) are used. The main victim of deepfakes is social media websites
because we believe what we see. Hence, we have used the trending TikTok video dataset to
embed encrypted watermarks and then applied deepfakes to 5% of TikTok videos. TikTok
videos are short-clip videos, so processing those videos will be the best way to ensure the
prevention of deepfakes.

After embedding watermarks, the Hollywood2 dataset is used to apply deepfakes. An
attempt to decode those watermarks will validate deepfake prevention. Table 1 shows the
dataset summary. Table 2 shows the training, validation, and testing samples.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 5/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Data pre-processing
The data preprocessing step converts raw data into an arranged and manageable data
format. Figure 1 shows the preprocessing steps carried out. The following preprocessing
steps are performed on the dataset:

1. Converting videos to frames: The Data Loader utility loads the video and converts the
video into a frame array. Then all the frames of video are passed as an array into the 3D
CNN.

2. Resizing frames: The frames are resized from the original size to different sizes, such as
128 × 128, 60 × 60, and 90 × 90, as shown in Fig. 1. This process is performed using the
PyTorch Data Loader function. The reason for this preprocessing step is that the larger
the frame size, the more it takes to complete the iterations. Thus, resizing operations
makes training more effective. Further, the robustness of the proposed approach could
be checked by testing on different input sizes.

Table 1 Datasets summary.

Authors Title URL Publishing
year

Access
date

Soomro, Zamir & Shah
(2012)

UCF action data (Soomro, Zamir &
Shah, 2012)

https://www.crcv.ucf.edu/data/UCF101.php 2012 2021

van de Ven (2020) TikTok trending videos https://www.kaggle.com/erikvdven/tiktok-trending-
december-2020

2020 2021

Xu et al. (2015) A2D actor dataset https://web.eecs.umich.edu/~jjcorso/r/a2d/ 2015 2021

Table 2 Details of training and validation and testing datasets.

Category Dataset Number of samples Data format Dimension

Training UCF101 (Soomro, Zamir & Shah, 2012) 13,320 MP4, AVI 320 × 240

Validation Hollywood (Marszałek, Laptev & Schmid, 2009) 196 MP4, AVI 320 × 240

Testing TikTok (van de Ven, 2020) 1,000 Mp4 576 × 1,024

Figure 1 Data pre-processing. Image credit: James, https://www.pexels.com/photo/young-man-in-
turtleneck-sweater-11682017/. Full-size DOI: 10.7717/peerj-cs.1125/fig-1

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 6/24

https://www.crcv.ucf.edu/data/UCF101.php
https://www.kaggle.com/erikvdven/tiktok-trending-december-2020
https://www.kaggle.com/erikvdven/tiktok-trending-december-2020
https://web.eecs.umich.edu/~jjcorso/r/a2d/
https://www.pexels.com/photo/young-man-in-turtleneck-sweater-11682017/
https://www.pexels.com/photo/young-man-in-turtleneck-sweater-11682017/
http://dx.doi.org/10.7717/peerj-cs.1125/fig-1
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Architecture
The model consists of a CNN and two different deep neural networks called the encoder
and decoder networks. Its architecture is shown in Fig. 2. The four stages or processes of
architecture are explained in the following sub-segments.

Attention model generation
The input video dataset is first fed to a 3D convolutional neural network, which has the
same characteristics as the proposed encoder and decoder networks. This CNN is trained
on the UCF101 dataset to generate an “attention model” or “attention mask”. The
“attention mask” is the feature network trained to detect different scenes. It is represented
as (T, W, H, D), where T = Tensor, W =Width, H = Height, and D = Data Dimension. The
attention generated from this CNN is further used by the encoder network to encode
watermarks into video. Both the encoder and the decoder share the same network to
encode and decode watermarks.

The 3D convolutional network consists of two hidden layers separated by ReLU and
batches of normalised 3D layers. Both 3D convolutional layers use 32 output channels and
three input channels. The ReLU activation function is used with 3D batch normalisation of
32 layers. This method is an extension of RivaGAN (Zhang et al., 2019). Further details can
be found in “Evaluation metrics” of RivaGAN (Zhang et al., 2019).

The UCF101 dataset is used because it has more actions than Hollywood. Moreover, the
ReLU activation function instead of sigmoid is used for faster processing of the dataset
with frame sizes copped to different dimensions, i.e., 160 × 160, 90 × 90, and 128 × 128.
The network is trained over different epochs (11 to 125 epochs).

As an optimizer, the Adam Optimization function is used with a learning rate of 0.0005
and with a kernel size of (1, 11, 11) and padding of (0, 5, 5). Further, many mini-batch sizes
are used, i.e., 12, 15 to 100, but we’ve got good results with mini-batch size 32. We have
trained our network for 4 h to 9 h on Kaggle 16 GB GPU to get 99% accuracy. Table 3
shows details of the network parameters.

Encoding watermark
In the encoding phase, the attention and watermark are passed to the generative
network for training to match the attention mask of (T, W, H, D) of the video frames. A
generated watermark is infused and matched to the scene of the video. Hence, the
watermark is not visible.

Decoding watermark

To decode the watermark, the same “attention mask” is provided along with the video.
Both decoder and encoder are trained with the same “attention mask”, hence the decoder
network knows from the video and the attention from where to find the watermark. The
decoder network decodes a watermark from the frame and returns the probability of the
watermark in the frame.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 7/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Figure 2 Proposed model graphical architecture. Image credit: James, https://www.pexels.com/photo/young-man-in-turtleneck-sweater-
11682017/. Full-size DOI: 10.7717/peerj-cs.1125/fig-2

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 8/24

https://www.pexels.com/photo/young-man-in-turtleneck-sweater-11682017/
https://www.pexels.com/photo/young-man-in-turtleneck-sweater-11682017/
http://dx.doi.org/10.7717/peerj-cs.1125/fig-2
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Identification process (applying deepfakes)
As shown in Fig. 2, the decoding watermark and the “attention mask” are both needed to
apply a deepfake. Hence, if an attacker does not have our attention model then he cannot
decode the encoded watermark and, consequently, cannot apply deepfake on video. On
supplying the “attention mask” for successful decoding of the watermark, if the probability
mean of the watermark array of 32 elements remains the same, it is assumed that the video
is real and not affected by a deepfake attack. We can check if the video is affected by the
deepfake attack or not by checking the difference between the probabilities mean
calculated before the deepfake attack and after the deepfake attack. When a deep-fake
attack is successfully prevented, the before and after probability mean difference value is
zero. Whereas if the video is affected by the deepfake attack, then after decoding the
watermark output probability mean is different than the real video probability mean, i.e.,
the probability mean before and after the deepfake attack would be changed and their
difference would be non-zero. Thus, the proposed model can be used not only to prevent
deepfake attacks but can also be used to detect deepfake applications.

Train test strategy
In phase 1, CNN is trained using UCF101 to learn action features and to generate an
“attention mask.” In phase 2 and phase 3 of the proposed approach, the UCF101 (Soomro,
Zamir & Shah, 2012) dataset is used to train the encoder and decoder networks for
embedding watermarks into video frames such that those watermarks aren’t visible. The
data consists of videos offering 101 different actions. 100% of the samples of UCF101 are
used as a training sample, while we’ve used different datasets such as Hollywood, A2D, and
TikTok for validation or testing purposes. 10% of the Hollywood dataset (Marszałek,
Laptev & Schmid, 2009), A2D (Xu et al., 2015), and TikTok (van de Ven, 2020) video
datasets are used as validation sets for the encoder and decoder. The training set is used to
train and fit the model, while the testing set is used to test and evaluate the model.

After completing the training phase, testing for embedding the watermark is done. In
this phase, watermarks are embedded in different datasets. Those watermarks are decoded,
and after decoding the watermark, we get the probability of the watermark. Again, in phase
4, A2D and TikTok videos are used to test the deepfake attack application. Watermarked
videos are then subjected to applying deepfakes using DeepFaceLab Software. Applying

Table 3 Details of network parameters.

Network parameters values

Total parameters 589,510

Trainable parameters 589,510

Nontrainable parameters 0

Learning rate 0.0005

Optimizer Adam

Epochs 75

Iteration per epoch 417

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 9/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

deepfake on a video clip takes almost 4–9 h of training time on a 4 GB GTX 1650 NVidia
GPU. When decoding the watermark from those videos, the probability of the watermark
becomes ~0. The training and testing results of the proposed approach are reported in the
next section.

Experimentation setup
In the experimentation setup, we have trained the encoder-decoder network on a 16 GB
GPU and 14 GB of RAM on Linux-based environment with Python 3.8. To encode videos,
decode watermarks, and apply deepfakes, Python 3.8 on a 4 GB NVidia 1650 GTX with a
core i5 9th generation CPU and 16 GB of RAM on Windows 10 is used.

RESULTS
Evaluation metrics
The following evaluation metrics are used to evaluate the performance and results of the
proposed model:

True Positive: The real positive predictions that are identified as true are called true
positives.

TP ¼ TP
FNþ TPð Þ (4.1)

True Negative: The negatives that are correctly predicted and identified in the
evaluation are called true negatives.

TN ¼ TN
FPþ TNð Þ (4.2)

False Positive: The positive predictions that are wrongly identified or predicted.

FP
N

¼ FP
FPþ TNð Þ (4.3)

False Negative: The negative predictions that are wrongly identified or predicted.

FN ¼ FN
FNþ TPð Þ (4.4)

Accuracy: Accuracy is the amount of correctly identified predictions from the total
number of predictions. Accuracy is a good metric in case the dataset is imbalanced.

Accuracy ¼ TNþ TP
TNþ FNþ FPþ TPð Þ (4.5)

Precision: It is the positive interpretation of accurately predicted total positive
interpretations.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 10/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Pr ¼ TP
TPþ FPð Þ (4.6)

SSIM: Structural similarity index (SSIM) shows howmuch an image is degraded. In this
case, when the watermark is embedded into the video frames, SSIM shows how many
images will be distorted by the watermark.

SSIM x; yð Þ ¼
2mx2my þ c1

� �
2sxy þ c2
� �

m2
x þ m2

y þ c1
� �

s2
x þ s2

y þ c2
� � (4.7)

where mx is an average of x, my is an average of y, s2
x is the variance of x, and s2

y is the
variance of y.

PSNR: Peak signal to noise ratio (PSNR) is the ratio between distorting noise power
and the possible maximum signal value. This method provides the image quality index.
This value gives the quality of the generated output image by the trained encoder and
decoder network.

PSNR ¼ 20 log 10
MAXfffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

(4.8)

where MAXf is max signal value and MSE is the mean square error.
Probability: Probability gives the likelihood of happening or existence of an event. In

our proposed model probability gives the chance of encoded elements of a watermark
array in the video frame.

P ¼ Outcome
Total Outcomes

(4.9)

Mean Square Error: It is the average squared difference between estimated values and
actual values.

MSE ¼ 1
n

Xn

i¼1
Yi � Ŷi
� �2

(4.10)

where Y is the observed values vector, Ŷ is predicted values and n is the total predictions.

Ablation study
The performance of the proposed encoder-decoder network is measured on the training
parameters of noise, attention parameters of the optimizer, activation function, batch sizes,
and number of epochs. While the encoding and decoding of watermarks are measured by
the probability returned by the network on decoding after encoding an array of digits, the
encoder and decoder are first trained on the UCF101 Action Recognition dataset (Soomro,
Zamir & Shah, 2012) with a variation of the validation dataset. The network is trained with
a 100% training UCF101 action dataset and with the 10% Hollywood2 validation dataset.
In a previous study, a CNN was trained on the Hollywood2 dataset using the sigmoid
activation function for 300 epochs over 2 to 3 days (Zhang et al., 2019). The network is also

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 11/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

evaluated using different activation functions with a variation of optimizers, epochs, and
learning rates.

Optimization: An optimizer is used to tune parameters and to minimise the cost
function of the neural network. It is an important aspect that makes a difference in training
effectiveness. There are a variety of optimizers available. Therefore, to ensure the network’s
effectiveness, training results with different optimizers are compared. The encoder-
decoder network is trained on the Adam optimizer and the SGD optimizer. The Adam
optimizer was found to be a good fit for training encoder-decoder.

The Learning Rate: This parameter defines how many threshold weights will be
updated to obtain optimal weights. Our encoder and decoder network seem to extract
features from the video at the rate of 5e−4.

The Batch Size: A dataset cannot be passed through a neural network in one batch. So,
the dataset is divided into mini samples called “batches.” Those batches are fed into the
network one by one. In this study, a huge dataset of videos is used, from which frames must
be extracted and the encoder-decoder network has to be trained over these. To cope with
the available resources and get the best results, we had to use 32 batches per iteration.

Epochs: When one entire dataset is passed backward and forward through the encoder
and decoder network once, it will be considered one epoch. We have divided the dataset
into several batches because the video dataset is huge and feeding all the data at once to the
3D Neural Network overflows the RAM and GPU. Only 32 videos per iteration are fed into
the network. This makes a total of 417 iterations per epoch. We have run multiple epochs
to compare and get the best results possible.

Iterations: To complete an epoch, datasets are divided into mini-batches as discussed
above. Those batches are fed into the 3D neural network one by one. Feeding one batch
into NN caused one iteration to complete. In encoder-decoder training, 417 iterations per
epoch are completed.

Activation Function: The activation function controls the output of the layer. In this
encoder-decoder network, we have tested the network on two activation functions, i.e.,
ReLU and Sigmoid. ReLU increases the learning rate and requires fewer resources than the
sigmoid activation function. ReLU gives better results.

The performance of experimentation with Sigmoid and ReLU activation functions is
compared in Table 4. Table 4 shows that ReLU provided an equal performance but with a
faster learning rate in less time, hence ReLU performed the best. It shows the training of
the encoder-decoder network over different variations of activation functions and epochs
with attention. UCF101 training and Hollywood validation datasets are used to evaluate
the accuracy of the ReLU activation function in both convolution and attention. The same
has been tested at different dimensions. An increase in training time has been seen with the
increase in the dimension of the frame of the video and an increase in accuracy alongside.
The convolutional layers of the encoder-decoder network are trained along with the
attention to encode and decode watermarks into the video frames by embedding
watermarks into the features of the network. The strength of embedding is increased by
adding extra layers, but training time is also increased by adding the new layer. An extra
layer of the 3D convolutional network is added with the ReLU activation function in the

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 12/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

whole attention network. Table 5 also shows the results of training the ReLU activation
function on attention with sigmoid activation in the encoder-decoder network with a
variety of different learning rates. The sigmoid activation function is used in the
convolutional layer. It took 9 h with 32 epochs. Tables 6–8 show the results from all
variations of the learning rate based on Table 5 activation and layers. Two layers of
attention were also trained on Leaky ReLU Activation and the encoder-decoder layer was
trained for 8 h, 36 min, with 40 epochs. The same configuration with the ReLU activation
function has also been used. The best results are generated using only the ReLU activation
function, which is shown in Table 8. A Motion Joint Photographic Expert Group (MJPEG)

Table 4 Summary of ablation study results demonstrating evaluation time and performance metrics.

Execution on Kaggle 16 GB GPU and 13 GB RAM

Model Epochs Execution time SSIM PSNR Training
accuracy (%)

Validation
accuracy (%)

Extra Layer + Attention with ReLU and Sigmoid in CNN 32 9 h 0.981 45.057 78.7 81.3

Attention with Leaky Relu + Sigmoid Convolutional Network 40 8 h 36 min 0.98 45 76 78

ReLU attention + Sigmoid CNN 40 8 h 34 min 0.98 45.284 75 75.8

Only ReLU for both attention and CNN 56 12 h 0.301 13.988 99.8 99.5

Table 5 Sigmoid and CNN’s attention using different learning rates.

Learning rate SSIM PSNR Training accuracy (%) Validation accuracy (%)

5e−4 0.98 45.284 75 75.8

5e−3 0.978 44.948 77 78.3

1e−4 0.987 45.233 75.4 74.7

1e−3 0.083 44.95 74.1 72.5

Table 6 Extra layer in attention with ReLU and CNN with sigmoid.

Learning rate SSIM PSNR Training accuracy (%) Validation accuracy (%)

5e−4 0.98 45.121 77.1 78.4

5e−3 0.982 45.041 76.4 78.2

1e−4 0.985 45.218 77.5 76.9

1e−3 0.98 45.101 75.4 76.9

Table 7 ReLU in attention and CNN encoder decoder.

Learning rate SSIM PSNR Training accuracy (%) Validation accuracy (%)

5e−4 0.446 16.966 99.7 99.2

5e−3 0.351 −1.095 99.7 64.7

1e−4 0.371 15.058 99.2 97.2

1e−3 0.398 15.198 99.7 98

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 13/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

validation accuracy of 99.5% is acquired with good image quality after training for 56
epochs in 12 h. Details of parameters used in tuning are provided in Table 9. Figures 3–5
show the visual representation of the results generated from the variation of learning rates.
The training and validation accuracy plot is shown in Fig. 6.

DISCUSSION
Independent testing is performed to generate validated results. The training dataset is used
to fit the model with the parameters and the weights, while the testing dataset is only used
for validating the effectiveness and performance of the model after every epoch. In phase 1,
100% of the UCF101 dataset is used to train CNN to generate the “attention model.” Then
10% of the unbiased Hollywood2 dataset is used for evaluation and testing of the model. In
addition, after training and validating the attention network for feature extraction, in
phases 2 and 3 of the proposed approach, an encoder-decoder network is trained to embed
invisible watermarks into video frames. For this purpose, UCF101 (Soomro, Zamir & Shah,
2012) is used as a training set, whereas the A2D action recognition dataset (Xu et al., 2015),
TikTok trending videos (van de Ven, 2020), and the Hollywood2 dataset (Souza et al.,
2011) are used as testing sets for encoder-decoder.

The watermarked videos are then decoded to check the performance of the decoder
network. The outcome is the probability “P” containing 32 probabilities each for one
watermark insertion. Thus, the probabilities arrays of size 32 are filled with probabilities
values. Further, the mean value of probabilities is calculated, which remains the same for a
single video in the case if it is not fabricated. The watermark is encoded first into the testing
dataset mentioned in Table 1 and then it is decoded to get the probability mean of the
watermark array of 32 elements, which remains the same when a video is real and not
fabricated, after encoding watermarks.

Table 8 Detailed evaluation of different combinations of parameters.

Sr. No Activation function Dataset Dimensions Epochs Execution
time

TL TRA MA SSIM PSNR VCA VSA VMA

1 Sigmoid UCF-101 160 × 160 11 4 h 27.9 94.5 95.9 95.6 42.092 98.1 95.9 98.4

2 Sigmoid UCF-101 Clipped 160 × 160 50 9 h 0.441 90.5 92.5 95.9 42.05 89.3 88.2 93.5

3 Sigmoid + One Extra
Hidden Layer

UCF-101 160 × 160 15 4 h 13.75 53.9 54.6 97.4 41.9 53.6 53.3 53.6

4 Sigmoid UCF-Clipped 90 × 90 125 8 h 8 min 33.1 93.7 93.5 95.7 42.136 86.1 84.2 93.2

5 ReLU UCF-Clipped 128 × 128 75 8 h 50 min 1.6 99.6 99.9 46.8 17.11 99.2 99.7 99.9

6 ReLU UCF-Complete 90 × 90 25 5 h 20 min 3.5 99.1 99.6 50.1 18.102 96.6 98.9 99.7

7 ReLU UCF-Complete 128 × 128 20 8 h 9 min 2.7 99.3 99.7 38.9 16.474 95.5 97.8 98.4

8 ReLU UCF-Complete 90 × 90 25 5 h 22 min 3.8 99 99.6 47.23 16.677 91.7 96.9 98.6

9 ReLU UCF-Complete 90 × 90 40 8 h 34 min 2.7 99.3 99.7 40.8 15.357 96.8 98.6 99.2

10 ReLU UCF-Complete 90 × 90 56 12 h 0.016 99.6 99.8 0.301 13.988 97.4 99.3 99.5

Note:
This table represents further ablation study. We have tested our network on frame sizes, and activation functions. This table shows 56 epochs with 90 × 90 dimensions in
the input frame giving faster and better results. TL, Training Loss; TRA, Training Raw Accuracy; MA, MJPEG Accuracy; SSIM, Structural Similarity index; PSNR, Point
Scale Noise Reduction; VCA, Validation Crop Accuracy; VSA, Validation Scale Accuracy; VMA, Validation MJPEG Accuracy.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 14/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Finally, in phase 4, to evaluate the effectiveness of the proposed approach to preventing
deepfake attacks, the face dataset is swapped onto video datasets. Watermarked videos
are subjected to applying deepfakes using DeepFaceLab Software 2.0 (iperov, 2018).
Encoded watermark videos are trained with the swapping face on the GAN using
DeepFaceLab 2.0 (iperov, 2018) to create fake swapped videos. A total of 30 videos from
A2D, Hollywood2, and TikTok are used to test the prevention of the deepfake attack.
As mentioned in Table 9, watermarks are encoded into the videos and then decoded to test
the existence of deepfakes. We calculated the probabilities means of output probabilities of

Table 9 Results using different parameter values.

Sr. No Video sequence Length (S) Input type/
Frames

GAN
iterations

PBAD/Probablity
mean before
deepfake

PAAD/Probability
mean after
deepfake

Attack
prevention

1 TikTok1-Person talking still 79 Mp4/1,581 2,229 3.4935982 3.3127096 Yes

2 TikTok2-Girl doing yoga 24 Mp4/494 963 4.4875568 4.4758565 Yes

3 TikTok3-Person praying 20 Mp4/400 104 3.2043445 3.1146355 Yes

4 Tiktok4-Girl throwing balloon 29 Mp4/580 1,502 3.3256598 3.2368836 Yes

5 Tiktok5-Girl posing 13 Mp4/260 2,285 3.7952585 3.7883663 Yes

6 Tiktok6-Person catching massage 22 Mp4/440 1,120 1.8958532 1.8822329 Yes

7 Tiktok7-Person facing mirror 22 Mp4/440 1,126 3.2187856 3.1177864 Yes

8 Tiktok8-2 boys and 1 girl walking together 18 Mp4/360 1,315 2.8854856 2.7081008 Yes

9 UCF101-1-Girl hair cut 10 Avi/200 1,155 3.183166 3.1810246 Yes

10 A2D-1-Man eating 10 Avi/200 1,005 3.5830052 3.404806 Yes

11 A2D-2-Man throwing ball 6 Avi/121 1,750 3.8360534 3.8261929 Yes

12 A2D-3-Two persons eating 5 Avi/110 2,114 3.8250728 3.8077369 Yes

13 A2D-4-Person playing with the parrot 5 Avi/110 2,411 3.6817842 3.6800249 Yes

14 A2D-5-Person eating purge 5 Avi/110 2,511 3.7410305 3.7398624 Yes

15 A2D-5-Girl eating meal 5 Mp4/110 2,872 3.7010093 3.7002363 Yes

16 A2D-6-Man eating bun 9 MP4/175 2,930 3.9093244 3.9035048 Yes

17 A2D-7-Girl picking a boy 4 Mp4/91 3,011 4.03142 4.0215335 Yes

18 A2D-8-Two boys dipping bread and eating 5 Mp4/150 3,108 3.4474072 3.4505396 Yes

19 A2D-9-Man eating burger 9 Mp4/180 3,208 4.695134 4.6312027 Yes

20 A2D-10-Man eating competition 10 Mp4/151 3,408 1.6353282 1.629467 Yes

21 A2D-11-woman eating jam 4 Mp4/91 3,575 2.5019636 2.4771504 Yes

22 A2D-12-Man eating with a stick 7 Mp4/150 3,670 3.5874434 3.5911524 Yes

23 A2D-13-Two boys eating sticks 7 Mp4/144 3,899 3.172478 3.1686606 Yes

24 UCF-2-Girl doing makeup 6 Mp4/135 44,126 4.530153 4.542652 Yes

25 UCF-3-Girl applying lipstick 10 Mp4/229 4,226 3.2072487 3.2305214 Yes

26 UCF-4-Girl riding bike 10 Mp4/204 4,426 4.7104664 4.7176847 Yes

27 UCF-5-Woman tooth brushing 10 MP4/204 4,745 4.432059 4.437254 Yes

28 UCF-6-Playing drums 15 MP4/300 5,013 5.0981035 5.099039 Yes

29 UCF-7-Boxing person 4 Mp4/84 4,909 4.5685688 4.4587589 Yes

30 UCF-8-Exercising person 13 Mp4/270 5,000 3.4585654 3.5585465 Yes

Total frames: 8,074 Total iterations: 122,561 Success rate: 100%

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 15/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Figure 3 Visualization of ReLU performance concerning learning rates.
Full-size DOI: 10.7717/peerj-cs.1125/fig-3

Figure 4 Visualization of ReLU in attention and sigmoid in CNN for different learning rates.
Full-size DOI: 10.7717/peerj-cs.1125/fig-4

Figure 5 Visualization of ReLU with extra layer in attention and sigmoid in CNN using different
learning rates. Full-size DOI: 10.7717/peerj-cs.1125/fig-5

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 16/24

http://dx.doi.org/10.7717/peerj-cs.1125/fig-3
http://dx.doi.org/10.7717/peerj-cs.1125/fig-4
http://dx.doi.org/10.7717/peerj-cs.1125/fig-5
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

input elements in the video, from the decoder and compared those values with the real
watermarked video’s probabilities means from phase 1. Because FaceSwap changes the
probabilities of the encoded watermark throughout the frames and replaces the watermark
with swapped faces, the probability mean gets disturbed and a different probability mean
value is obtained for fake video when decoded. The difference suggests that deepfake was
applied. Table 9 provides the details of the videos, which are first embedded with
watermarks and then swapped for our video frames. The deepfake swap training process
with GANs to authenticate deepfakes has been shown in Fig. 7.

Comparison with the state of the art: In the field of deepfake detection and prevention,
there has been a lot of research going on using traditional machine learning methods and
advanced deep learning methods. A state-of-the-art comparison of different
methodologies with deepfake detection, prevention, and proposed methodology is
presented. Watermarks are embedded in a few prevention methods. However, these
watermarks are visible. The proposed method uses an encoder-decoder network, which is
trained on a 3D neural network, to embed a watermark into pixels of video frames. In this
way, the watermark is hidden and cannot be decoded without an attention-trained

Figure 6 Training accuracy vs validation accuracy. Full-size DOI: 10.7717/peerj-cs.1125/fig-6

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 17/24

http://dx.doi.org/10.7717/peerj-cs.1125/fig-6
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

attention mask with specific noise settings. This is a steganography technique that makes
deepfake prevention more effective.

Guera & Delp (2019) used a recurrent neural network to detect deepfakes, this gives
96.7% of accuracy in detecting deepfakes. In the same way, Dordevic, Milivojevic &
Gavrovska (2019) has used SIFT features, i.e., brightness changes, scaling, etc., to detect
deepfakes. This gives 97.91% accuracy in detecting deepfakes DeepFaceLab. However,
when creating deepfakes with DeepFaceLab 2.0 (iperov, 2018), there are many options to
improve the experience of creating deepfakes with minimal loopholes, either manually or
automatically. In the near future, deepfakes may surpass the accuracy of detection. There
are a few methods available, like Sethi et al. (2020), which embed watermarks into the least
significant bit of any video. This old watermarking technique gives approximately 100%
accuracy in preventing deepfakes, while there are more methods available, such as

Figure 7 Deepfake swap training with GANs network of different videos. Full-size DOI: 10.7717/peerj-cs.1125/fig-7

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 18/24

http://dx.doi.org/10.7717/peerj-cs.1125/fig-7
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Lv (2021), used a smart watermarking technique to prevent deepfakes. Lv (2021) suggest
that their method has a 70.43% accuracy in preventing deepfakes. In their method, they
have embedded a smart watermark and blur effect on a face in different positions. The
watermark is applied on the least significant bit, and the smart watermark can be copied
and applied again to video affected by deepfake. Lv (2021) created a smart watermarking
method to embed a watermark using a convolutional structure to extract features of a face,
while a deconvolutional structure generates a watermark according to the convolutional
structure. The size of the watermark is minimised to the extent it is unpredictable by the
human eye, while the blur of the image is manipulated to make the watermark invisible.

Alattar, Sharma & Scriven (2020) also encoded watermarks using deep learning
methods by embedding a watermark into face marks. Those watermarks can be copied
easily in Alattar, Sharma & Scriven (2020) as the watermark is either visible or blurred.
While the smart watermarking technique (Lv, 2021) implies images and puts the
watermark inside the image without encrypting it. However, in the proposed approach,
watermarks are embedded into the features of the video frames. These features aren’t
crackable without the presence of noise and attention trained using selective optimized
parameters. This is an advanced steganography technique to embed and encode
watermark in such a way that the watermark is infused into the video frames and can only
be extracted with the proper parameters of training. Hence, a copy attack is not possible in
this proposed methodology. A summary of results, comparisons, and limitations is given
in Table 10. Table 11 shows the comparison between RivaGAN (Zhang et al., 2019) and the
proposed approach. It shows that RivaGAN has high training time and it has no
experimentation or implementation on deepfake prevention. It shows that RivaGAN has
not experimented with their modal on deepfakes. Moreover, with less training time, the
proposed model gives improved SSIM and PSNR values. It means less noise and improved

Table 10 Summary of state-of-art comparison.

Sr.
No

Year Model Accuracy
(%)

Technique Dataset used Training
iterations

Limitation

1 2020 Alattar,
Sharma &
Scriven
(2020)

100 CNN, MTCNN Custom one video 3,800 DCT watermarking method is used to prevent
deepfakes. Copy attack is possible and used hashed
complex mt CNN to tackle this problem.

2 2021 Lv (2021) 70.43 CNN, De
Convolutional
Neural network
Attention

CalebA Images -(not
given)

It is used to embed mere simple watermarks in facial
features only. It is not supported for video data.

3 2022 Proposed
model

100 LSTM, 3D CNN,
GAN,

8 UCF101 (Soomro,
Zamir & Shah, 2012)
videos,
13 A2D (Xu et al., 2015),
8 TikTok trending
videos (van de Ven,
2020)

122,561 We have used watermark feature embedding to
prevent copy attacks. Watermark is embedded
into video frames and invisible to the human eye.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 19/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

output video. In Table 11, we have also reported MSE loss, which is 0.15 for training and
0.16 for validation.

CONCLUSIONS
Deepfakes have a lot of threats to society along with good usage in the entertainment
industry. Due to advancements in generative models, the detection of deepfakes is not the
solution, but prevention methods are the need of the domain. A deepfake attack
prevention approach is presented. Prevention methods add a layer of security to video
frames. Therefore, they are effective in the long run. Hidden watermarks are embedded in
the features of the video frame, similar to steganography techniques. Furthermore,
attention masks rely on noise and optimization of specific parameters. Hackers need this
attention mask or attention mask generating model in order to decipher watermarks and
apply deepfakes. Therefore, videos stored with the proposed approach are protected from
possible deepfake attacks. The proposed approach has attained 99.5% of training accuracy,
which is 0.1% lower than the previously trained network. However, SSIM and PSNR are
13.98 and 0.301, which are better than the previous network. We have evaluated the
effectiveness of our technique by first embedding watermarks into videos from the action
and trending social media video dataset. The proposed approach was reported to be 100%
effective in the prevention of deepfakes. The future work plan for the research is to
improve the watermarking technique using LSTM to train encoder-decoder networks with
different available action recognition datasets to make a model to embed watermarks on all
available scenes and to continue the work on audio deepfake prevention.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Offices of Research, Innovation, and Commercialization
(ORIC), Bahria University, Islamabad, Pakistan. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Offices of Research, Innovation, and Commercialization (ORIC), Bahria University,
Islamabad, Pakistan.

Table 11 RivaGAN and proposed methodology comparison.

Sr.
No

Model Dimension MES
loss

Training
duration

PSNR SSIM MJPEG
validation
accuracy

Croped
validation
accuracy

Scaled
validation
accuracy

Videos tested
on deepfakes

1 RivaGAN Attension + Noise 32 N/A 3 Days 42.61 0.960 0.997 0.995 0.987 Nill

2 Proposed Approach Attension +
Noise

32 0.16 12 h 13.988 0.301 0.995 0.974 0.993 30 videos tested
on Deepfakes

Note:
Previous and Proposed Methodology Comparison.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 20/24

http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Iram Noreen conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, project supervision, writing, editing, review, and approved the final draft.

� Muhammad Shahid Muneer conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.

� Saira Gillani analyzed the data, authored or reviewed drafts of the article, review, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

(1) The python source code project, all raw code, data .py files, and configuration files
are available with code at GitHub: https://github.com/shahidmuneer/deepfakes-
watermarking-technique.

(2) The UCF101 dataset is available at UCF: https://www.crcv.ucf.edu/data/UCF101.
php.

(3) A2D dataset is available at the University of Michigan: https://web.eecs.umich.edu/
~jjcorso/r/a2d/index.html#downloads.

(4) Hollywood2 dataset is available at IRISA/INRIA Rennes France: https://www.di.ens.
fr/~laptev/actions/hollywood2/.

(5) TikTok dataset is available at Kaggle: https://www.kaggle.com/datasets/
yasaminjafarian/tiktokdataset.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1125#supplemental-information.

REFERENCES
Alattar A, Sharma R, Scriven J. 2020.A system for mitigating the problem of deepfake news videos

using watermarking. IS and T International Symposium on Electronic Imaging Science and
Technology 2020(4):1–10 DOI 10.2352/ISSN.2470-1173.2020.4.MWSF-117.

Ballard DH. 1987. Modular learning in neural networks. In: AAAI’87: Proceedings of the Sixth
National Conference on Artificial Intelligence. 279–284.

Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. 2018. VGGFace2: a dataset for recognising faces
across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018). Piscataway: IEEE, 67–74.

Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J. 2018. StarGAN: unified generative adversarial
networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 8789–8797.

Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 7. 1251–1258.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 21/24

https://github.com/shahidmuneer/deepfakes-watermarking-technique
https://github.com/shahidmuneer/deepfakes-watermarking-technique
https://www.crcv.ucf.edu/data/UCF101.php
https://www.crcv.ucf.edu/data/UCF101.php
https://web.eecs.umich.edu/~jjcorso/r/a2d/index.html#downloads
https://web.eecs.umich.edu/~jjcorso/r/a2d/index.html#downloads
https://www.di.ens.fr/~laptev/actions/hollywood2/
https://www.di.ens.fr/~laptev/actions/hollywood2/
https://www.kaggle.com/datasets/yasaminjafarian/tiktokdataset
https://www.kaggle.com/datasets/yasaminjafarian/tiktokdataset
http://dx.doi.org/10.7717/peerj-cs.1125#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1125#supplemental-information
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-117
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

de Lima O, Franklin S, Basu S, Karwoski B, George A. 2020. Deepfake detection using
spatiotemporal convolutional networks. ArXiv preprint DOI 10.48550/arXiv.2006.14749.

Deepfake Detection Challenge. 2020. The DeepFake Detection Challenge Dataset. Arxiv.
Available at https://www.kaggle.com/c/deepfake-detection-challenge/data.

Ding X, Raziei Z, Larson EC, Olinick EV, Krueger P, Hahsler M. 2020. Swapped face detection
using deep learning and subjective assessment. EURASIP Journal on Information Security
2020(1):2672 DOI 10.1186/s13635-020-00109-8.

Dordevic M, Milivojevic M, Gavrovska A. 2019. Deepfake video analysis using SIFT features. In:
27th Telecommunications Forum, TELFOR 2019. 2019–2022.

Floridi L. 2018.Artificial intelligence, deepfakes and a future of ectypes. Philosophy and Technology
31(3):317–321 DOI 10.1007/s13347-018-0325-3.

Goodfellow I. 2014. Generative adversarial nets. Advances in Neural Information Processing
Systems 3:2672–2680 DOI 10.3156/jsoft.29.5_177_2.

Guarnera L, Giudice O, Battiato S. 2020. Fighting deepfake by exposing the convolutional traces
on images. IEEE Access 8:165085–165098 DOI 10.1109/access.2020.3023037.

Guera D, Delp EJ. 2019.Deepfake video detection using recurrent neural networks. In: Proceedings
of AVSS 2018 – 2018 15th IEEE International Conference on Advanced Video and Signal-Based
Surveillance. Piscataway: IEEE.

Hasan HR, Salah K. 2019. Combating deepfake videos using blockchain and smart contracts. IEEE
Access 7:41596–41606 DOI 10.1109/ACCESS.2019.2905689.

Hongmeng Z, Zhiqiang Z, Lei S, XiuqingM, YuehanWA. 2020.A detection method for deepfake
hard compressed videos based on super-resolution reconstruction using CNN. In: ACM
International Conference Proceeding Series. 98–103.

iperov. 2018. DeepFaceLab. Available at https://github.com/iperov/DeepFaceLab (accessed 26 July
2021).

Jung T, Kim S, Kim K. 2020. DeepVision: deepfakes detection using human eye blinking pattern.
IEEE Access 8:83144–83154 DOI 10.1109/ACCESS.2020.2988660.

Karras T, Laine S, Aila T. 2018. A style-based generator architecture for generative adversarial
networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition
DOI 10.48550/arXiv.1812.04948.

King DE. 2002. Dlib C++ Library. Available at github.com/davisking/dlib.

Kolagati S, Priyadharshini T, Mary Anita Rajam V. 2022. Exposing deepfakes using a deep
multilayer perceptron—convolutional neural network model. International Journal of
Information Management Data Insights 2(1):100054 DOI 10.1016/j.jjimei.2021.100054.

Korshunov P, Marcel S. 2022. Improving generalization of deepfake detection with data farming
and few-shot learning. IEEE Transactions on Biometrics, Behavior, and Identity Science
4(3):386–397 DOI 10.1109/TBIOM.2022.3143404.

Li J, Wang Y, Wang C, Tai Y, Qian J, Yang J, Wang C, Li J, Huang F. 2019.DSFD: Dual shot face
detector. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Vol. 2019. Piscataway: IEEE, 5055–5064.

Lv L. 2021. Smart watermark to defend against deepfake image manipulation. In: 2021 IEEE 6th
International Conference on Computer and Communication Systems (ICCCS). Piscataway: IEEE,
380–384.

Marszałek M, Laptev I, Schmid C. 2009. Actions in context. In: 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009.
Piscataway: IEEE, 2929–2936.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 22/24

http://dx.doi.org/10.48550/arXiv.2006.14749
https://www.kaggle.com/c/deepfake-detection-challenge/data
http://dx.doi.org/10.1186/s13635-020-00109-8
http://dx.doi.org/10.1007/s13347-018-0325-3
http://dx.doi.org/10.3156/jsoft.29.5_177_2
http://dx.doi.org/10.1109/access.2020.3023037
http://dx.doi.org/10.1109/ACCESS.2019.2905689
https://github.com/iperov/DeepFaceLab
http://dx.doi.org/10.1109/ACCESS.2020.2988660
http://dx.doi.org/10.48550/arXiv.1812.04948
github.com/davisking/dlib
http://dx.doi.org/10.1016/j.jjimei.2021.100054
http://dx.doi.org/10.1109/TBIOM.2022.3143404
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Media Update. 2020. Are fake News the #FAKENEWS? Available at https://www.mediaupdate.co.
za/media/144611/aredeepfakes-the-new-fakenews.

Moon TK. 1996. The expectation-maximization algorithm. IEEE Signal Processing Magazine
13(6):47–60.

Nguyen HM, Derakhshani R. 2020. Eyebrow recognition for identifying deepfake videos. In:
BIOSIG 2020 – Proceedings of the 19th International Conference of the Biometrics Special Interest
Group. 1–5.

Nguyen TT, Nguyen QVH, Nguyen DT, Nguyen DT, Huynh-The T, Nahavandi S, Nguyen TT,
Pham Q-V, Nguyen CM. 1909. Deep learning for deepfakes creation and detection: a survey.
ArXiv preprint DOI 10.48550/arXiv.1909.11573.

Nirkin Y, Wolf L, Keller Y, Hassner T. 2021. Deepfake detection based on discrepancies between
faces and their context. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(8):1
DOI 10.1109/TPAMI.2021.3093446.

Roy R, Joshi I, Das A, Dantcheva A. 2022. 3D CNN architectures and attention mechanisms for
deepfake detection. In: Rathgeb C, Tolosana R, Vera-Rodriguez R, Busch C, eds. Handbook of
Digital Face Manipulation and Detection. Advances in Computer Vision and Pattern Recognition.
Springer, Cham DOI 10.1007/978-3-030-87664-7_10.

Sethi L, Dave A, Bhagwani R, Biwalkar A. 2020. Video security against deepfakes and other
forgeries. Journal of Discrete Mathematical Sciences and Cryptography 23(2):349–363
DOI 10.1080/09720529.2020.1721866.

Shaoanlu. 2018. Faceswap-GAN. Available at https://github.com/shaoanlu/faceswap-GAN
(accessed 26 July 2021).

Soomro K, Zamir AR, Shah M. 2012. UCF101: a dataset of 101 human actions classes from videos
in the wild. ArXiv preprint DOI 10.48550/arXiv.1212.0402.

Souza F, Valle E, Chávez G, de Araújo AA. 2011. Color-aware local spatiotemporal features for
action recognition. In: San Martin C, Kim SW, eds. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7042.
Berlin, Heidelberg: Springer, 248–255.

Sultanov KA, Shevtsov AV, Nikolaev AG. 2020. Peculiarities of the investigation of crimes and
administrative offenses committed in the digital environment.Modern Management Trends and
the Digital Economy: From Regional Development to Global Economic Growth 138(Mtde):937–
941 DOI 10.2991/aebmr.k.200502.154.

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. 2017. Inception-v4, inception-ResNet and the
impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence,
AAAI 2017. 4278–4284.

Tariq S, Lee S, Woo S. 2021. One detector to rule them all. In: WWW ’21: Proceedings of the Web
Conference 2021. 3625–3637.

torzdf. 2014. Faceswap app. Available at https://github.com/deepfakes/faceswap.

van de Ven E. 2020. TikTok trending videos. Available at https://www.kaggle.com/erikvdven/tiktok-
trending-december-2020.

Wang R, Juefei-Xu F, Guo Q, Huang Y, Ma L, Liu Y, Wang L. 2020. DeepTag: robust image
tagging for deepfake provenance. ArXiv preprint DOI 10.48550/arXiv.2009.09869.

Wu J, Feng K, Chang X, Yang T. 2020. A forensic method for deepfake image based on face
recognition. In: ACM International Conference Proceeding Series. 104–108.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 23/24

https://www.mediaupdate.co.za/media/144611/aredeepfakes-the-new-fakenews
https://www.mediaupdate.co.za/media/144611/aredeepfakes-the-new-fakenews
http://dx.doi.org/10.48550/arXiv.1909.11573
http://dx.doi.org/10.1109/TPAMI.2021.3093446
http://dx.doi.org/10.1007/978-3-030-87664-7_10
http://dx.doi.org/10.1080/09720529.2020.1721866
https://github.com/shaoanlu/faceswap-GAN
http://dx.doi.org/10.48550/arXiv.1212.0402
http://dx.doi.org/10.2991/aebmr.k.200502.154
https://github.com/deepfakes/faceswap
https://www.kaggle.com/erikvdven/tiktok-trending-december-2020
https://www.kaggle.com/erikvdven/tiktok-trending-december-2020
http://dx.doi.org/10.48550/arXiv.2009.09869
http://dx.doi.org/10.7717/peerj-cs.1125
https://peerj.com/computer-science/

Xu C, Hsieh S-H, Xiong C, Corso JJ. 2015. Can Humans Fly? Action understanding with multiple
classes of actors. Available at http://web.eecs.umich.edu/~jjcorso/pubs/xu_corso_CVPR2015_
A2D.pdf.

Yang S, Qiao K. 2021. ShapeEditer: a StyleGAN Encoder for Face Swapping. Available at http://
arxiv.org/abs/2106.13984.

Yu N, Vladislav S, Sahar A, Mario F. 2020. Artificial GAN fingerprints: rooting deepfake
attribution in training data. Epub ahead of print 17 March 2022. 2014 Cornell University
DOI 10.48550/arXiv.2007.08457.

Zhang KA, Xu L, Cuesta-Infante A, Veeramachaneni K. 2019. Robust invisible video
watermarking with attention. ArXiv preprint DOI 10.48550/arXiv.1909.01285.

Zhang K, Zhang Z, Li Z, Qiao Y. 2016. Joint face detection and alignment using multitask
cascaded convolutional networks. IEEE Signal Processing Letters 23(10):1499–1503
DOI 10.1109/LSP.2016.2603342.

Zhong X, Shih FY. 2020. A robust image watermarking system based on deep neural networks.
ArXiv preprint 1–10 DOI 10.48550/arXiv.1908.11331.

Noreen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1125 24/24

http://web.eecs.umich.edu/~jjcorso/pubs/xu_corso_CVPR2015_A2D.pdf
http://web.eecs.umich.edu/~jjcorso/pubs/xu_corso_CVPR2015_A2D.pdf
http://arxiv.org/abs/2106.13984
http://arxiv.org/abs/2106.13984
http://dx.doi.org/10.48550/arXiv.2007.08457
http://dx.doi.org/10.48550/arXiv.1909.01285
http://dx.doi.org/10.1109/LSP.2016.2603342
http://dx.doi.org/10.48550/arXiv.1908.11331
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1125

	Deepfake attack prevention using steganography GANs
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

