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ABSTRACT
Background: Melanoma image segmentation has important clinical value in the
diagnosis and treatment of skin diseases. However, due to the difficulty of obtaining
data sets, and the sample imbalance, the quality of melanoma image data sets is low,
which reduces the accuracy and the effectiveness of computer aided diagnosis of
melanoma image.
Objective: In this work, a method of melanoma image segmentation by
incorporating medical prior knowledge is proposed to improve the fidelity of
melanoma image segmentation.
Methods: Anatomical analysis of the melanoma image reveal the star shape of the
melanoma image, which can be encoded into the loss function of the UNet model as a
prior knowledge.
Results: Our experimental results on the ISIC-2017 data set demonstrate that the
model by incorporating medical prior knowledge obtain a mIoU (Mean Intersection
over Union) of 87.41%, a Dice Similarity Coefficient of 93.49%.
Conclusion: Therefore, the model by incorporating medical prior knowledge achieve
the first rank in the segmentation task comparing to other models and has high
clinical value.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords Medical image segmentation, Melanoma, Computer aided diagnosis, Skin lesion,
Regularization term in the loss function, Medical prior knowledge

INTRODUCTION
Melanoma is the most common type of skin cancer and has the highest death rate of all
skin cancers. However, melanoma can be cured with a minor surgical operation detected at
an early stage. Therefore, segmentation of melanoma images can be used to help
dermatologists evaluate and take treatment means as soon as possible.

Initially, basic methods with low segmentation accuracy such as edge detection,
threshold segmentation and region segmentation were introduced to segmentation of
medical images. With the rapid development of deep learning technology, deep learning
models have been widely leveraged in segmentation of skin lesions. However, with the
improvement of model accuracy, complex structures and models are increasingly
dependent on the number of images and high-quality of them, which is extremely difficult
to get. The most common techniques to increase the number of images are data
augmentation, such as traditional visual augmentation methods or generative models.
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In the context of applying models on low-quality data sets (Badrinarayanan, Kendall &
Cipolla, 2017; Ronneberger, Fischer & Brox, 2015; Zhou et al., 2018; Oktay et al., 2018; Alom
et al., 2018; Li et al., 2018), the most common techniques are data augmentation, such as
traditional visual augmentation methods or generative models (Izadi et al., 2018).
However, these methods only use the data set itself and do not introduce external
information into models. Despite the success of augmentation based techniques, the
problems of low-accuracy persist. To solve this problem, medical prior knowledge can be
introduced into the segmentation model (Xie et al., 2021) to improve the performance of
the segmentation map, such as transfer learning, using multi-modal data sets, and
incorporating physicians’ knowledge. The most effective method is to combine physicians’
knowledge, that is, using physicians’ medical domain knowledge of doctors for model
training before segmentation, during or after segmentation. For example, imitating the
training patterns of physicians and prioritizing the diagnosis of more severe samples
during training (Berger et al., 2018). Or use the general diagnostic mode of doctors (Wu
et al., 2018).

Since real physicians often do not need a large amount of data to make diagnoses, this
method can bypass the problem of reliance on high-quality medical image data sets.
However, while the above methods are applied to the segmentation of melanoma images,
segmentation results that are obviously inconsistent with the anatomical structure of skin
lesions, internal hole errors and external island errors occur in the segmentation map. The
use of loss functions that do not encode anatomical priors led to these errors.

To solve this problem, specific shape constraints can be designed according to the
speckle shape of the melanoma images and utilized to the model can be trained using that.
Since the seminal work of Veksler (2008), the star shape prior has been leveraged in the
graph cut algorithm. Mirikharaji & Hamarneh (2018) is one of the pioneering works to
incorporating star shape priors into segmentation of skin lesion images. They encoded the
star shape prior into the loss function to improve the convexity of the segmentation map.
However, this method is not powerful enough to penalize the internal error pixels in the
prediction map, which will lead to the internal hole errors in the segmentation map. The
acuracy of the model is reduced by using this approach.

We aim to proposes a melanoma image segmentation method based on star shape prior,
and encode it in loss function as a regularization term. To penalize non-star shape
segment, including external and internal errors area. our experimental results demonstrate
the improvement of segmentation performance.

MATERIALS AND METHODS
Encoding regularization term in the loss function as prior knowledge
Encoding prior regularization term in the loss function
Comparing with the segmentation of ordinary images, there is a lot of many anatomical
prior informations in medical images such as the position, shape and topological structure
of organs or lesions. There are several methods and techniques to incorporating
anatomical priors of lesions or organs into the model of medical image segmentation. It is
one of the methods by learning prior knowledge with generative model and then
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integrating it into the network (Painchaud et al., 2019). Alternatively, the fuzzy results of
segmentation map (Chen et al., 2019) can be refined. However, these methods need to be
carried out in the pre-processing or post-processing stage and cannot be trained end-to-
end.

An end-to-end training model is to encoding anatomic prior knowledge to the loss
function as a regularization term. The prior features can be divided into the following
categories according to the types of regularization term: topological regularization term,
which ignore the shape of organs and extract abstract connections between organs;
dimensional regularization terms, which combine dimensional information about the size
of organs or lesions in the model; interregional regularization terms are to find the
geometrical and distance interaction between image regions; Shape regularization term,
such as geometric shape feature, polygon feature, star feature, etc.

Different regularization terms should be designed for different organ and lesion when
encoding medical prior into the loss function. Topological priors should be used when
encoding the features of thin films and curved objects. For the tasks of whole-body
segmentation, interregional priors are needed; For skin lesions, such as melanoma
segmentation, star priors can be used to improve the convexity of organs or lesions to
enhancing the model performance.

Figures 1A, 1C, 1E and 1G demonstrate the original image of melanoma segmentation,
and Figs. 1B, 1D, 1F and 1H are the corresponding segmentation labels. As shown in Fig. 1,
the color distribution of melanoma lesion sites on the image is asymmetric, leading to
degraded segmentation results of the previous model. However, due to malignant
melanoma lesion has the anatomical speckled shape, dermatologists often mark the
locations of lesions in melanoma images with a star shape. Therefore, it is suitable to
encoding star-shaped regularization term to avoid the inner hole error and the outer island
error commonly seen in melanoma segmentation models.

Figure 1 The internal hole error and external island error in partition diagram.
Full-size DOI: 10.7717/peerj-cs.1122/fig-1
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Star convex set

Melanoma skin lesions have a speckled shape. The star-shaped prior is suitable for the
segmentation of skin lesions. The star-shaped prior is derived from the concept of star
convex set in mathematics, as shown in Fig. 2. For a sample of malignant melanoma image,
all pixels on the image form pixel space�. If all the focal pixels on it form a set y, the center
of the set is the point c. Then, the conditions for identifying y as a star convex set is that: At
any point p of the set y, its line with c at any point q in lpc is also in y.

Melanoma image segmentation using star prior encoded loss function
There are usually only a few dozens to a few hundreds of malignant melanoma images in a
melanoma image data set, which is too small. If only the data set itself is used for image
segmentation, the segmentation results will not be able confirm the anatomical
characteristics of melanoma skin lesions. Therefore, the UNet model is first constructed in
this article. And then segmented star prior loss function was designed for training to
enhance the performance of the model.

Loss function without prior knowledge
There are different type of loss functions without coding anatomic priors, such as cross-
entropy loss, Dice loss and Kappa loss, etc. The cross-entropy loss function is the most
commonly used loss function in segmentation of skin lesions. However, it ignores the
quantity ratio of different types of pixels in the sample space. Therefore, it is easy to
produce the problem of category imbalance, and the category with the most pixels leads the
training inevitably. The Dice loss function can be used to balance positive and negative
samples. It has good performance when positive and negative samples are extremely
uneven, and the loss of each pixel is strongly correlated with the adjacent region. However,
the Dice loss function has the problem of insufficient mining of background area. It will
adversely affect the back propagation process, making training process unstable.
Therefore, Zhang, Petitjean & Ainouz (2020) proposed the Kappa loss function, whose
calculation method included all pixels in the image map, even a large number of true
negative pixels not involved in other loss functions. The Kappa loss function further

Figure 2 The original image and segmentation label of melanoma image.
Full-size DOI: 10.7717/peerj-cs.1122/fig-2
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improved the segmentation accuracy and model convergence. In addition, new Loss
functions such as Focal Loss function (Lin et al., 2017) and Conservative Loss (CL)
function (Zhu et al., 2018) were proposed.

Although these attempts and improvements on loss function have enhanced the
segmentation model performance recently, there are still shortcomings as follows (El Jurdi
et al., 2021): First, these methods ignore the advanced characteristics of lesion location and
medical structure. Such as shape and topological structure; Second, they equally penalize
all kinds of error pixels in the image segmentation map. While utilizing the above loss
functions and using the common segmentation models in segmentation, this model can
not take advantage of a particular organ or pathological changes of anatomy structure and
the spatial relationship between organs. Therefore, in the segmentation of melanoma
images, results that are obviously inconsistent with the anatomical structure of skin lesions.
Errors Including internal hole and external island often appear. Figures 3A and 3B show
the internal hole error, and Figs. 3C and 3D show the external island error. Although
hybrid loss functions have been used recently to obtain high performance (Goceri, 2021),
we prefered incorporation of prior knowledge to improve efficiency and robustness.

Figure 3 Schematic of a star convex set in a melanoma image sample.
Full-size DOI: 10.7717/peerj-cs.1122/fig-3
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UNet structure

The malignant sample data in the original data set is selected for training. The UNet model
is built with ResNet34 as the backbone for image segmentation of malignant samples. Its
structure is shown in Fig. 4.

In Fig. 4, the UNet model is divided into an upward path and downward path according
to the depth of convolutional layers. The upward path is used to obtain context
information, and the downward path is used to locate targets. The high level informations
of the network has low resolution but rich semantic information. While The high
resolution of low-level informations provide more detailed edge information for
segmentation map. Due to such characteristics, the UNet model is suitable for medical
image segmentation. Its skip connections structure can not only get high-level semantic
informations, but also extract the underlying informations of convolutional network,
which conforms to the characteristics of simple semantic information of medical image.
The malignant sample data are divided into training set, evaluation set and test set
according to a certain proportion. The UNet model based on ResNet34 backbone is built to
obtain the location of lesions in the malignant melanoma sample images.

Star prior loss function applied to segmentation of melanoma
In order to encode the anatomical structure of melanoma skin lesions into the UNet model
for training. Shape prior can be fused into the loss function. When the star prior is encoded
into the loss function, it can be designed by numerical superposition, as shown in
Formula (1) (Mirikharaji & Hamarneh, 2018).

Figure 4 UNet network model based on ResNet34 network structure.
Full-size DOI: 10.7717/peerj-cs.1122/fig-4
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h� ¼ argmin
h

LðX;Y ; hÞ

LðX;Y; hÞ ¼ aLce þ bLsh
(1)

In Formula (1), h represents the UNet parameters, X and Y represents the predicted
segmentation map and the segmentation label map respectively. While parameter h is
continuously optimized until it converges to the final value h�. In reference Berger et al.
(2018), Lce represents the cross-entropy loss function. It is composed of two parts, Lce and
Lsh, multiplied by weights a and b respectively and added together. You can set a to 1 and
then adjust the value of b. A and B are set in the way of hyperparameters before training,
where Lce can be replaced by other loss functions commonly used in medical image
segmentation, such as Dice loss function.

According to the features of the internal hole errors and external island errors in
melanoma image segmentation, the star prior formula regularization term Lsh is designed,
as shown in Formula (2).

LshðX;Y ;hÞ ¼
1

Nn�

XN
i¼1

X
p2�

X
q2lpc

l�A�B� 1
lqc

;yip ¼ 1andPðyip ¼ 1jxðiÞ;hÞ,0:5andPsNðqÞ,0

1
Nn�

XN
i¼1

X
p2�

X
q2lpc

q�A�B� 1
lqc
;yip ¼ 1andPðyip ¼ 1jxðiÞ;hÞ,0:5andPsNðqÞ � 0

1
Nn�

XN
i¼1

X
p2�

X
q2lpc

A�B�C;otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

(2)

A ¼ 1; if yip ¼ yiq
0; otherwise

�

B ¼ yip � Pðyip � 1jxðiÞ; hÞ�� ��
C ¼ Pðyip ¼ 1jxðiÞ; hÞ � Pðyiq ¼ 1jxðiÞ; hÞ�� ��
where N is the total number of samples, � is the pixel space of a melanoma image sample,
n� is the total number of pixel points in the pixel space�. The location of the focus point is
c, while p is any point of pixel space �, and q is a point on line lpc. yip and yiq represent the

label of the points p and q, while yip and yiq represent the model predicted values of points p
and q respectively. This symbol � represents matrix multiplication.

PsNðÞ function is used to discriminate whether a point q is an internal hole point. To be
specific, it is to connect point c and point q first, and then take the outward ray starting
from point q until they touch the edge of the image map. Figure 5A is the segmentation
label map of the melanoma image, and the blue part in Fig. 5B represents the prediction
map of lesion location by model, where the positions marked in yellow are the
segmentation error. The focus of line lqn and internal hole error is r. If the length of line lrn
is greater than that the length of line lrq, point q is identified as the internal hole error point,
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namely PsNðqÞ >¼ 0; otherwise, point q is identified as the edge false negative error point,
namely PsNðqÞ < 0.

In the medical image segmentation tasks, the errors are divided into two kinds, namely
the false positive errors and false negatives errors. Then further subdivided into four
categories: the internal false negative, the edge false negative, the external false positive and
the edge false positive, as shown in Fig. 6. p1, p2, p3 and p4 are classified as edge false
negative error, edge false positive error, internal hole error and the external island errors.
In melanoma image segmentation, internal false negative (internal hole) errors and
external false positive (external island) errors should be penalized. Therefore, Lsh was
designed as a piecewise function, divided into three parts. In Formula (2), the first formula
is designed to regularize the edge false negative errors, the second formula is applied to
regularize the internal hole errors, and the third formula is used to normalize the other

Figure 5 Determine whether point q is an internal hole. (A) Segmentation label of melanoma image.
(B) Schematic diagram of model prediction. Full-size DOI: 10.7717/peerj-cs.1122/fig-5

Figure 6 Diûerent types of segmentation errors. Full-size DOI: 10.7717/peerj-cs.1122/fig-6
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outer errors. The hyperparameters l and q are set separately before training and
regularization with different intensities was applied to different kinds of errors.

The optimization goal of the star prior loss function Lsh is to assign the same label to all
q points on the line lcp as to point p, on the condition that the labels of point p and point q

must be the same. Therefore, item A is designed to be 1 only when the true value of point p
and point q are the same. Otherwise, the value will be 0, which means that no shape regular
term is encoded. Item B represents the difference between the real value and the predicted
values at point p, so item B sets the strength of the regularization term for Lsh. The more
severe the prediction error at point p is compared to the real situation, the larger the
regularization term is, and the heavier the penalty for the error is. A and B are divided by lqc
when calculating the regularization item. Because the point q and the distance between the
center point c will affect the value of the regularization item. If the internal hole error exists
segmentation image near the center, the accumulative losses at each point q makes the
regularization item too small. Then the loss function cannot achieve the purpose of
penalizing these errors; Secondly, the false negative error points near the edge of the real
segmentation label are too far away from the center point c, resulting in excessive
regularization after loss accumulation. In terms A and B, the center distance is scaled by
dividing by lqc to remove the influence caused by the distance between point q and point c.
Instead, l and q are used to control the value of the regularization term, so as to improve
the accuracy.

C sets the way of regularizing the loss function in melanoma lesions. Using the functions
as shown in Formulas (1) and (2),which can focus on the penalization of similar error
points in Fig. 6 and p3 and p4. It regularize the final shape of the segmentation map into a
star shape, in accordance with the anatomical structure of the melanoma images.

RESULTS
Experimental design
Data set
The Society for Medical Impact Informatics (SIIM) has collaborated with the International
Skin Imaging Collaboration (ISIC Archive, 2020), has constructed the largest open
library of images of skin lesions. The ISIC Melanoma Data set (Painchaud et al., 2019) is
referred to as ISICM. The ISICM contains 10,000 dermatoscopic images of skin
lesions totally. Each of which is accompanied by a professionally described and
segmented image. ISICM is divided into benign and malignant categories according to the
disease description, and only 220 images of malignant melanoma were concluded in this
data set.

In our work, the model is applied to the preprocessed ISICM data set to build a three-
stage processing structure. And the ISICMwas finely segmented. Finally, our experiment is
demonstrated in images, then the performance of the model is analyzed. 220 malignant
sample images were segmented in the proportion of 6:2:2 to the training set, the evaluation
set and the test set.

Zhao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1122 9/15

http://dx.doi.org/10.7717/peerj-cs.1122
https://peerj.com/computer-science/


Preprocessing
First, the images is scaled to a size of 256 × X or Y × 256 in accordance with the length and
width ratio of the image (X and Y are the height and weight of the scaled image. Scale final
height and weight in the same proportion as the original image). The edges are then filled
and the image size is 256 × 256. In addition, the image is flipped and brightness adjusted.
Three malignant samples after data pretreatment are shown in Fig. 7.

Implementation details
The Pytorch framework (Zhu et al., 2018) was used to implement this method (Paszke
et al., 2019). Adam was selected as the optimizer during the training process. The initial
learning rate was set in 1E−3. In our experiment, 400 epochs were trained. ImageNet pre-
trained model (Russakovsky et al., 2015) was used for freezing training for the first 100
epochs, then learning rate attenuation was applied for the last 200 epochs during training
(Loshchilov & Hutter, 2017), in which every five epochs were attenuated to 95% of the
original learning rate. When the model is tested, the output of the model is taken as the
final result without any subsequent processing. Our model was run on a NVIDIA
GTX1060.

Ablation experiments
For the core experiment, three groups of ablation experiments were designed, namely, the
non-regular term group, the unsegmented star prior group and the non-central distance
scaling group. The experimental results are shown in Table 1.

The segmentation results are displayed, as shown in Fig. 8.

Non regularization term group (baseline)
As the baseline experimental group, the loss function with star priori was not used, and
only Dice loss function was used for training. As shown in Fig. 8C, due to the absence of
shape regularization, the segmentation results do not conform to the anatomical structure
of melanoma, resulting in poor accuracy.

Unsegmented star prior group
Unsegmented basic star prior formula. Item Lsh design is shown in Formula (3).

Figure 7 Malignant samples after preprocessing. (A) Sample 0155 after preprocessing. (B) Sample
0144 after preprocessing. (C) Sample 0169 after preprocessing.

Full-size DOI: 10.7717/peerj-cs.1122/fig-7
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LshðX;Y; hÞ ¼
XN
i¼1

X
p2�

X
q2lpc

Bi
pq � jyip � Pðyip ¼ 1jXðiÞ; hÞj

� jPðyip ¼ 1jXðiÞ; hÞ � Pðyiq ¼ 1jXðiÞ; hÞj;

Bi
pq ¼

1; if yip ¼ yiq
0; otherwise

� (3)

As shown in Fig. 8D, the unsegmented star prior term uses the same regularization term
to penalize all errors that do not conform to the anatomical structure of the lesions, leading
to the difficulty in selecting weights a and b when designing the Lsh term, and to penalize
the segmentation errors of internal hole and external island with appropriate size. Because

Figure 8 Ablation experiment segmentation results display. (A) The original image 1138. (B) Seg-
mentation label. (C) Non-regular item group. (D) Unsegmented star prior group. (E) Non-center dis-
tance scaling group. (F) Segmented star prior group. Full-size DOI: 10.7717/peerj-cs.1122/fig-8

Table 1 The experimental results.

The experimental group Choice of Lce
function

Parameter settings mIoU
(%)

mAP
(%)

Dice
(%)

Jaccard
(%)

Item Lce
weight a

Item Lsh
weight b

item A
weight l

item B
weight q

Non-regular item (baseline)
group

Cross entropy loss None None None None 85.10 92.56 92.68 86.76

Dice
loss

None None None None 85.72 92.61 92.89 86.95

Unsegmented star prior group Cross entropy loss 1 0.01 None None 85.31 92.61 92.86 86.98

Dice
loss

1 0.01 None None 85.90 92.65 93.10 87.18

Non-center distance scaling
group

Cross entropy loss 1 0.33 0.02 0.05 84.97 92.57 92.79 86.78

0.02 0.1 84.79 92.50 92.71 86.65

Dice
loss

1 0.33 0.02 0.05 85.42 92.61 92.97 87.01

0.02 0.1 85.38 92.56 92.92 86.85

Segmented star prior group Cross entropy loss 1 0.33 0.1 0.5 86.48 92.89 93.05 87.22

0.1 1 86.78 93.08 93.22 87.50

Dice
loss

1 0.33 0.1 0.5 87.09 92.95 93.26 87.40

0.1 1 87.41 93.13 93.49 87.69
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the loss function does not use the segmentation function for various kinds of errors, the
segmentation result is reduced.

Non-center distance scaling group
The segmented star prior loss function in Formula (1) and Formula (2) is applied for
training, but lqc is no division at the end of items A and item B. Only the parameters l and
q are used to control the value of the regularization term. As shown in Fig. 8E, because
each point q in the segmentation map and the distance between the center point c each are
not identical. That will have an effect on the value of the regularization item, so using no
Lsh center distance scaling way designs, l and q, regardless of what parameters the model
select will cause a dramatic performance results decline. The performance is even lower
than the non regularization terms group.

Segmented star prior group
The segmented star prior loss function in Formulas (1) and (2) was used for training, and
the results were shown in Fig. 8F. The segmentation results were consistent with the
anatomical results of melanoma with high accuracy. Using this improved loss function, the
convexity of the shape can be enhanced.

Compare with other segmentation models
Compared with UNet fused star prior method SSPFCN (Li et al., 2018), Attention UNet
(Oktay et al., 2018) and dense convolution method FC-densenet (Jégou et al., 2017) on the
ISICM data set, the results are shown in Table 2.

Previous methods performed well on large, high-quality data sets, but performed poorly
on ISIC data set with only 220 skin images of malignant melanoma. Comparing to the
recent methods, the star priority-based melanoma segmentation method has further
improved the performance of the segmentation model on the data set with fewer samples.
An advantage of the proposed approach is that a separate intensity normalization stage
(Goceri, 2018), which usually leads to increase the computational complexity, is not
needed.

CONCLUSIONS
In this work, a melanoma segmentation method incorporating medical prior is proposed,
and experimental verification is carried out on ISICM data set. Piecewise loss function of
star prior is designed and applied to melanoma image segmentation teak. Our experiment

Table 2 Results of different methods.

Model mIoU (%) mAP (%) Dice (%) Jaccard (%)

UNet 86.00 92.53 92.97 87.09

FC-DenseNet 85.92 92.66 93.04 87.12

SSPFCN 85.90 92.65 93.10 87.18

Attention UNet 86.56 92.76 93.16 87.35

Our method 87.41 93.13 93.49 87.69
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demonstrate that the melanoma segmentation model based on the star prior enhances the
performance of the model, and improves the mIoU value, mAP value, Dice value and
Jaccard value.
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