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ABSTRACT
Background. The thickness accuracy of strip is an important indicator to measure the
quality of strip, and the control of the thickness accuracy of strip is the key for the
high-quality strip products in the rolling industry.
Methods. A thickness prediction method of strip based on Long Short-Term Memory
(LSTM) optimized by improved border collie optimization (IBCO) algorithm is
proposed. First, chaotic mapping and dynamic weighting strategy are introduced into
IBCO to overcome the shortcomings of uneven initial population distribution and
inaccurate optimization states of some individuals in Border Collie Optimization
(BCO). Second, Long Short-Term Memory (LSTM) which can effectively deal with
time series data and alleviate long-term dependencies is adopted. What’s more, IBCO
is utilized to optimize parameters to mitigate the influence of hyperparameters such as
the number of hidden neurons and learning rate on the prediction accuracy of LSTM,
so IBCO-LSTM is established.
Results. The experiments are carried out on the measured strip data, which proves
the excellent prediction performance of IBCO-LSTM. The experiments are carried
out on the actual strip data, which prove that IBCO-LSTM has excellent capability
of prediction.

Subjects Artificial Intelligence, Data Science
Keywords Strip thickness, Mutual information, Feature selection, Border Collie, LSTM

INTRODUCTION
Many areas of industrial production are closely related to the steel industry. With the rapid
development of various industrial technologies, the industries that use strip steel as a raw
material for production have higher requirements for the quality of finished products, so
the requirements for the quality of the strip rolled by the iron industry are also increasing.
The key to improving the strip quality is to improve the strip thickness accuracy; therefore,
more and more scholars regard the prediction of strip thickness as an important research
topic (Ding et al., 2013).

At present, the method of improving the strip thickness prediction accuracy through
mathematical models has become an important technology to promote the development
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and progress of steel rolling technology. The strip thickness prediction model is to
express the variables involved in the strip thickness rolling process and the relationship
between them through mathematics, and to control the process on this basis. With the
comprehensive application of machine learning in industrial production, more and more
strip thickness prediction models with neural network as the core have become popular
(Maazoun et al., 2022; Ganesh & Ramachandra Murthy, 2021). Ortmann (1994) took the
lead in using neural networks to develop prediction models for parameters such as roll
width, surface temperature and rolling force, which greatly improved the prediction
accuracy.

Rao & Mohan Emani (2001) established the prediction model based on neural network
for metal deformation resistance during hot rolling.Wang, Chang & Hua (2012) proposed
a method based on BP neural network with prediction of hot rolling aluminum transverse
thickness according to multi-channel measurement characteristics of IMS transverse
thickness collection, which predicted every channel thickness accurately and obtained the
transverse thickness distribution of aluminum strip. Mao et al. (2020) adopted BP neural
network to model and predict the thickness of hot-dip galvanized zinc layer. Also, a genetic
algorithm was introduced to optimize the BP neural network, and the initialization weights
and biases of BP neural network were optimized in advance, which contributed to improve
prediction accuracy and convergence ability of GA-BP.

However, the traditional shallow machine learning method has certain defects, such as
the model is easy to fall into local optimum, difficult to extract deep features of data and
easy to overfit (Brito, Susto & Brito, 2022; Li et al., 2020b; Ganesh & Murthy Ramachandra,
2021; Shafiq et al., 2020a; Tian et al., 2019). In contrast, the abilities of generalization and
anti-noise of the model are weak. The deficiencies above limit the prediction accuracy of
shallow learning model. Yet the deep learning models possess strong abilities of robustness,
generalization, extraction of deep features and complex mapping relationship, which are
more suitable for realizing accurate prediction of strip thickness (Wang et al., 2021; Kuźnar
& Augustyn, 2021; Jiao, Peng & Dong, 2021; Xu et al., 2020; Li et al., 2020a).

Currently, deep learning methods, such as Deep Belief Network (DBN), Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM), have been used by
many scholars to realize regression prediction (Sezer, Berat & Ahmet, 2020; Shafiq et al.,
2020b; Tian et al., 2020; Yu et al., 2019b; Yu et al., 2019a). LSTM is a special recurrent
neural network that transmits information of network state through gating mechanism to
realize network memory function, which can alleviate not only the problem of long-range
dependencies, but also the gradient disappearance and gradient explosion (Hou et al.,
2021). In addition, LSTM is good at mining dependencies between nonlinear sequence
data and time, and it is currently widely utilized in many fields such as sequence prediction,
speech recognition, and machine translation (Zhang & Wang, 2022). Therefore, LSTM, as
an effective model for learning long-term dependent features, is very suitable for dealing
with the prediction problem of time series and widely utilized in various fields. Mohd et al.
proposed a new method combining Laplace Scoring (LS), stochastic search optimization,
and LSTM to accurately analyze the remaining service life of mechanical systems. The
method was tested on the IMS bearing data set, and the experimental results showed
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that the prediction accuracy was significantly improved compared to other methods for
predicting the remaining service life of bearings (Saufi & Hassan, 2021). Afrin & Yodo
(2022) proposed an LSTM-CTP framework for predicting correlated traffic data based
on LSTM, which performed spatio-temporal trend prediction on two different real-time
traffic data sets and obtained better prediction performance. Ponnoprat (2021) proposed
a effective seasonally-integrated autoencoder (SSAE) for short-term daily precipitation
prediction. However, there are few studies related to LSTM in strip thickness prediction.
Therefore, it is very promising to establish a strip thickness prediction model based on
LSTM to better control strip thickness and strip quality.

The accuracy of the prediction model based on deep learning is affected by key super
parameters, such as the number of hidden layer neurons and the learning rate. In order
to avoid the reliance on manual experience for the parameters of the network structure,
the method of finding the optimal parameters of the network structure through the
swarm intelligence optimization algorithm is quite popular. Ahmet et al. used Genetic
Algorithm (GA) to optimize parameters of LSTM and proposed GA-LSTM multi-step
prediction model for influenza outbreak. Then, the experiments shown that the prediction
effect of this model is better than that of other traditional models such as SVM (Kara,
2021; Yang, Yu & Lu, 2020). Beiranvand & Rajaee (2022) used Back Propagation Neural
Network(BPNN) optimized by Lion Swarm Optimization (LSO) algorithm to predict the
uniaxial compressive strength (UCS) of a novel rubber-sand concrete (RSC) material. The
experiments were performed on data sets from RSC lab, which showed that LSO-BPNN
possesses excellent ability of prediction. Li et al. (2022) proposed a hybrid approach
that simultaneously considers the Variational Mode Decomposition (VMD) algorithm,
the Particle Swarm Optimization (PSO) method and Bidirectional, Long Short-term
Memory (Bi-LSTM). The results showed that the proposed PSO-VMD-Bi-LSTM has
strong robustness for making uncertainty predictions and can be utilized to predict the
typhoon speed (Li et al., 2022).

Based on the related researches fromdomestic and foreign countries, this article proposes
a new prediction method of strip thickness based on Long Short-Term Memory (LSTM)
optimized by improved border collie optimization (IBCO) algorithm. First, to enhance
the uniformity and ergodicity of the population distribution, the chaotic mapping is
introduced to Border Collie Optimization (BCO) algorithm to optimize the population
initialization. Second, the method of mutual information is introduced to perform feature
selection on the original strip steel data set, and the extracted important factors are formed
into a new feature data set. Finally, according to the principle of mutual information
feature extraction, the factors such as rolling speed, roll slit, mill current and rolling force
are selected to form a multi-feature data set. Then, an LSTM whose hyperparameters
are optimized by IBCO, namely IBCO-LSTM, is utilized to conduct experiments on the
multi-feature data set, and the results indicate the excellent capability of prediction of the
proposed method.
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RELATED WORK
Border collie optimization
Inspired by the herding behavior of border collies in daily life, Tulika Dutta et al. proposed
Border Collie Optimization (BCO) algorithm (Dutta et al., 2021). Three border collies are
randomly initialized: the lead dog, the left guide dog, and the right guide dog. The fitness
values are fit f , fit le and fit ri respectively. The rest of the population consists of sheep, and
the fitness value is denoted as fit s. The updates of the velocity of the three guide dogs at
time t +1 are shown in Eq. (1):

Vf ,ri,le(t+1)=
√
Vf ,ri,le(t )2+2×Accf ,ri,le(t )×Popf ,ri,le(t ) (1)

where Acc (t ) represents the acceleration of the three dogs at moment t, and Pop (t )
represents their position at moment t. The update of the velocity of the aggregated sheep
is shown in Eq. (2):

Vsg (t+1)=
√
Vf (t+1)2+2×Accf (t )×Popsg (t ). (2)

Three guide dogs control the global search of the entire algorithm. They move in
different directions and are independent of each other. They can quickly find regions in
the large search space where optimal solutions are likely to exist. The movement of the
flocks are influenced by the three guide dogs. Also, the flocks can focus on local searches in
the space, and strive to find a better position. The updates of positions of the three border
collies and the flock are shown in Eqs. (3) and (4).

Popf ,ri,le(t+1) =Vf ,ri,le(t+1)×Timef ,ri,le(t+1)

+
1
2
Accf ,ri,le(t+1)×Timef ,ri,le(t+1)2 (3)

Popsg (t+1) =Vsg (t+1)×Timesg (t+1)

+
1
2
Accsg (t+1)×Timesg (t+1)2. (4)

LSTM
LSTMoptimizes the hidden layer structure based onmemory information like the recurrent
neural network, and introduces a ‘‘gate’’ structure into the hidden layer neurons, namely
input gate, forget gate and output gate, which control the update of historical data (Zhai et
al., 2021).

Forget gate: The forget gate is responsible for selectively forgetting the state information
transmitted in the previous moment, namely, forgetting the redundant information. The
calculation process of the forget gate is shown in Eq. (5):

ft = σ (Wf · [ht−1,xt ]+bf ) (5)

where ft is the output of the forget gate. ht−1 is the hidden state at moment t -1. xt is the
input at moment t. Wf represents the weight matrix of the forget gate. bf denotes the bias
of the forget gate. σ represents the sigmoid activation function.
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Input gate: The input gate determines the extent to which the current input information
xt is stored in the long-term state Ct and it controls which new information is added to
the unit state Ct . The calculation process of the input gate is shown in Eqs. (6) to (8):

it = σ (Wi · [ht−1,xt ]+bi) (6)

C̄t = tanh(Wc · [ht−1,xt ]+bc) (7)

Ct = ft ×Ct−1+ it × C̄t (8)

where it represents the output of the sigmoid activation function in the input gate. C̄t

denotes the candidate input. Ct is the unit state at time t.
Output gate: The output gate is responsible for determining which values the memory

unit outputs at the current moment, namely, calculating the output based on the unit state.
The calculation process of the output gate is shown in Eqs. (9) and (10):

ot = σ (Wo · [ht−1,xt ]+bo) (9)

ht = ot × tanh(Ct ) (10)

where ot is the output gate; ht represents the hidden state of the memory unit at moment
t.

The proposed method
IBCO
(1) Population initialization method based on Tent chaotic mapping. The border collie
optimization (BCO) algorithmutilizes the randomly generated data as the initial population
information, which will cause uneven distribution of individuals in the initial population,
reduce the diversity of the population, seriously affect the efficiency of the algorithm
in searching for the optimal solution, and even lead to the failure of the algorithm
optimization. In order to enhance the uniformity and ergodicity of population distribution,
chaotic mapping is introduced to optimize the population initialization. The chaotic
mappings are generated by iterations of the deterministic nonlinear difference equation.
The motion orbit is disordered, but its internal evolution is regular and can traverse the
state space (Zhang et al., 2022).

At present, the widely used chaotic map is Logistic chaotic map, but some scholars
have proved that Tent map has better ergodicity, uniformity and faster iteration speed
than Logistic map (Zhang et al., 2021). Therefore, Tent mapping is quoted to BCO in this
article, which is named improved BCO and denotes as IBCO. Tent mapping expression is
shown in Eq. (11).

xn+1=


xn
α
, 0≤ xn≤α

1−xn
1−α

, α < xn≤ 1
(11)

where α is the mapping parameter, the system is in a chaotic state when α is between 0 and
1, and the mapping chaos is very strong when α>0.43. In this article, take Tent mapping
with α = 0.5, namely its most classical state, and the chaotic sequence obtained by the
mapping is uniformly distributed. Tent mapping not only preserves the randomness of
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initialized individuals, but also improves the diversity of the population and the quality of
the distribution of the search space, which makes the algorithm easy to jump away from
the local optimal solution when solving function optimization problems and improves the
global search capability.

In order to verify the effectiveness of the initial population distribution in Tent chaotic
map optimization algorithm, 100 points were randomly generated in the two-dimensional
plane to conduct the initial population distribution experiment, as shown in Fig. 1.

It can be clearly seen from Fig. 1 that the uniformity and ergodicity of the initial
population distribution in the border collie optimization (BCO) algorithm based on Tent
chaotic mapping are significantly better than those of the algorithm population initialized
by random method, which is more conducive to improving the global search ability of the
algorithm.

(2) The update method of lock speed based on dynamic weighting strategy. The original
BCO algorithm does not reflect the speed effect of the guide dog with good fitness on
flock speed, resulting in the inaccurate motion state of the tracked sheep and reducing the
local optimization accuracy. Therefore, the weighted strategy of dynamic proportion is
proposed to update the speed of the tracked sheep. The dynamic proportional weight can
clearly show the importance of the left and right guide dogs after each iteration, so that the
guide dogs with better position play a more important leading role in the flock, and more
accurately guide the tracked sheep to move in the right direction. The dynamic weight of
left and right guide dog speed is shown in Eqs. (12) and (13), and the improved method of
speed of tracked sheep is shown in Eq. (14).

ωle =
fitri

fitle+ fitri
(12)

ωri =
fitle

fitle+ fitri
(13)

Vss =
ωleVle+ωriVri

(ωle+ωri)
(14)

where ωle is the speed weight of the left guide dog; ωri is the speed weight of the right
guided dog.

LSTM optimized by IBCO
The important parameters of LSTM, namely the number of neurons of hidden layer and the
learning rate, are difficult to determine and are often based on personal experience, which
is random and can cause the prediction performance of the model to be very unstable.
Therefore, IBCO-LSTM strip thickness prediction model is proposed, and the parameters
of LSTM are optimized by using the improved BCO algorithm. The overall flow chart of
IBCO-LSTM strip thickness prediction model is shown in Fig. 2.

The optimal individual position (the position of the leading dog) in the algorithm is
taken as the number and learning rate of neurons in the hidden layers of LSTM to establish
the optimal prediction model. The optimization process of LSTM parameters by IBCO
algorithm is as follows:
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Figure 1 Comparison of population distribution initialization by randommethod and Tent chaotic
mapping.

Full-size DOI: 10.7717/peerjcs.1114/fig-1

Figure 2 Overall flow chart of IBCO-LSTM strip thickness prediction model.
Full-size DOI: 10.7717/peerjcs.1114/fig-2

(1) Specify the basic parameters in the optimization process of parameters LSTM,
including the size of the algorithm population n, the maximum number of iterations
Max_iterations. Limit the neurons number of hidden layer and the search range of
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Figure 3 Rolling force signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-3

learning rate. And randomly initialize the velocity, acceleration and time of individual
movements in the population.

(2) Initialize the population position of BCO algorithm by Tent chaotic mapping, and the
individual positions p1, p2, p3 are set as the number of neurons and learning rate of
each hidden layer of the model.

(3) Train the model by tenfold cross validation method, and the root mean square error
between the actual thickness and the predicted thickness is used as the fitness function
of IBCO.

(4) Carry out the iteration to calculate the position of individuals in each iteration and
calculate the fitness value. The optimal historical position of individuals is determined
by comparison and then the optimal position of the population is determined. When
the maximum number of iterations is reached, the optimal individual position (the
position of leader dog) is mapped to the number of neurons in the hidden layer of
LSTM and the learning rate, and end the optimization process.

EXPERIMENT AND RESULT ANALYSIS
Data collection and analysis
In order to validate the performance of the proposed method, diverse experimental studies
will be carried out. The experimental data are from the hot continuous rolling and finishing
mill of a steel plant of a domestic iron and steel group, which includes nine stands. When
collecting data, a thickness gauge is installed in the finishing mill to measure the thickness
of the strip outlet. At the same time, sensors are installed on the hydraulic lower devices
of nine flat roller stands in the finishing mill to collect the factors of the strip thickness.
The strip thickness of the final collected data is numerical data, while the factor data exists
in the form of signals, mainly including mill rolling force, strip outlet temperature, mill
current, SONY value, rolling speed, and roll gap. Since the signal is complex and cannot
be directly utilized as the experimental data, for this reason ibaAnalyzer is used to analyze
the data and convert the signal data into numerical type sequences. After the analysis is
completed, the multi-dimensional factor sequence and thickness are combined to form the
original numerical strip data. Some factors are shown in Figs. 3 to 8.

Rolling feature selection
The original strip data is actually a nonlinear time series, which contains many factors
affecting the accuracy of strip thickness, but the influence degree of each factor is
not the same, and there may be redundant factors with weak influence. The weak
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Figure 4 Plate and strip exit temperature signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-4

Figure 5 Rolling mill current signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-5

Figure 6 Rolling gap signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-6

correlation redundancy factors should be eliminated, and the important factors with
strong representativeness should be used as the input data characteristics of the model
training, which can reduce the complexity of the model, shorten the training time and
improve the generalization ability of the model.

Mutual information is usually used as an effective standard to measure the correlation
between two random variables. This measurement is not only applicable to linear
correlation variables, but also applicable to nonlinear correlation variables (Vergara
Jorge & Estévez, 2014). It is a feature selection method widely used in the field of machine
learning (Zhang & Wang, 2016). Mutual information can be used to quantify the mutual
information value between each factor and thickness. According to the mutual information
value, the importance of each factor can be compared, and then the importance of each
factor can be ranked. The larger the mutual information value is, the closer the variable
relationship is. The definition of mutual information between two random variables X and
Y is shown in Eq. (15).

I (X ,Y )=
∫∫

ρ(x,y)log
ρ(x,y)
ρ(x)ρ(y)

dxdy (15)
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Figure 7 Rolling speed signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-7

Figure 8 Strip thickness signal diagram.
Full-size DOI: 10.7717/peerjcs.1114/fig-8

Table 1 Mutual information table of influencing factors and strip thickness.

Factors Sony
value

Temperature Roll
speed

Roll
gap

Mill
current

Mill
rolling
force

I 0.1684 0.1931 0.5052 0.6269 0.6625 0.8239

where, ρ(x) is the edge probability density function of X, ρ(y) is the edge probability
density function of Y. ρ(x,y) represents the joint probability density function between
random variables X and Y.

Mutual information is used to realize the feature selection of the original factors. The
important factors are selected as the features of the input data set of the model. The specific
process of feature selection is as follows:

Step 1: Calculate the mutual information between the factors and strip thickness
according to Eq. (15), as shown in Table 1.

Step 2: According to the principle of mutual information feature extraction (Wang et
al., 2022; Yu et al., 2022). Take the threshold α= 0.2.

Step 3: The factors with mutual information value I greater than α are selected. The
factors selected according to Table 1 include rolling speed, roll gap, rolling current and
rolling force.

Performance analysis of IBCO algorithm
In order to verify the superior performance of the improved border collie optimization
algorithm, IBCO algorithm, border collie optimization (BCO) algorithm, whale
optimization algorithm (WOA), grey wolf optimization (GWO) algorithm and particle
swarmoptimization (PSO) algorithmare jointly used for independent repeated experiments
on six test functions to compare the optimization performance of the algorithm (Yin et
al., 2021). In the experiment, the size of population is set to 30, the maximum number of
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Table 2 Table of test function formula.

Test function Specific formula

Function f1 f1(x)=
∑n

i=1x
2
i

Function f2 f2(x)=
∑n

i=1 |xi|+
∏n

i=1 |xi|

Function f3 f3(x)=maxi {|xi|,1≤ i≤ n}

Function f4 f4(x)=−20exp
(
−0.2

√
1
n

∑n
i=1x

2
i

)
−exp

( 1
n

∑n
i=1cos2πxi

)
+20+e

Function f5 f5(x)=
[

1
500 +

∑25
j=1

1
j+
∑2

i=1(xi−aij)
6

]−1

Function f6 f6(x)=
∑11

i=1

[
ai− xi−(b2+bix2)

b2i +bix
3+x4

]2

Figure 9 The curve of function f1 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-9

iterations is set to 250, and each function is tested for 30 times independently. The test
function expressions are shown in Table 2.

In Table 2, f 1, f2 andf 3 are single-peaked test functions, and f 4 is multi-peaked test
function. The number of local minimum values of multi-peaked function increases
exponentially with the increase of problem dimension, which is the most difficult test
function for algorithm optimization. The f 5 and f 6 are the fixed-dimensional multi-peaked
test functions, which have only a few local minimums. The optimal values of f 1 to f 5 are
0, and the optimal value of f 6 is 0.0003. The related parameters of each algorithm are
initialized: the logarithmic spiral coefficient b of the whale algorithm is set to 1, and the
search coefficient a decreases from 2 to 0. Grey Wolf algorithm collaborative coefficient
vector c = [0, 2], and convergence factor a = [0, 2]. The maximum speed of the particle
swarm algorithm is set to 6, the inertia weight w = (0.2, 0.9), and the learning factor C1 =
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Figure 10 The curve of function f2 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-10

C2= 2. The convergence curves of the five algorithms on six benchmark test functions are
shown in Figs. 9 to 14.

Figures 9 to 11 are single-peak function convergence curves. It can be seen that the
convergence accuracy of IBCO on function f 1 and f 2 is better than that of BCO, and it
is also better than other algorithms. Besides, its convergence effect is obvious. IBCO has
the fastest speed of convergence and the highest accuracy on function f 3, and it can still
perform well when other algorithms fall into stagnation. Therefore, IBCO has the best
ability to find the best when solving for the single-peak function. Figures 12 to 14 show the
convergence curves of the multi-peak and fixed multi-peak functions. IBCO can jump out
of the local optimum and converge to the optimal value on both the multi-peak function
f 4 and fixed multi-peak function f 6 with the highest accuracy of the optimization, and the
convergence speed on the function f4 is very fast.

The algorithm can’t converge to the optimal value of the function f 5, but IBCO still has
the best performance and the highest convergence accuracy among the algorithms. The
optimization effect of each algorithm on function f 5 is not good and does not converge
to the optimal value, but IBCO is still the best in many algorithms and has the highest
convergence accuracy. Although the convergence rate of IBCO on function f 5 and f 6 is
not the fastest, it converges to a better value at the expense of a little convergence rate and
it is generally acceptable. In short, IBCO can jump out of local optimum in multi-peak
and fixed multi-peak function. In addition, the optimization accuracy is better than other
algorithms and the speed is faster. In order to further analyze the performance of IBCO,
the optimal value, average value and standard deviation of each algorithm are compared
in Table 3. The optimal value and average value measure the optimization accuracy of the
algorithm, and the standard deviation is used to measure the robustness and stability of the
algorithm. It can be seen from the table that the optimal value, average value and standard
deviation of IBCO in functions f 1, f2 andf 4 are the lowest, indicating that IBCO has the
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Figure 11 The curve of function f3 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-11

Figure 12 The curve of function f4 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-12

highest optimization accuracy, the strongest stability and robustness. In functions f 3 and
f 6, the optimal value of IBCO is the lowest and the optimization accuracy is the highest
standard deviation are at the medium level but better than BCO.

Performance analysis of IBCO-LSTM
The prediction performance of IBCO-LSTM, BCO-LSTM, LSTM, BP, SVM and LSSVM
applied by scholars in the field of strip thickness prediction are compared and analyzed
through experiments. First, the parameters involved in the algorithm are initialized, the
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Figure 13 The curve of function f5 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-13

Figure 14 The curve of function f6 fitness change.
Full-size DOI: 10.7717/peerjcs.1114/fig-14

population size n = 50, the dimension d = 3, and the maximum number of iterations
Max_iterations = 5.

In the experiments, the training data set contains 800 training samples, and the test
data set contains 100 test samples. The root mean square error (RMSE) is adopted as an
evaluation index to evaluate the prediction accuracy of the six models (Sun et al., 2022).
Each model is repeated five times to obtain the average RMSE. The comparison results of
different models are shown in Table 4.

According to Table 4, it is obvious that the prediction accuracy of IBCO-LSTM is
higher than those of BCO-LSTM, LSTM, BP, SVM and LSSVM in terms of RMSE and
IBCO-LSTM possesses the highest prediction accuracy. In order to visualize the superiority
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Table 3 Test results comparison table of five algorithms.

Test
function

Algorithms Optimum Average Standard
deviation

f1(x) IBCO 5.9121e−107 2.577492e−96 1.41175e−96
BCO 3.4073e−80 2.600108e−75 1.38734e−74
WOA 4.84e−42 1.559564e−40 6.136066e−40
GWO 9.9565e−15 9.830024e−15 2.056833e−14
PSO 0.005012814046 0.01493904 0.01365109

f2(x) IBCO 2.1615e−51 3.858876e−51 6.683491e−50
BCO 2.0077e−39 1.07071e−38 1.144189e−38
WOA 9.8105e−27 3.275149e−27 5.659799e−27
GWO 1.5076e−08 3.616921e−08 2.99297e−08
PSO 1.079889073 36.26523 45.93333

f3(x) IBCO 8.2795e−23 0.786683 0.023779
BCO 26.3125 42.09241 18.42621
WOA 26.9846 68.60237 24.04321
GWO 0.00053351 0.0004998922 0.0001614484
PSO 2.400611101 1.718419 0.4211281

f4(x) IBCO 8.8818e−16 8.881784e−16 0
BCO 1.99991 1.6666361 0.546481
WOA 7.9936e−15 6.809368e−15 2.05116e−15
GWO 7.2383e−09 1.114221e−08 4.52399e−09
PSO 0.09555346357 0.4457932 0.4781256

f5(x) IBCO 1.0244 1.090221 0.1364509
BCO 2.0609 1.65959 0.5617166
WOA 3.9683 1.988086 1.714872
GWO 2.9821 2.320738 1.145521
PSO 1.9920 3.304302 2.272921

f6(x) IBCO 0.00073362 0.001058119 0.0005487052
BCO 0.0010367 0.001237638 0.0005635634
WOA 0.0015913 0.0007540982 0.0007251614
GWO 0.020363 0.007156549 0.0114377
PSO 0.001074390894 0.0009900573 9.206907e−05

Notes.
The bold style indicates that the current value is the optimal value searched by the optimization algorithm.

of the prediction performance of the proposedmodel, the error comparison curves between
the prediction results of the sixmodels and the actual values are plotted, as shown in Figs. 15
to 17:

According to the standard of GB709-88, the strip with high rolling accuracy between
1.60 mm and 2.00 mm in strip thickness has the thickness allowable deviation of ±0.13
mm. In Fig. 15, it can be directly seen that the error between the predicted thickness and
the actual thickness of IBCO-LSTM is within ±0.02 mm, which is much lower than 0.13
mm. Therefore, the proposed IBCO-LSTM prediction model can meet the actual demand
in the rolling field, and the prediction effect is good. If this algorithm is applied to the
control system, the rolled strip of the control system can reach the qualified standard.
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Table 4 The comparison results of different models.

IBCO-LSTM BCO-LSTM LSTM BP SVM LSSVM
No. RMSE RMSE RMSE RMSE RMSE RMSE

1 0.0054277 0.0071203 0.0087389 0.026182 0.019746 0.017528
2 0.0066768 0.0073653 0.0082481 0.018319 0.020799 0.018471
3 0.0062486 0.0075435 0.0082161 0.01895 0.020116 0.019123
4 0.0059155 0.0074308 0.0079511 0.036869 0.01978 0.017598
5 0.0068407 0.0071089 0.0082362 0.0234132 0.016647 0.018955
Average 0.00622186 0.00731376 0.0082781 0.0247466 0.019428 0.018335

(a) (b)

Figure 15 Prediction curve of (A) IBCO-LSTM and (B) BCO-LSTM.
Full-size DOI: 10.7717/peerjcs.1114/fig-15

(a) (b)

Figure 16 Prediction curve of (A) LSTM and (B) BP.
Full-size DOI: 10.7717/peerjcs.1114/fig-16

Figure 18 is the comparison diagram of the convergence curve of IBCO-LSTM, BCO-
LSTM and WOA-LSTM after 30 iterations. From the diagram, it can be seen that IBCO-
LSTM has the highest convergence accuracy, namely the lowest prediction error, which
indicates that its prediction effect is the best.
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(a) (b)

Figure 17 Prediction curve of (A) SVM and (B) LSSVM.
Full-size DOI: 10.7717/peerjcs.1114/fig-17

Figure 18 Convergence comparison of models.
Full-size DOI: 10.7717/peerjcs.1114/fig-18

CONCLUSIONS
In this article, IBCO-LSTM strip thickness prediction model is proposed to accurately
predict the strip thickness. The prediction accuracy of this model is further improved
compared with the traditional model, which contributes to the high quality strip in the
rolling industry, and the main reasons are as follows:
(1) Due to the large number of data features collected from the actual rolling environment

and the nonlinear correlation of all features with strip thickness, mutual information
is introduced for feature selection of the data set to reduce the model complexity.
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(2) In addition, the prediction accuracy of LSTM is greatly affected by the parameter
setting. Therefore, the swarm intelligence algorithm is used to optimize the LSTM
parameters, search the optimal LSTM parameters. And the optimal prediction model
is constructed to improve the prediction accuracy of strip thickness.

(3) The swarm intelligence algorithm referred in this article is the border collie optimization
algorithm, which has strong optimization ability. However, there are problems such
as uneven distribution of initial population and inaccurate motion state of some
individuals, which affect the convergence accuracy of the algorithm. Therefore, an
improved border collie optimization algorithm is proposed. Tent mapping is used to
optimize the population initialization method, improve the uniformity and ergodicity
of the initial population distribution, and further improve the global search ability of
the algorithm. The dynamic weight is introduced into some individual speed updating
methods, and the dynamic weighting strategy is used to make the motion state more
accurate and improve the local optimization accuracy of the algorithm.
According to a series of comparative experiments, the superiority of the proposed model

is verified. For further development, IBCO-LSTM has higher prediction accuracy than
some traditional strip thickness prediction models, but more relevant factors may be taken
into account if it is to be applied to the complex strip rolling environment, and more
in-depth research is needed, such as the coupling between rolling parameters and the
prediction process.
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