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ABSTRACT
Short-term power load forecasting is essential in ensuring the safe operation of power
systems and a prerequisite in building automated power systems. Short-term power
load demonstrates substantial volatility because of the effect of various factors, such
as temperature and weather conditions. However, the traditional short-term power
load forecasting method ignores the influence of various factors on the load and
presents problems of limited nonlinear mapping ability and weak generalization ability
to unknown data. Therefore, a short-term power load forecasting method based on
GRA and ABC-SVM is proposed in this study. First, the Pearson correlation coefficient
method is used to select critical influencing factors. Second, the gray relational analysis
(GRA) method is utilized to screen similar days in the history, construct a rough set of
similar days, perform K -means clustering on the rough sets of similar days, and further
construct the set of similar days. The artificial bee colony (ABC) algorithm is then
utilized to optimize penalty coefficient and kernel function parameters of the support
vector machine (SVM). Finally, the above method is applied on the basis of actual load
data in Nanjing for simulation verification, and the results show the effectiveness of the
proposed method.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Artificial bee colony algorithm, Gray relational analysis, Short-term power load
forecasting, Similar days, Support vector machine

INTRODUCTION
Short-term power load forecasting is the basis for the safe operation of power systems and
the formulation of dispatching plans (Liao et al., 2011). The cyclical nature and substantial
uncertainty in the load due to the effect of many factors lead to many load forecasting
challenges. Short-term power load forecasting based on selecting similar days can provide
a reference for the operation and dispatch of regional power systems.

Short-term load forecasting approaches are mainly categorized as traditional and
machine learning methods. Traditional methods include the time series (Borges, Penya
& Fenandez, 2013; Espinoza et al., 2005), Kalman filter (Sharma & Majumdar, 2020),
exponential smoothing (Arora & James, 2013) methods and so on. Machine learning
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methods include artificial neural networks (Deng et al., 2019; Liu, Liu & Zhang, 2022),
support vector machine (Chen, Chang & Lin, 2004; Qi et al., 2021), long short-term
memory networks (Rafi et al., 2021) and so on. Mai et al. (2015) presents a short-term
load forecasting method based on the Kalman filter, but its weak mapping ability to
nonlinearity affects the forecasting accuracy. Hu, Guo & Wang (2021) uses sparrow search
algorithm to optimize the penalty coefficient C and kernel function parameter g of the
least squares support vector machine and improve the prediction accuracy. Wang, Dou &
Meng (2021) utilizes a multicore extreme learning machine with improved particle swarm
optimization parameters for prediction. However, the global search ability is weak when
particle swarm optimization parameters are optimized. Liu et al. (2018) applies empirical
mode decomposition to divide the load into various IMS components and bat algorithm to
optimize parameters of the support vector machine. The output results are then corrected
using the Kalman filter method to improve the prediction accuracy. However, the bat
algorithm demonstrates the limitations of long search time and weak global search ability.
To sum up, although the traditional method based on statistics presents advantages of
simplicity and speed, it ignores the influence of various external factors on the load and
shows poor nonlinear mapping ability. The method based on machine learning is suitable
for processing. The nonlinear short-termpower load problem exhibits strong generalization
ability to anonymous data but difficulty in optimizing parameters.

Preprocessing historical data is essential before using them as input data for short-term
load forecasting. Zhu et al. (2021), Ceperic, Ceperic & Baric (2013), Chen et al. (2021), Farsi
et al. (2021), Pham, Nguyen & Wu (2021) and Yin et al. (2020) screen external factors
that affect the load but fail to select similar days for historical data; the results showed
that massive data unrelated to the day to be forecasted in the input data occupy a large
amount of computing resources. The forecasting time is long, and the forecasting model
fails to predict the causal relationship between external factors and the load on the day
to be forecasted accurately. Zhao & Dai (2020) uses hourly granularity to select similar
days in holiday forecasting to enhance the prediction accuracy but only selects similar
days once, only considers the time factor, and ignores important factors, such as weather
and temperature. Liu & Wei (2020) utilizes an improved gray relational analysis method to
select the set of similar days but only considers the geometric similarity between influencing
factors and neglects the numerical similarity. Hence, a large error exists in the selection of
similar days. Wu et al. (2018) adopts an improved gray relational method to select similar
days while solving the problem that gray relational analysis only considers the geometric
similarity between factors. However, the selection of similar days is not carried out twice,
and the collection of similar days is slightly rough. Therefore, the problem of redundant
input data after selecting influencing factors and processing a similar day on input data
still exists, thereby decreasing the prediction accuracy.

To sum up, the traditional forecasting method ignores the influence of various factors
on the short-term power load. Meanwhile, the support vector machine can learn the
relationship between external factors and the load and rapidly deal with nonlinear
problems. The grey relational analysis method screens historical data for geometric
similarity, screening daily historical information similar in shape to the load curve of the
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day to be forecasted. In addition, because this method cannot screen daily historical data
identical to the daily load value to be predicted, the set of similar days screened out is
relatively rough. However, K -means clustering filters historical information for numerical
similarity. Therefore, using the grey relational analysis method and K -means clustering
to select two similar days can screen historical data from both geometric and numerical
aspects and remove and predict to the greatest extent. A more accurate collection of similar
days can be obtained for historical data with low daily correlation. The artificial bee colony
algorithm presents the advantages of fast optimization of parameters and difficulty in
falling into the local optimum. On this basis, GRA and ABC-SVM short-term power load
forecasting methods are proposed. First, the Pearson correlation coefficient method is
adopted to screen external factors affecting the load. Second, historical data are screened
twice using gray relational analysis and K -means clustering. Third, the ABC-SVM load
forecasting model is constructed. Finally, actual electricity consumption data of a city for 1
year is verified, and the prediction results are then compared with those of multiple models,
such as long short-term memory (LSTM) neural network, to confirm the effectiveness of
the proposed method. The proposed method uses grey relational analysis and K -means
clustering to select similar days twice, which solves the problem of reducing prediction
accuracy caused by excessive input of irrelevant data in short-term load forecasting. The
artificial bee colony algorithm is used to optimize the critical parameters of the support
vector machine model, which avoids the problem that the prediction accuracy is reduced
due to improper parameter selection of the support vector machine in short-term load
forecasting.

PROBLEM DESCRIPTION OF SHORT-TERM POWER LOAD
FORESCASTING
Short-term power load forecasting must consider not only the change of load over time and
the influence of temperature, weather conditions, wind direction, wind force, and other
factors on the load but also external factors to improve the prediction accuracy. Hence,
identifying external factors that exert a important influence on the load is necessary. At the
same time, historical data irrelevant to or weakly correlated with the date to be forecasted
are necessary due to the massive amount of data required for short-term load forecasting. If
these data are used as input, then the forecasting accuracy will decrease. Therefore, filtering
historical data and finding historical data closely related to the day to be predicted are
necessary for training. Traditional methods based on statistics are unsuitable for nonlinear
problems. Hence, choosing an appropriate machine learning algorithm for short-term
power load forecasting is necessary. The problem description of short-term power load
forecasting is shown in Fig. 1. your materials and methods here.

STRATEGY STRUCTURE OF SHORT-TERM POWER LOAD
FORECASTING
The process of short-termpower load forecasting based onGRA andABC-SVM is presented
as follows. First, the Pearson correlation coefficient analysis method is used to identify
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Figure 1 Description of the short-term power load forecasting problem.
Full-size DOI: 10.7717/peerjcs.1108/fig-1

Figure 2 Strategy map for short-term power load forecasting methods.
Full-size DOI: 10.7717/peerjcs.1108/fig-2

critical influencing factors. Second, the gray correlation analysis method is applied to
construct a rough set of similar days, and K -means clustering is utilized to filter the
similarities again. Third, the ABC algorithm is adopted to find the optimal penalty
coefficient C and kernel function parameter g of the SVM. Finally, the similar day set is
inputted into the optimized SVM model as input data for training. Mean absolute (MAE),
mean absolute percentage (MAPE), and root mean square (RMSE) errors were selected to
measure the performance of the forecasting method. The specific implementation strategy
of the method is presented in Fig. 2.
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Table 1 Correlation coefficient and correlation degree table.

Correlation coefficient interval Relevance

0.2≤|ρ|< 0.4 Very weak correlation
0.2≤|ρ|< 0.4 Weak correlation
0.4≤|ρ|< 0.6 Moderately relevant
0.6≤|ρ|< 0.8 Strong correlation
0.8≤|ρ|< 1.0 Very strong correlation

Selection of influencing factors based on Pearson correlation coeffi-
cient method
Short-term power load forecasting requires not only massive load data but also external
factor data. External factors include temperature, weather conditions, wind direction, wind
force, whether the day is a workday, and whether the day is a holiday. Changes in external
factors will cause variations in the power load. Therefore, the relationship between load and
external factors can be accurately determined by filtering external factors with a significant
impact on the load to improve the prediction accuracy.

The Pearson correlation coefficient method is a statistical indicator used to measure the
degree of correlation between the influencing factor X and the load Y, and its value is in
the [ −1,1] interval (Kong & Nian, 2021). The Pearson correlation coefficient is calculated
as follows:

ρ=

∑n
k=1

(
yk−y

)
(xk−x)√∑n

k=1
(
yk−y

)2∑n
k=1(xk−x)

2
. (1)

The degree of correlation between the two variables is high when the absolute value of ρ is
close to 1. By contrast, the degree of correlation between the two variables is low when the
absolute value of ρ is close to 0.

The standard definition of correlation for the Pearson correlation coefficient analysis
method is presented in Table 1.

Construction of similar daily rough sets based on gray relational
analysis
Gray relational analysis is a statistical method for mining the similarity between values
(Kong, Li & Zheng, 2020). A large correlation value corresponds to high similarity between
the historical day and the day to be predicted in the selection process of similar days. By
contrast, a small correlation value indicates low similarity between the historical day and
the day to be measured. The input is the characteristic value of the maximum temperature,
minimum temperature, whether the day is a workday, and whether the day is a holiday
in the historical day and the day to be predicted. The output is the gray correlation value
between the historical day and the day to be predicted. The process of GRA is illustrated in
Fig. 3.

(1) Extract the value of each external factor on the i th day to form a set Yi:

Yi=
[
yi1yi2yi3 ...yim

]
, (2)
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Figure 3 Flowchart of selecting the similar day rough set through gray relational analysis.
Full-size DOI: 10.7717/peerjcs.1108/fig-3
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where i= 1,2,...,n; n is the number of historical load data samples; yim is the value of the
m th external factor on the i th day; and m is the number of external factors.

Eigenvector of the day to be predicted Y 0 is expressed as follows:

Y0=
[
y01y02y03 ...y0m

]
, (3)

where y0m is the value of the m th external factor on the day to be predicted.
(2) Construct the gray relational matrix F :

F =


F11 F12 ... F1m
F21 F22 ... F2m
. . .

Fn1 Fn2 ... Fnm

. (4)

Each element in the matrix is calculated as follows:

Fik =
mini=1,...,nmink=1,...,m

∣∣y0k−yik∣∣+ρmaxi=1,...,nmaxk=1,...,m
∣∣y0k−yik∣∣∣∣y0k−yik∣∣+ρmaxi=1,...,nmaxk=1,...,m

∣∣y0k−yik∣∣ , (5)

where Fik (i= 1,2,...,n;k= 1,2,...,m) is the correlation coefficient corresponding to the
k th external factor of the i th historical load sample, yik (i= 1,2,...,n;k= 1,2,...,m) is
the value of the k th external factor of the i th historical load sample, y0k (k= 1,2,...,m)
is the value of the i th external factor on the day to be forecasted, and ρ is the resolution
coefficient typically set to ρ = 0.5. The Pearson correlation coefficient method is applied
to determine the weight of each external factor as follows:

W = [ω1,ω2,...,ωm],ωk =
pk∑m
k=1pk

, (6)

where pk is the absolute value of the Pearson correlation coefficient of the k th external
factor; ωk is the weight occupied by the k th external factor; and k= 1,2,...,m.

(3) Use the weights of external factors to weigh the gray relational matrix F and construct
the gray relational decision matrix F1:

F1= FW T
=


ω1F11 ω2F12 ... ωmF1m
ω1F21 ω2F22 ... ωmF2m
. . .

ω1Fn1 ω2Fn2 ... ωmFnm

. (7)

(4) Add the element values of each row in the matrix to obtain the correlation value Di

of each historical sample.

Di=

m∑
k=1

ωkFik, (8)

where Di is the gray correlation value between the i th historical day and the day to be
predicted.
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Secondary selection of similar day sets based on K -means
clustering
K -means clustering (Xi et al., 2019) is used to build a set of similar days to reduce historical
data in the set with low correlation and days to be predicted further given that the gray
relational analysis method only builds a rough set of similar days for geometric similarity.
First, the number of cluster centers is set by the silhouette coefficient. Second, the Euclidean
distance between influencing factors and the cluster center in each historical day sample
in the rough set of similar days is calculated using Formula (9), and the daily samples are
classified. Finally, the distance between each cluster center and influencing factors of the
day to be predicted is calculated, the cluster center with the minimum distance is selected,
and the historical daily samples included in the cluster center are considered the final set
of similar days. This process is shown in Fig. 4.

dj =

√√√√ m∑
k=1

(
xk−pjk

)2
, (9)

where xk (k= 1,2,...,m) is the eigenvalue of the k th factor of influencing factors on the
day to be predicted and pjk

(
j = 1,2,...,l;k= 1,2,...,m

)
is the value of the k th influence

factor of the j th group of cluster centers.

ABC-SVM short-term power load forecasting model
Mathematical model of ABC algorithm to optimize SVM parameters
(1) Objective function

The minimum mean square error J between predicted and actual load values of the
support vector machine is used as the objective function in this study.

minJ =
1
N

N∑
i=1

(
y ′i −yi

)2
, (10)

where N is the time point, y ′i is the predicted load value at the i th time, and yi is the actual
load value at the i th time.

(2) Constraints
Setting upper and lower bound constraints on parameters to be optimized is necessary

to improve the accuracy of the algorithm, find optimal parameters of the support vector
machine, and reduce the optimization time of the algorithm.{
C ∈ [0.01,50]
g ∈ [0.01,50]

, (11)

whereC is the penalty coefficient of the support vector machine and g is the kernel function
parameter of the support vector machine.

Design of artificial bee colony optimization algorithm
Karaboga & Akay (2007) proposed an intelligent optimization algorithm that imitates the
honey-collecting behavior of bees called the artificial bee colony (ABC) algorithm in 2005.
ABC consists of four parts, namely, food source, lead bee, watcher bee, and scout bee, and
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Figure 4 K -means clustering flowchart for selecting similar day sets.
Full-size DOI: 10.7717/peerjcs.1108/fig-4
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Table 2 Correspondence between honeybee collecting behavior and parameter optimization problem.

Honeybee collection behavior Specific optimization problems

Food source Two-dimensional vector composed of SVM
parameters C and g

Amount of nectar from food source Fitness value in the problem
Process of finding and gathering food sources SVM prediction process
Food source for the maximum amount of nec-
tar

Optimal parameters C and g of SVM

demonstrates the advantages of fast optimization and difficulty in falling into the local
optimum.

The relationship between the honeybee collection behavior and the optimization
problem in the ABC algorithm is presented in Table 2.

The process of finding optimal parameters of the SVM is presented as follows:
(1) Initialize the honey source
First, set the population size, number of feasible solutions SN, maximum number of

iterationsMCN, control parameter limit, upper and lower bounds of the penalty coefficient
C, and kernel function parameter g. Second, randomly generate two-dimensional SN
vector solutions X t

i (i= 1,2,...,SN ) according to Formula (12), where t is the number of
iterations.

xi,j = xmin,j+ rand (0,1)
(
xmax,j−xmin,j

)
, (12)

where j ∈ (1,2) and xmax,j and xmin,j are the upper and lower bounds of the penalty
coefficient C and the kernel function parameter g, respectively. These feasible solutions
will be randomly assigned to SN -employed bees, and the fitness of these solutions will be
calculated. The relationship between the objective function value of the solution and the
fitness value is expressed as follows:

fiti=

{
1/
(
1+ fi

)
, fi≥ 0

1+abs
(
fi
)
, otherwise

)
(13)

where fi is the objective function value.
The objective function value takes the feasible solution as the penalty coefficient C and

the kernel function parameter g of the SVM. The mean square error between predicted
and actual load values of the predicted day is obtained after inputting historical data in a
similar day set for training.

(2) Leading bee stage
Each lead bee uses Formula (14) to search around its feasible solutions and find new

feasible solutions. The mean square error between predicted and actual load values of the
support vector machine corresponding to the new solution will be calculated when a new
solution is found. If the mean square error corresponding to the new solution is smaller
than the old solution, then the lead bee will give up the old solution. A new solution is
selected and the penalty coefficient C and kernel function parameter g corresponding to
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the new solution are recorded. Conversely, the lead bee retains the old solution.

vi,j = xi,j+ϕi,j
(
xi,j−xk,j

)
, (14)

where k ∈ {1,2,...,SN } and j ∈ (1,2) are randomly selected values in the corresponding
interval, k 6= i, and ϕi,j is a random number in the range [ −1, 1].

(3) Calculate the probability that the follower bee follows the leader bee
Leading bees will dance in the recruitment area to share the solution information with

the follower bees after all the leading bees complete the search. The follower bees calculate
the selection probability of each solution as follows:

pi=
fiti∑SN
i=1 fiti

, (15)

where fit i isthe fitness value of the i th solution.
(4) Scouting bee search stage
The scout bee stage prevents the ABC algorithm from falling into the local optimum. If

a feasible solution X t
i has not been updated, then the number of times the trail exceeds the

limit. The hired bee corresponding to the solution will become a scout bee, abandon the
solution, and find a new solution in the neighborhood of the solution. The new solution
X t+1
i is determined as follows:

X t+1
i =

{
xmin,j+ rand ·

(
xmax,j−xmin,j

)
,trail ≥ limit

X t
i ,traili< limit

(16)

Figure 5 shows the flowchart of the ABC algorithm to express the specific steps of the
ABC algorithm clearly for optimizing the parameters of the support vector machine.

SVM short-term power load forecasting model
SVM is a machine learning algorithm proposed by Vapnik et al. based on the structural risk
minimization criterion in statistical learning theory, which has the functions of classification
and regression (Madhukumar et al., 2022; Li et al., 2020; Tan et al., 2020). Short-term load
forecasting uses the regression function of the support vector machine. The short-term
power load presents nonlinear characteristics because of the effect of weather, temperature,
and time. Hence, finding a general rule is difficult. SVM can map the short-term power
load that shows nonlinear laws from the low-dimensional space to the high-dimensional
space through the kernel function and then predicts the load.

Specifically, the training set is a collection ofm historical daily sample data and expressed
as follows:

T =
{(
x1,y1

)
,
(
x2,y2

)
,...,

(
xm,ym

)}
∈ (X×Y )m, (17)

where x is the normalized value of the highest and lowest temperatures in the historical
day, which may a workday or a holiday; y is the load value of the historical day; and m is
the number of samples in the training set.

SVM regression is ideal for solving the load forecasting problem and obtaining a
regression model (Formula (18)). Note that the predicted value f (x) is close to the actual
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Figure 5 Flowchart of ABC algorithm in optimizing SVM parameters.
Full-size DOI: 10.7717/peerjcs.1108/fig-5

load value y.

f (x)=ωTϕ(x)+
∧

b, (18)

where ω is the weight vector, b is a constant, and ϕ(x) is the nonlinear mapping function.

SVM can be expressed after adding the slack variable ξi,
∧

ξ i and penalty coefficient C to
Eq. (18) as follows:

min
1
2
‖ω‖2+C

m∑
i=1

(
ξi−

∧

ξ i

)
s.t.f (xi)−yi≤ ε+

∧

ξ i

yi− f (xi)≤ ε+
∧

ξ i

ξi≥ 0,
∧

ξ ≥ 0,i= 1,2,...,m


(19)

Pang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1108 12/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1108/fig-5
http://dx.doi.org/10.7717/peerj-cs.1108


where ε is an insensitive loss factor. The insensitive loss function determines the acceptable
error size during SVM training. The larger ε is, the greater the acceptable error during SVM
training, and the lower the prediction accuracy. The smaller ε, the smaller the acceptable
error during SVM training, and the lower the prediction accuracy. If ε is too large, it will
lead to under-fitting in training, and if ε is too small, it will lead to over-fitting in training,
so the default value of ε= 0.1 is usually taken. The dual problem of SVM can be obtained
by introducing Lagrange multipliers.

max
α,
∧
α

m∑
i=1

(
∧
αi−αi

)
yi−

m∑
j=1

(
∧
αj+αj

)
ε−

1
2

m∑
i=1

m∑
j=1

(
∧
αi−αi

)(
∧
αj−αj

)
K
(
xi,xj

)
, (20)

where αi,
∧
αi,αj,

∧
αj is the Lagrange multiplier and K

(
xi,xj

)
is the kernel function. Liu, Peng

& Zheng (2021) selects the RBF kernel function and obtains better prediction results. So
the RBF kernel function used in this work is expressed as follows:

K
(
xi,xj

)
= exp

(
−

∥∥xi−xj∥∥2
2g 2

)
, (21)

where g is the kernel function parameter. The following final regression model of SVM can
be obtained when Formula (20) is solved:

f
(
x,
∧
αi,αi

)
=

m∑
i=1

(
∧
αi−αi

)
K
(
xi,xj

)
+
∧

b. (22)

Among the variables, ω and b are obtained during the operation. Values of the penalty
coefficient C and the kernel function parameter g exert the maximum impact on the
training accuracy of the support vector machine. The artificial bee colony algorithm will
be used to optimize it, and the loss function uses the default value of 0.1.

EXAMPLE ANALYSIS
Dataset description
The study uses a one-year power load dataset in Nanjing, China. The data set includes
power load, wind direction, wind power, maximum temperature, minimum temperature,
weather conditions, whether the day is a holiday, and whether the day is a workday. The
sampling interval of the influencing factor data is 1 day. The sampling interval of load data
is 15 min.

Data preprocessing and performance evaluation indicators
Data preprocessing
(1) Raw data missing value padding

In the process of raw data collection, individual data is inevitably missing. To reduce
the impact of missing data on the accuracy of short-term load forecasting, it is necessary
to fill in the missing raw information before predicting. There are many filling methods,
such as 0 filling, mean filling, median filling, etc. In this study, the average value is used to
serve. That is, the average value of the load before and after the missing value is used as the
filling data to make it as close to the actual value as possible.
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(2) Data normalization
Historical data are normalized as follows to avoid errors due to different unit dimensions

between influencing factors and loads:

X ′=
X−Xmin

Xmax−Xmin
, (23)

where X ′ is the normalized value of historical data, X is the historical data value, Xmax is
the maximum value of the load and each influencing factor in the historical data, and Xmin

is the minimum value of the load and each influencing factor in the historical data.

Performance evaluation index
The study used mean absolute error (MAE), mean absolute percentage error (MAPE), and
root mean square error (RMSE) as the evaluation indicators of prediction methods. MAE,
MAPE, and RMSE are calculated as follows:

MAE=
1
N

N∑
i=1

∣∣y ′i −yi∣∣, (24)

MAPE=
1
N

N∑
i=1

∣∣∣∣y ′i −yiyi

∣∣∣∣×100, (25)

RMSE=

√√√√ 1
N

N∑
i=1

(
y ′i −yi

)2
, (26)

where y ′i is the predicted load value and yi is the actual load value.

Identification of important influencing factors
Weather conditions, wind direction, and holidays in influencing factors are usually
expressed in Chinese characters and unrelated to the load. Therefore, quantization
processing is required. According to the quantitative standard of Zou et al. (2022), Monday
to Friday are set as workdays and quantified as 1, and Saturday and Sunday are set as
nonworkdays and quantified as 0. Similarly, the quantitative representation of wind
direction, weather conditions, and whether the day is a holiday is listed in Table 3.

Let the influencing factor data be X, and set the matrix X = [X1,X2,X3,X4,X5,X6],
where X 1 is the wind direction, X 2 isthe minimum temperature, X 3 is the maximum
temperature, X 4 is a workday, X 5 is a holiday, and X 6 is the weather condition. Let the
load data be Y. Python is used to analyze the Pearson correlation coefficient between
each influencing factor and the load and obtain the Pearson correlation coefficient value
between each influencing factor and the load in Table 4.

As shown in Table 4, the absolute value of the Pearson correlation coefficient is the lowest
temperature among the six influencing factors at 0.786. The minimum temperature exerts
the maximum influence on the load, and the absolute value of the Pearson correlation
coefficient is the weather condition at 0.026. Hence, weather conditions exert theminimum
effect on the load. The influence of wind direction on the load is less than that of other
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Table 3 Weather condition, wind direction, and date type quantitative code.

Influencing factors Coding Influencing factors Coding

Holiday 1 if the day is a holiday
and 0 if otherwise

West wind 1.75

Weekend 0 Northwest wind 1.875
Workday 1 Sunny 2
North wind 1 Partly cloudy 1
Northeasterly wind 1.125 Cloudy day 0
East wind 1.25 Light rain or snow −1
Southeast wind 1.375 Moderate rain or moderate snow −2
South wind 1.5 Heavy rain or snow −3
Southwesterly wind 1.625 Heavy rain or blizzard −4

Table 4 Pearson correlation coefficient of influencing factors.

Influencing factors Coefficients Influencing factors Coefficients

Wind direction 0.131 Is the day a workday? 0.537
Minimum temperature 0.786 Is the day a holiday? −0.584
Maximum temperature 0.756 Weather conditions 0.026

factors. Therefore, wind direction and weather conditions are considered weak influencing
factors that will be ignored in this study. The four external factors ofminimum temperature,
maximum temperature, whether the day is a workday, and whether the day is a holiday are
important influencing factors for selecting similar days.

Similar day selection
August 31, 2003 is used as the date to be forecasted in this section. Data of influencing
factors between the date to be forecasted and each historic day are extracted, and Python is
utilized for gray correlation analysis and calculation of the gray correlation degree between
each historical day and the day to be forecasted (Fig. 6). Because the Pearson correlation
coefficient between the lowest temperature and the highest temperature is the largest, and it
occupies the largest weight in the selection of similar days, so from the time scale, the closer
the historical day to the day to be predicted, the greater the gray correlation value. Huang
et al. (2021) sets the threshold to 0.7 and achieves better prediction results. Therefore, the
threshold is set at 0.7, and the historical days greater than 0.7 are taken to form a rough set
of similar days, including a total of 134 historical days.

Influencing factor data of each historic day in the rough set of the day to be predicted
and similar days are extracted as the input feature dimension according to the rough set of
similar days. Python is applied to perform K -means clustering. K -means clustering divides
the historical days in the rough set of similar days into different categories according to
the number of cluster centres. It obtains the coordinate values of the centre points of
each type. Calculate the Euclidean distance between each influencing factor data and the
coordinate value of each centre point on the day to be predicted, and the historical day
included in the category with the smallest Euclidean distance from the day to be expected
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Figure 6 Gray correlation between days to be predicted and historical days.
Full-size DOI: 10.7717/peerjcs.1108/fig-6

Table 5 Euclidean distance between the day to be predicted and the cluster center.

Category Category 1 Category 2

Euclidean distance 2.85 10.78

is the final set of similar days. The number of cluster centers will affect the clustering effect,
and the silhouette coefficient (SIL) is an essential indicator for judging the number of
cluster centers. The relationship between the number of cluster centers and the silhouette
coefficient is shown in Fig. 7. The clustering effect enhances as the silhouette coefficient
approaches 1. Therefore, the number of cluster centers is determined as 2.
The clustering effect of each historic day in the rough set of similar days is presented in Fig.

8. A total of 134 data points exist, and some data points are covered due to overlapping.
Table 5 shows the Euclidean distance between the influencing factors on the day to be
predicted and each cluster center. It can be seen from Table 5 that the Euclidean distance
between the day to be predicted and the cluster center of the first type is small, and the
cluster where the cluster center is located contains a total of 88 historical days. Therefore,
the set of these 88 historical days is taken as the final set of similar days.

Validity analysis of the selection of similar days
A total of 296 historical days in the original data, 134 historical days in the rough set of
similar days, and 88 historical days in the collection of similar days are used as input data
to verify the validity of the selection of similar days. The top 80% of the historical data
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Figure 7 Relationship between the number of cluster centers and the silhouette coefficient.
Full-size DOI: 10.7717/peerjcs.1108/fig-7

were selected. The daily data is used as the training set, and 20% of the historical daily data
is used as the test set, which is input into the SVM prediction model after the parameters
are optimized by the grid search method (Jiang et al., 2018) for training and testing. The
penalty coefficient C of SVM is 0.8, and the kernel function parameter g is 100.

Three methods are programmed and case analysis is conducted in this study. (1)Method
1: Utilize Pearson correlation coefficient analysis to screen the influencing factors, use the
original data as input data, apply the grid search method to optimize SVM parameters,
establish the optimized SVM model, and record the method as SVM. (2) Method 2:
Utilize Pearson correlation coefficient analysis to filter influencing factors, adopt the gray
correlation analysis method to construct the similar daily rough set, use the similar daily
rough set as the input data, apply the grid search method to optimize SVM parameters,
establish the optimized SVM model, and denote the method as GSVM. (3) Method 3:
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Figure 8 Clustering effect diagram of each historical day in the rough set of similar days.
Full-size DOI: 10.7717/peerjcs.1108/fig-8

Table 6 MAE, MAPE, and RMSE values for the three methods.

Method of prediction MAE(MW) MAPE(%) RMSE(MW)

GSVM 84.46 4.38 106.69
GKSVM 73.97 4.01 83.52
SVM 119.25 6.12 152.47

Use Pearson correlation coefficient analysis to filter influencing factors, utilize the gray
correlation analysis method to construct a rough set of similar days, apply K -means
clustering to construct a set of similar days further, use the set of similar days as input
data, use the grid search method, optimize SVM parameters, establish the optimized SVM
model, and record the method as GKSVM.

Errors of the three methods are illustrated in Fig. 9. MAE, MAPE, and RMSE values
for the three methods are listed in Table 6. SVM shows the maximum improvement in
prediction accuracy when similar days are selected twice, and the MAE, MAPE, and RMSE
values are the minimum. The prediction accuracy of SVM without a similar date and time
is the minimum, and the MAE, MAPE and RMSE values are the maximum. Therefore, the
prediction accuracy will reduce when the original data contains a large amount of daily
historical data unrelated to the date to be predicted. This finding proves the effectiveness
of the proposed method. The load prediction values of the three methods are shown in
Fig. 10. The results showed that the proposed method achieves the maximum degree of
coincidence with the actual value.

Artificial bee colony algorithm for optimizing SVM parameters
The artificial bee colony algorithm is used to optimize parameters C and g because the grid
search method fails to find optimal parameters C and g of the support vector machine to
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Figure 9 Predicted load error value at each moment for the three methods.
Full-size DOI: 10.7717/peerjcs.1108/fig-9

Figure 10 Comparison chart of predicted and actual values of 96 sampling points for the three meth-
ods.

Full-size DOI: 10.7717/peerjcs.1108/fig-10

improve the prediction accuracy of the short-termpower load. The set of similar days is used
as input data, the population size of the ABC algorithm is 20, the number of nectar sources
is SN = 10, the maximum number of iterations is MCN = 100, the maximum number of
cycles of nectar sources is limited to 100, the SVM penalty coefficient is C ∈ [0.01,50], and
the kernel function parameter is g ∈ [0.01,50]. The mean square error (MSE) between the
predicted load value of SVM and the actual load value is utilized as the objective function
J.
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Table 7 Optimal parameters C and g of the support vector machine at each moment.

Point in
time

C g Point in
time

C g Point in
time

C g Point in
time

C g

1 0.01 0.01 25 2.05 0.01 49 0.43 0.01 73 1.71 0.01
2 2.74 0.01 26 0.16 0.01 50 0.01 0.42 74 0.74 0.01
3 0.01 0.24 27 25 0.01 51 0.27 0.01 75 0.42 0.01
4 0.01 0.01 28 6.69 0.01 52 0.24 0.01 76 1.04 0.01
5 0.01 0.25 29 2.86 0.01 53 0.68 0.01 77 0.01 0.25
6 0.13 0.01 30 0.01 37.04 54 1.77 0.01 78 0.01 16.9
7 0.01 50 31 3.7 0.01 55 0.77 0.01 79 0.01 0.01
8 0.23 0.01 32 0.01 46.23 56 0.01 0.16 80 0.01 0.01
9 0.01 0.01 33 0.03 0.01 57 0.01 0.33 81 46.37 25.86
10 0.01 0.56 34 0.9 0.01 58 0.1 0.01 82 0.12 0.01
11 0.01 0.01 35 4.18 0.01 59 0.37 0.01 83 0.01 0.01
12 0.01 12.29 36 1.81 0.01 60 0.01 0.87 84 0.01 0.01
13 0.01 15.43 37 1.49 0.01 61 0.01 0.64 85 0.01 0.01
14 0.01 0.1 38 9.55 0.01 62 0.48 0.01 86 0.01 0.01
15 0.04 0.01 39 1.19 0.01 63 0.01 0.34 87 2.05 0.01
16 0.01 9.66 40 0.77 0.01 64 0.05 0.01 88 0.01 0.01
17 3.02 0.01 41 1.25 0.01 65 0.01 0.45 89 0.01 0.01
18 2.86 0.01 42 0.31 0.01 66 0.01 0.34 90 0.01 0.01
19 0.01 0.57 43 0.01 0.33 67 0.01 0.01 91 0.01 0.03
20 0.01 22.33 44 0.27 0.01 68 0.01 0.07 92 0.01 0.01
21 4.2 0.01 45 2.37 0.01 69 0.14 0.01 93 0.01 0.01
22 0.01 50 46 0.28 0.01 70 0.01 0.01 94 0.01 0.01
23 8.21 0.01 47 0.61 0.01 71 0.21 0.01 95 0.01 0.01
24 14.88 0.01 48 0.01 32.57 72 0.56 0.01 96 0.01 26.21

Ninety-six support vector machine prediction models are designed given that the
relationship between load values corresponding to 96 sampling points in a day and
influencing factors is different. Meanwhile, the ABC algorithm is used to optimize the
penalty coefficient C and kernel function parameters g of 96 vector machines. Optimal
parameters C and g of the SVM at each sampling point are listed in Table 7. Iterative curves
of the artificial bee colony, PSO (particle swarm optimization) algorithms and GWO (grey
wolf optimization) algorithm are shown in Fig. 11. Convergence times of the artificial
bee colony algorithm are about 22, and the objective function value finally converges to
36. Convergence times of the particle swarm algorithm are approximately 60, and the
objective function value finally converges to 50. The number of convergence times of the
grey wolf optimization algorithm is about 35 times, and the objective function value finally
converges to 40 times. Convergence times and the final convergence value of the artificial
bee colony algorithm are better than those of the particle swarm algorithm and the grey
wolf optimization algorithm.

Optimal solutions of the ABC, PSO and GWO algorithms were collected after running
them 20 times to compare the performance of the three algorithms further. Relative
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Figure 11 ABC, PSO and GWO iteration curves.
Full-size DOI: 10.7717/peerjcs.1108/fig-11

Table 8 RPI values of ABC, PSO and GWO.

Number
of runs

ABC PSO GWO Number
of runs

ABC PSO GWO

1 1.772 25.221 12.292 11 0.332 27.575 12.569
2 0.249 24.197 9.275 12 2.187 20.903 11.157
3 3.848 23.976 10.382 13 1.467 22.841 9.192
4 1.301 28.820 11.822 14 1.800 23.007 8.195
5 0.554 26.495 10.410 15 0.305 28.239 12.209
6 4.845 22.149 13.372 16 2.298 27.658 12.514
7 3.3225 22.34 12.348 17 0.581 23.062 10.354
8 0.471 24.391 12.431 18 0.720 23.643 10.105
9 1.080 24.668 8.306 19 0 21.733 11.988
10 2.132 25.831 11.101 20 1.772 24.972 12.652

percentage growth rate (RPI ) is used to evaluate the performance of the three algorithms
as follows:

RPI
(
f
)
=

(
f − f ∗

)
f ∗

×100, (27)

where f represents the minimum mean square error between predicted and actual values
of the support vector machine after a single operation of each algorithm and f ∗ represents
the minimum mean square error among all the minimum mean square errors. The RPI
values of the three algorithms ABC, PSO and GWO are shown in Table 8.

Optimal parameters obtained by the artificial bee colony algorithm demonstrate a
more significant improvement in the prediction accuracy of the support vector machine

Pang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1108 21/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1108/fig-11
http://dx.doi.org/10.7717/peerj-cs.1108


Figure 12 Multivariate ANOVA of ABC, PSO and GWO.
Full-size DOI: 10.7717/peerjcs.1108/fig-12

compared with those of the particle swarm optimization algorithm and the grey wolf
optimization algorithm. Multivariate analysis of variance (ANOVA) was performed, in
which ABC, PSO and GWO were defined as factors, to show the performance gap between
ABC, PSO and GWO intuitively. The results with a confidence level of 95% are shown in
Fig. 12.

Analysis of prediction results
The five methods are programmed and numerical example analysis is conducted in this
study. (1) Method 1: Use the set of similar days as input data, optimize SVM parameters
via the grid search method, build the optimized SVM model, and record the method as
GKSVM. (2) Method 2: Use the set of similar days as input data, optimize SVM parameters
through the particle swarm algorithm, build the optimized SVM model, and record the
method as PSO-GKSVM. (3) Method 3: Take the set of similar days as the input data, use
the grey wolf optimization algorithm to optimize the SVM parameters, build the optimized
SVMmodel, and record the method as GWO-GKSVM. (4) Method 4: Use the set of similar
days as input data to build an LSTMmodel, and this method is recorded as LSTM. (5) The
proposed method in this study: Use the set of similar days as input data, utilize the ABC
algorithm to optimize SVM parameters, establish the SVM model, and record the method
as ABC-GKSVM.

The MAE, MAPE, and RMSE values of the five methods are listed in Table 9. The error
between predicted and actual load values at 96 time points on August 31, 2003 is shown
in Fig. 13. Figure 14 illustrates the comparison of predicted and actual values of the five
methods at 96 time points. The scatter plot in Fig. 15 depicts the degree of agreement
between predicted values of the five methods and actual values. The diagonal line of y = x
in the figure denoted that the predicted value is equal to the actual value. The point in the
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Table 9 MAE, MAPE, and RMSE values for the five methods.

Method of prediction MAE(MW) MAPE(%) RMSE(MW)

GKSVM 73.23 4.01 83.20
PSO-GKSVM 42.27 2.15 62.84
GWO-GKSVM 38.79 1.96 54.32
LSTM 83.42 4.48 87.58
ABC-GKSVM 34.98 1.79 46.38

Figure 13 Comparison chart of error values at each moment of the five methods.
Full-size DOI: 10.7717/peerjcs.1108/fig-13

figure is close to the diagonal line when the difference between predicted and actual values
is negligible.

Figures 13, 14, 15 and Table 9 showed that the points of ABC-GKSVM are generally
the closest to the diagonal among the four methods when two similar days are selected;
abnormal points are absent; and the MAE, MAPE, and RMSE values are all less than those
of the support vector machine model optimized via the grid search method and particle
swarm optimization algorithm. The consistency between the curve trend and actual values
verified the effectiveness of the ABC algorithm in optimizing SVM parameters. Meanwhile,
compared with the LSTM prediction model, the proposed method reduces the MAE,
MAPE, and RMSE indicators by 48.44 MW, 2.69%, and 41.2 MW, respectively, thereby
confirming the effectiveness of the proposed method further.

CONCLUSIONS
Gray relational analysis and K -means clustering are used in this study to screen 298
historical data. A set of similar days is formed as input data after eliminating historical
data that are irrelevant or slightly relevant to the day to be predicted. The ABC algorithm
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Figure 14 Comparison of predicted and actual values for each method.
Full-size DOI: 10.7717/peerjcs.1108/fig-14

Figure 15 Scatter plot of predicted values versus actual values for the five methods.
Full-size DOI: 10.7717/peerjcs.1108/fig-15

optimizes parametersC and g of the SVM, establishes the ABC-SVM short-term power load
forecasting model, and finally obtains forecast values 96 times for the day to be forecasted.
Furthermore, the effectiveness of the proposed method is proven using examples.
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(1) The Pearson correlation coefficientmethod is used to calculate the Pearson coefficient
value between each external factor and the load. External factors that significantly influence
the load are screened according to the coefficient value.

(2) The gray correlation degree between the day to be predicted and each historical day
is calculated through gray correlation analysis, and rough sets of similar days are filtered
by setting the threshold. K -means clustering is utilized to classify the rough sets of similar
days. The cluster center with the minimum Euclidean distance to each influencing factor
in the days to be predicted is set as the set of similar days to reduce the input of irrelevant
data.

(3) The artificial bee colony algorithm is applied to find the optimal penalty coefficient
C and kernel function parameter g of the support vector machine suitable for the data of
this study and address the problem of decreasing prediction accuracy of the support vector
machine due to improper parameter selection.

The selection of external factors with a significant impact on the load and an hourly
granularity can be the focus of future investigations to improve the prediction accuracy
further given that the influence of temperature and weather conditions on the load contains
hysteresis and cumulative effects.
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