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ABSTRACT
In many real-world applications concerning pattern recognition techniques, it is of
utmost importance the automatic learning of the most appropriate dissimilarity
measure to be used in object comparison. Real-world objects are often complex
entities and need a specific representation grounded on a composition of different
heterogeneous features, leading to a non-metric starting space where Machine
Learning algorithms operate. However, in the so-called unconventional spaces a
family of dissimilarity measures can be still exploited, that is, the set of component-
wise dissimilarity measures, in which each component is treated with a specific sub-
dissimilarity that depends on the nature of the data at hand. These dissimilarities are
likely to be non-Euclidean, hence the underlying dissimilarity matrix is not
isometrically embeddable in a standard Euclidean space because it may not be
structurally rich enough. On the other hand, in many metric learning problems, a
component-wise dissimilarity measure can be defined as a weighted linear convex
combination and weights can be suitably learned. This article, after introducing some
hints on the relation between distances and the metric learning paradigm, provides a
discussion along with some experiments on how weights, intended as mathematical
operators, interact with the Euclidean behavior of dissimilarity matrices.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science, Theory and Formal Methods
Keywords Metric learning, Pattern recognition, Dissimilarity space, Euclidean embedding, Kernel
methods, Pseudo-Euclidean embedding

INTRODUCTION
In the past few decades, the discipline of pattern recognition (PR), aiming to automatically
discover regularities in data, focused most efforts in frameworks conceived to learn from
examples, thus from observations. These frameworks exploit several machine learning
techniques grounding on the data-driven approach (Bishop, 2006). Therefore, in these
specific cases, the goal of a PR system is to find regularities in data aiming to reach good
generalization capabilities by building a model from known observations (Hart, Stork &
Duda, 2000). Thereby, at the basis of an automated PR pipeline there are the observations,
that can be any type of measurements on real-world objects. Observations can be collected
by hand or automatically by sensors. Furthermore, observations can be labeled and labels
allow to distinguish the class or the category in which the object falls (Martino, Giuliani &
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Rizzi, 2018). Moving away from the “philosophical” problem among the differences
between objects that live in the real world—a discussion that deserves a systematic and
really interesting discussion—it can be stated that it is really difficult to enumerate all
differences between two real-world objects, at least, at raw (atomic) level. So what we can
reveal are the differences between the (physical or virtual) properties of two objects and tell
whether they can be considered different. This task takes part to the PR process and
deserves a thorough discussion. In the PR jargon, the problem is known as finding a good
representation of objects, e.g., if the weight is important as a property defining the objects, it
should be taken into account, otherwise the system should not consider the “weight”
feature. A really interesting theoretical treatment, within the context of cognitive science,
on how natural properties arise from generic objects in building a suitable representation is
provided by Peter Gärdenfors with the theory of conceptual spaces (Gärdenfors, 2004).

A representation can exist in several forms, such as numbers, strings, graphs, images,
spectra, time series, densities and similarities (Duin & Pękalska, 2012). Robert P. W. Duin
states that (Pękalska & Duin, 2012): (i) “every real-world difference between objects that
may play a role in the human judgment of their similarity should make a difference in the
representation” and ii) “the representation of a real world object, i.e., the mapping from the
object to its representation, should be continuous”. Hence, these prescriptions indicate that
the representation should consider real-world properties judged as important and,
furthermore, two similar objects should be similar in their representations too. On the top
of a good representation, it is possible to train a myriad of learning algorithms capable to
generate a model from data objects and, finally, to generalize towards previously unseen
data. In fully supervised learning, the generalization process (classification) needs labeled
examples, while unlabeled examples are used in unsupervised learning schemes (Jain,
Murty & Flynn, 1999; Jain, Duin & Mao, 2000). As we will see, alongside the classical
learning algorithms adopted in machine learning, it can be useful to learn a dissimilarity
function tailored to the data at hand. This particular task belongs to the metric learning
(ML) paradigm, a florid research field in PR (Lu et al., 2018; Bengio, Courville & Vincent,
2013).

As anticipated, many real-world objects in PR cannot be simply described by a set of
measurements collected in real-valued vectors. In other words, the representation of
objects may not easily start from a vectorial space and in this case the dissimilarity measure
cannot be simply defined as a plain Minkowski distance, for example. In this case, a data
structure, known as dissimilarity matrix, becomes clearly important. Thereby, in many
cases, the core of a PR system is a custom-based dissimilarity measure, that is a way to
measure the dissimilarity between samples of a given complex process that are described
by a set of measurements that can (even simultaneously) involve real numbers, integers,
vectors, categorical variables, graphs, spectra, histograms, unevenly objects/events
sequences, time series etc. This happens when real-world objects possess a complex
description arising from different intrinsic characteristics, each one caught by a suitable
data structure. Thence, the overall dissimilarity can be chosen within the family of
Euclidean distances, or within the general class of Minkowski distances. However, the
structure of the given distance needs to take into account the different data structures. In
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technical literature, distances involving complex and possibly heterogeneous data
structures are known as component-wise or element-wise distances (Jimenez, Gonzalez &
Gelbukh, 2016) where, for each component, it is used a specific difference operator for the
data structure at hand and, once collected, all of them are synthesized in a “template”
distance that may have the Euclidean or Minkowski general form. In other words,
distances are a function of the additive combination of the contributions of their
components (Beals, Krantz & Tversky, 1968). A further generalization can be derived from
the weighted Euclidean distance (WED) where a weight is associated to each component.
In ML tasks, these weights can be suitably learned automatically, usually through an
optimization procedure.

The WED is widely applied in PR problems such as in bioinformatics and personalized
medicine (Hu& Yan, 2007;Martino et al., 2020;Di Noia et al., 2020), speech synthesis (Lei,
Ling & Dai, 2010) or in the industrial field (Rao, 2012). For example, WED is used in
clustering application dealing with side information (Xing et al., 2002). In fact, if a
clustering algorithm, such as k-means, initially fails to find a meaningful solution for the
problem at hand from the user point of view, the user is forced to manually tweak the
metric until sufficiently good clusters are found. In Schultz & Joachims (2003), the authors
present a method for learning a distance metric starting from relative comparison such as
“A is closer to B than A is to C”. A similar application can be found in (Kumar &
Kummamuru, 2008), where a local metric is learned.

Moreover, in many real-world problems dealing with complex systems, the starting
space is not a vectorial space, being also often non-metric (e.g., in life sciences (Münch
et al., 2020;Martino, Giuliani & Rizzi, 2018), engineering applications (D’urso & Massari,
2019; De Santis, Arnò & Rizzi, 2022; Kim, Lee & Kim, 2018) or cybersecurity (Granato
et al., 2020, 2022)). Consequently, only the dissimilarity representation is available through
the dissimilarity matrix, as stated above. Hence, in such cases, the dissimilarity matrix is a
primitive data structure compared to the data matrix. As we will see in the following, a
dissimilarity matrixD is said to be “Euclidean” if it is perfectly (isometrically) embeddable
in an Euclidean vector space in which the distances calculated in the latter are identical to
the ones belonging to the entries of D (De Santis, Rizzi & Sadeghian, 2018). Several
standard classifiers are designed to work effectively on Euclidean vector spaces. Operating
with a non-Euclidean (or even non-metric) dissimilarity matrix may cause some problems.
As an example, a non-Euclidean distance matrix leads to a non-positive definite kernel and
the quadratic optimization procedure used to train a support vector machine (Vapnik,
1998; Schölkopf, Burges & Smola, 1999) may thereby fail, not being fulfilled the Mercer
conditions (Mercer, 1909; Duin, Pękalska & Loog, 2013; Pękalska & Duin, 2005). However,
in order to train standard classifiers on this kind of data, some solutions can be found.
The two main solutions are based either on considering the dissimilarity matrix as the
starting vector space endowed with the standard Euclidean distance (dissimilarity space
representation) or by adopting a suitable transformation of the dissimilarity matrix,
leading to the Pseudo-Euclidean (PE) space (Pękalska & Duin, 2005; De Santis et al., 2018;
De Santis, Rizzi & Sadeghian, 2018). In the current study, we will consider the last case. For
the first case, the interested reader can be referred to Pękalska & Duin (2005).
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It is well known that from dissimilarity data collected in form of a dissimilarity matrixD
it can be “reconstructed” the starting Euclidean space where the original data points lie (De
Santis, Rizzi & Sadeghian, 2018). The reconstruction process (known as embedding) tries
to generate the original vector space such that the distances are preserved as well as
possible. Classical multi-dimensional scaling is an example of such embedding procedure
(Borg & Groenen, 2005). For an Euclidean space all the distances are preserved and thus an
Euclidean distance matrix can be embedded isometrically in an Euclidean space. For non-
Euclidean distance matrices the Euclidean space is not “large enough” to embed the
dissimilarity data even if they can be still embedded in the so called PE space (Goldfarb,
1984). The embedding procedure involves the eigendecomposition of the kernel matrix

G ¼ XXT , where X is the configuration matrix with data points organized as rows, also
known as the Gram matrix (Horn & Johnson, 2013). The latter is a similarity matrix,
obtainable through a suitable linear transformation of the dissimilarity matrix D.

In this work, we consider a class of PR problems involving a dissimilarity matrix D

deriving from a custom-based component-wise dissimilarity measure

dðx; y;wÞ : F�F ! Rþ. The following study is based on the characterization of d as a

composite dissimilarity matrix of the form:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d
T
c W

TW�dc

q
computed as the ‘2 norm of the

vector �dc that collects the component wise (sub)-dissimilarity measures, of which the
functional form is related to the specific features (i.e., data structure) within a suitable
structured non-metric feature space F.

Within this framework, in this article we provide two characterizations. The first one
tries facing the claim according to which the behavior of a general dissimilarity measure
depends on the behavior of the component-wise (sub)-dissimilarities. Specifically, d
generates an Euclidean dissimilarity matrix if the (sub)-dissimilarities dFj are Euclidean.
Therefore, the featuresFj over which it is induced a particular dissimilarity measure, i.e., a
structural dissimilarity in the sense of Duin & Pękalska (2010), can influence the nature of
the mathematical space where the learning algorithm works.

As concerns the second characterization, it is really interesting to arrange a
mathematical interpretation of the weights pertaining the custom-based dissimilarity
matrix, in particular wondering what is the influence of a weighting matrix W on the
eigenspectrum of the underlying Gram matrix Gw, that is the Gram matrix obtained from
the weighted version of the dissimilarity matrixD. Unfortunately the relationship between
the eigenvalues of G and Gw in a general case is not straightforward, being an open
problem of mathematics (Zhang & Zhang, 2006; Fulton, 2000). It is approachable in
particular cases of commuting matrices (in the case of matrices sharing a complete set of
eigenvectors, i.e., normal matrices) or when one of the two is a scalar matrix, i.e., a matrix
of the form W ¼ kI. We will trace some results in the latter case.

Although this article aims at addressing these characterizations via a theoretical and
mathematical viewpoint, the interested reader can find practical applications in the
following articles. In De Santis et al. (2015), De Santis, Rizzi & Sadeghian (2018) a One-
Class classification approach is used in the field of predictive maintenance and in the real-
time recognition of faults in a real-world power grid, by processing heterogeneous
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information coming from smart sensors related to the power grid equipment and to the
surrounding environment. The system exploits a clustering-genetic algorithm (GA)
(Goldberg, 1989) approach where the weights of a custom based Euclidean dissimilarity
measure are learned solving a suitable optimization problem. In De Santis et al. (2018), we
addressed the problem of finding suitable representative elements in the dissimilarity
space1 in order to classify protein contact networks according to their enzymatic properties
and inDe Santis et al. (2022), the dissimilarity space embedding has been used to recognize
signals pertaining to malfunctioning states of pressurization systems for high-speed
railway trains. Finally, in Martino et al. (2020) the same problem of classifying protein
contact networks according to their enzymatic properties has been solved by an
hybridization of dissimilarity spaces and multiple kernel learning.

The degree of “non-metricity” and even of non-Euclidean behavior can be measured
suitably with specific indexes obtained from the PE embedding such as the Eigen-Ratio, the
Negative Eigen-Fraction and the Non-Metricity Fraction, each of which measures the non-
Euclidean behavior, e.g., of a given dissimilarity matrix (Pękalska et al., 2006). Therefore,
while the second question concerns the relation between G and Gw, in the first
characterization we are wondering what is the influence of dissimilarity weights on the
Negative Eigen-Fraction, hence we are questioning on how it is possible to tune the non-
Euclidean behavior of a custom-based dissimilarity matrix.

The article is organized as follows. In “Metric Learning” it is provided a brief review of
the various ML paradigms treated in the literature. “On Metric Spaces and Dissimilarity
Matrices” is a concise description of metric spaces and related dissimilarity matrices that
serves as background. “The Weighted Euclidean Distance” is a deepening of the Euclidean
distance structure and its weighted component-wise counterpart. “Characterization of a
Composite Component-wise Dissimilarity” and “On the Presence of Weights in a
Component-wise Dissimilarity and the Eigenspectrum of the Gram Matrix” sketch an
experimental evaluation of the proposed principal investigations and, finally, “Conclusion”
concludes the article.

METRIC LEARNING
The ML problem is concerned with learning a distance function tuned to a particular task
and has been shown to be useful when exploited in conjunction with techniques relying
explicitly on distances or dissimilarities, such as clustering algorithms, nearest-neighbor
classifiers, etc. For example, if the task is to asses the similarity (or dissimilarity) between
two images with the aim of finding a match, e.g., in face recognition, we would discover a
proper distance function that emphasizes appropriate features (hair color, ratios of
distances between facial key-points, etc.). Although this task can be performed by hand, it
is very useful to develop tools for learning automatically the subset of meaningful features
for the problem at hand. In fact, as anticipated in “Introduction”, useful representations
can be also learned. However, it is unquestionable that, at least on a theoretical level,
representation learning must be taken separate from classification tasks as depicted in
Fig. 1 and discussed in Bellet, Habrard & Sebban (2013).

1 See Pękalska, Duin & Paclík (2006) for a
discussion on the subject matter.
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The ML step can be conceived as a first step in the open-loop pipeline depicted in Fig. 1,
to be performed before the model synthesis stage. Moreover, both tasks can be done
together in the same system, representing an advanced closed-loop and automatic PR
system. It is the case, for example, of feature selection and feature extraction techniques.
The last procedures can be done manually, but if they are automated (i.e., optimized) they
can be a building block of the classification system itself. There are many methodologies
capable to learn a representation; some authors distinguish between neural learning, that is
learning by means of deep learning techniques, and ML. Despite this distinction, in
general, both approaches ground the learning procedure on optimization techniques.
Neural learning is useful in finding a good feature space, while ML involves the learning of
suitable manifold where data objects lie and where they can be well represented for solving
the problem at hand.

Many declinations of ML are available and, according to Fig. 2, they can be resumed in
three principal paradigms: fully supervised, weakly supervised and semi supervised. An
informal formulation of the supervised ML task is as follows: given an input distance
function dðx; yÞ between objects x and y (for example, the Euclidean distance), along with
supervised information regarding an ideal distance, construct a new distance function

d̂ðx; yÞ which is “better” than the original distance function (Kulis, 2012). Normally, fully

Figure 1 Scheme of the common process in Metric Learning. A metric is learned from data
comingfrom a suitable distribution and plugged into a predictor (e.g., a classifier, a regressor, a
recommendersystem, etc.). The predictor fed with the learned metric hopefully performs better than a
predictorinduced by a standard, non-learned, metric (Bellet, Habrard & Sebban, 2013).

Full-size DOI: 10.7717/peerj-cs.1106/fig-1

Figure 2 Five key properties of ML algorithms (Bellet, Habrard & Sebban, 2013).
Full-size DOI: 10.7717/peerj-cs.1106/fig-2
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supervised paradigms have access to a set of labeled training instances, whose labels are
used to generate a set of constraints. In other words supervised ML is cast into pairwise
constraints: the equivalence constraints where pairs of data points belong to the same
classes, and inequivalence constraints where pairs of data points belong to different classes
(Bar-Hillel et al., 2003; Xing et al., 2002). In weakly supervised learning algorithms we do
not have to access to the label of individual training examples and learning constraints
are given in a different form as side information, while semi-supervised paradigms do not
use either labeled samples or side information. Some authors (e.g., Saul & Roweis (2003))
deal with unsupervised ML paradigms, sometimes called also manifold learning, referring
to the idea of learning an underlying low-dimensional manifold2 where geometric
relationships (e.g., the distance) between most of the observed data are preserved. Often
this paradigm coincides with the dimensionality reduction paradigm such as the well-
known Principal Component Analysis (PCA) (Shlens, 2014; Giuliani, 2017) and the
Classical Multi-Dimensional Scaling, based on linear relations. As concerns non-linear
counterparts, it is worth taking note of embedding methods such as ISOMAP
(Tenenbaum, De Silva & Langford, 2000), Locally Linear Embedding (Roweis & Saul, 2000)
and Laplacian Eigenmap (Belkin & Niyogi, 2003). Other methods are based on
information-theoretic relations such as the Mutual Information. Hence, the form or
structure of the learned metric can be linear, non-linear, local. Linear ML paradigms are
based on the learning of a metric in the form of a generalized Mahalanobis distance
(Mahalanobis, 1936) between data objects, i.e., DW

ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �T

WTWðxi � xjÞ
q

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikWðxi � xjÞk2
p

, where M ¼ WTW is a matrix with suitable properties that has to be
learned. In other words, the learning algorithm learns a linear transformation x ! Wx
that better represents the similarity in the target domain. Sometimes, there are some non-
linear structures in the available data that linear algorithms are unable to capture. This
limitation leads to a non-linear ML paradigm, that can be based on the “kernelization” of
linear methods or purely non-linear mapping methods. The last cases lead, for the
Euclidean distance, to a kernelized version combining the learned transformation

fðxÞ : Rm ! R�m with a Euclidean distance function with the capability to capture highly
non-linear similarity relations, that isDf

ij ¼ kðfðxiÞ � fðxjÞÞk2 (Kedem et al., 2012). Local
metric refers to a problem where multiple local metrics are learned and often relies on
heterogeneous data objects. In the last setting, algorithms learn using only local pairwise
constraints. According to the scheme depicted in Fig. 2 the scalability of the solution is a
challenging task, especially if we consider the growing of the availability of data in the Big
Data era. The scalability could be important under the dataset dimension n and/or the
dimensionality of data m. Finally, the intrinsic optimization task underlying the ML
paradigm makes the optimality of the solution another important aspect. The latter,
depends on the structure of the optimization scheme, that is, if the problem is convex or
not (Boyd & Vandenberghe, 2004). In fact, for convex formulations it is guaranteed to
reach a global maximum. On the contrary, for non-convex formulations, the solution may
only be a local optimum.

2 A manifold is a topological space that
resembles Euclidean space near each
point. Hence a n-dimensional manifold
has a neighborhood that is home-
omorphic to the Euclidean space of
dimension n.
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ON METRIC SPACES AND DISSIMILARITY MATRICES
Definitions
The standard Euclidean space, as vector space, is highly structured from the algebraic
viewpoint. Moreover, the Euclidean distance is experienced daily by human beings. PR
problems do not involve necessary spaces with such an high level structure. Basically, from
the PR point of view, a finite number of objects have to possess such properties that
guarantee generalization, hence learning. The principal property is the “closeness” that
relies on the notion of neighborhood, that is a primitive property applicable to general
topological spaces (Deza & Deza, 2009). Furthermore, the metric properties that enrich the
structure of primitive mathematical objects can be induced not only for a space but also for
a set (e.g., the set of binary strings).

Definition 1 (Metric Space). Given a set X, a metric space is a pair (X, d), where d is a
distance function d : X � X ! R0

þ
3 such that the following conditions are fulfilled for ∀ x,

y, z ∈ X4:
1. Reflexivity: d (x, x) = 0;
2. Symmetry: d (x, y) = d (y, x);
3. Definiteness: d (x, y) = 0 ⇒ x = y;
4. Triangular inequality: d (x, z) ≤ d (x, y) + d (y, z).
If all conditions are fulfilled d is properly said distance function. Conversely, if some

conditions are weakened the space continues to have some structure and d is better known
in PR as dissimilarity. For example, a space (X, d) that obeys only the reflexivity condition
is known as hollow space; a hollow space5 that obeys the symmetry constraint is a pre-
metric space; a pre-metric space obeying the definiteness is a quasi-metric space; a pre-
metric space satisfying the triangle inequality is a semi-metric space.

Definition 2 (Metric for Dissimilarity Matrix D (De Santis, Rizzi & Sadeghian, 2018)).
LetD be a symmetric dissimilarity matrix with positive off-diagonal elements dij built on a
set of n objects X ¼ o1; o2;…; onf g, where dij = f (oi, oj) is a admissible measure of the
dissimilarity between the objects oi and oj. D is metric if the triangle inequality dij + djk ≥
dik hold for all triplets i; j; kð Þ.

It is worth noting that if two objects are similar in a metric sense, every other object that
has a relation with one will have a similar relation with the other. This property allows for
one of the given objects being eligible for becoming a prototype in learning algorithms
(Pękalska & Duin, 2005).

Definition 3 (Euclidean behavior (De Santis, Rizzi & Sadeghian, 2018)) A n × n
dissimilarity (distance) matrix D is Euclidean if it can be embedded in a Euclidean space
Rm; d2ð Þ, where d2 is the standard Euclidean distance, where n ≥m. Hence, a configuration

fx1; x2;…; xng can be determined in Rm such that d2 xi; xj
� � ¼ xi � xj

�� ��
2
¼ dij for all i, j.

A symmetric n × n matrix D with zero diagonal is Euclidean iff D�2
c ¼ JD�2J is

negative semi-definite. The quantityJ ¼ I� 1
n
11T , where I is the identity matrix, denotes

the centering matrix. If D is Euclidean, it is also metric (Gower & Legendre, 1986).
Given a vector configuration fx1; x2;…; xng in a Euclidean space Rm; d2ð Þ equipped

with the standard inner product xi; xj
� �

and organized in a n × m configuration matrix6

3 R0
þ � Rþ [ f0g.

4 Here it is not used the bold notation to
indicate that X is a set of generic objects
and not only a vector space. Hereinafter,
the calligraphic notation (instead the
bold one) will be used for the dissim-
ilarity matrix D and for the so-called
centering matrix J.

5 The terminology is not unified, we refer
to the one adopted in (Pękalska & Duin,
2005).

6 We are using the Machine Learning
convention in which the n data vectors
are organized as rows in the data matrix
X, hence the Grammatrix is computed as
XXT. In Linear Algebra, with data vectors
organized as columns the Gram matrix is
XT X and XXT is n-times the covariance
matrix, if data vectors have zero mean.
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X ¼ xT1 ; x
T
2 ;…; xTn

� 	T
, the n × nGraminian (Gram) matrixG, known inMachine Learning

as linear kernel matrix, can be expressed by the inner product between all pairs of vectors

xi; xj as G ¼ XXT . Since the squared distance d22 can be expressed in terms of inner

product as d22 xi; xj
� � ¼ xi � xj; xi � xj

� � ¼ xTi xj, a linear relation between the Gram
matrix G and the matrix of squared Euclidean distances D�2 can be found. The relation
between G and D�2 is:

G ¼ � 1
2
JD�2J: (1)

Conversely, the relation between D�2 and G is:

D�2 ¼ g1T þ 1gT � 2G; (2)

where g ¼ diagðGÞ.
Given a non-metric (pre-metric) or non-Euclidean symmetric dissimilarity matrix D,

the eigendecomposition of the Grammatrix G by the factorizationG ¼ Q�QT , where � is
a diagonal matrix of eigenvalues organized in descending order and Q is an orthogonal
matrix of the correspondent eigenvectors, leads to the presence of negative eigenvalues and
the indefiniteness of the corresponding Gram matrix G. However an embedding is still
possible by constructing a suitable space, i.e., the PE space, with a suitable inner product
and norm7.

A generalization of the well-known Euclidean distance on a vector space X � Rm is the
Minkowski distance.

Definition 4 (Minkowski distance). Given two vectors x; y 2 Rm the Minkowski
distance of order p 2 (−∞, +∞) is defined as:

dpðx; yÞ ¼
Xm
i¼1

xi � yij jp
 !1

p
: (3)

Depending on the value of the p parameter this distance generalizes the Euclidean
distance (p = 2) or the Manhattan distance (p = 1). Moreover, not for all values of p the
distance is metric. For p = 2 it is trivially metric8 being the standard Euclidean distance. For
every value p ≥ 1 the Minkowski distance is metric, while there is a problem with the
Triangular inequality for p 2 (0,1). In fact, if we consider a dimension m = 2 and
three points: A ¼ 0; 1½ �T ;B ¼ 0; 0½ �T ;C ¼ 1; 0½ �T we have dp(A, B) = dp(B, C) = 1 and

dpðC;AÞ ¼ 2
1
p. Finally, dpðA;BÞ þ dpðB;CÞ ¼ 2 < 2

1
p ¼ dpðC;AÞ, since p < 1. Hence the

Triangular inequality is violated and dp is quasi-metric (Pękalska & Duin, 2005).

On embedding on a pseudo Euclidean space
As anticipated in De Santis, Rizzi & Sadeghian (2018), a PE space Rðp;qÞ, with signature
ðp; qÞ 2 N, can be seen as the product of a real and imaginary valued Euclidean vector
space Rp � iRq. In other words, a PE space is a direct product space Rp � Rq with an

7 A solution can be addressed by taking the
absolute value of the negative eigenva-
lues, keeping in mind that the definition
of the inner product generating the Gram
matrix G changes consequently.

8 It is noted that the Minkowski distance
can be induced by a norm only for p ≥ 1,
i.e., the ‘p norm defined as: ||x||p =

Pm
i¼1

xij j2

 �1

p.
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indefinite inner product that is positive in Rp and negative in Rq. Hence, given two
vectors x; y in this space the bilinear inner product can be defined as: x; yh ipe¼: xT
Jpqy, where Jpq ¼ diagð1p;�1qÞ. In the same way, the squared norm is defined as

xk k2pe¼: x; xh ipe ¼ xTJpqx, yielding the squared distance x � yk k2pe¼: x � y; x � yh ipe ¼
x � yð ÞTJpq x � yð Þ, that can be also negative. The Gram matrix G ¼ � 1

2
JD�2J is now

expressed as:

G ¼ XJpqX
T ; (4)

where Jpq is known as the fundamental symmetry in the PE space Rðp;qÞ. The isometric
embedding can be found by a proper decomposition of G in a PE space:

G ¼ XJpqX
T ¼ Q�QT ¼ Q �j j

1
2 Jpq

0

� 

�j j
1
2QT ; (5)

where p + q = k and �j j
1
2 is a diagonal matrix whose diagonal elements are the square root

of the absolute value of the eigenvalues organized in descending order, first the positive
ones and after the negative ones, followed by zeros. Xk ¼ Qk �kj j is the configuration of
vectors in the PE space Rk ¼ Rðp;qÞ where k non-zero eigenvalues corresponding to k
eigenvectors in Q are preserved.

Finally, the estimated PE covariance matrix C can be found as:

C ¼ 1
n� 1

XXTJpq ¼
1

n� 1
�kj jJpq ¼

1
n� 1

�kJpq: (6)

Hence X is an uncorrelated representation and even if C is not positive definite in the
Euclidean sense, it is positive definite in the PE sense and X can be interpreted in the
general context of the indefinite kernel PCA approach.

THE WEIGHTED EUCLIDEAN DISTANCE
Let be X � Rm�n a m × n data matrix with n data objects, arranged as columns,

xi ¼ x1i;…; xmi½ �T 2 Rm, where m is the dimension of the vectorial space where data
points lie. The vector space is endowed with the standard scalar product xi 	 xj ¼ xi; xj

� � ¼
xTi xj ¼

Pm
k¼1 xikxjkeikejk while ei is the i-th standard basis vector, i.e., a vector of all zeros

except for the entry k, which has a 1. The Euclidean distance function9 in such space
equipped with the standard inner product 	; 	h i can be expressed as:

dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
�� ��

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj; xi � xj
� �q

¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �T

xi � xj
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

xki � xkj
� �2s

;
(7)

where the elements Dij ¼ dðxi; xjÞ; i; j ¼ 1; 2;…; n form the entries of the n × n distance
matrix D between the objects xi and xj in X.

Given a symmetric positive-definite matrix M with real-valued entries, i.e., M ¼ MT

and xTMx 
 0, x 6¼ 0, the entry DM
ij of the WED matrix DM can be expressed as:

9 The standard Euclidean distance is an
instance of a more general family of
distances parametrized by the exponent
p, known as Minkowski distance family.
See “Characterization of a Composite
Component-wise Dissimilarity” for a
short introduction.
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DM
ij ¼ dMðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �T

Mðxi � xjÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTWTWðxi � xjÞ

q
¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWðxi � xjÞÞTWðxi � xjÞ

q
¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðxi � xjÞ;Wðxi � xjÞ
� �q

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikWðxi � xjÞk2
p

;

(8)

where M ¼ WTW is the Cholesky decomposition (Strang, 1976) of matrix M, that in the
Hermitian general case, is found to be the decomposition of an Hermitian matrix in the
product of a lower triangular matrix and its conjugate transpose.

In ML literature the distance in Eq. (8) is known as generalized Mahalanobis distance, a
family of quadratic distances parametrized by a matrix M 2 Smþ, where Smþ is the cone of
symmetric positive semi-definite (PSD) m × m real-valued matrices–see Fig. 3. Note that
M 2 Smþ ensures that the function dM satisfies the properties of a pseudo-distance, i.e.,

8x; y; z 2 X holds:

1. dMðx; yÞ 
 0 (non-negativity);

2. dMðx; xÞ ¼ 0 (identity);

3. dMðx; yÞ ¼ dMðy; xÞ (symmetry);

4. dMðx; zÞ � dMðx; yÞ þ dMðy; zÞ (triangular inequality).
The above properties hold trivially for a standard Euclidean space where M ¼ I.
The matrix W can be seen as a linear operator that transforms the shape of the space

where data points, i.e., data vectors, lie. Specifically W defines a suitable transformation
(endomorphism)V ! V of the (abstract) spaceV spanned by rows vector of X in itself:
given a vector x in the starting space S1, the matrix W maps this vector in a new vector
xw ¼ Wx that lies in the space S2, where S1 and S2 are isomorphic to V10. In the new
transformed space the inner product becomes the standard inner product 	; 	h i, i.e.,

Figure 3 The cone Sm+ of positive semi-definite 2 × 2 matrices.
Full-size DOI: 10.7717/peerj-cs.1106/fig-3

10 If M = WTW is strictly positive definite,
W is a triangular matrix with no 0’s
entry in the principal diagonal, hence it
is invertible and we haveW−1xw = x and
W−1yw = y. Moreover, if an Hermitian
matrix is positive semi-definite the
Cholesky decomposition is still avail-
able, having the possibility of 0’s entries
on the diagonal of W. Finally the Cho-
lesky decomposition is unique when M
is positive definite, while it is not true
when it is positive semidefinite (Golub
& Van Loan, 2012).
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xw; yw
� � ¼ Wx;Wyh i ¼ xTwyw ¼ ðWxÞTðWyÞ ¼ xTWTWx. The arrival space is

endowed with a squared norm given by xw; xwh i ¼ Wx;Wxh i ¼ Mxk k22, being
M ¼ WTW11.

Observation 1. The weighted distance dMðx; yÞ ¼ dðx; y;MÞ with M ¼ WTW equals
dIðxw; ywÞ ¼ dðxw; yw; IÞ where xw ¼ Wx and yw ¼ Wy and I is the identity matrix.

Proof. The proof follows by the same algebraic manipulation of Eq. (8).
Let M ¼ WTW, xw ¼ Wx and yw ¼ Wy. It holds that:

d x; y;Mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � yð ÞTM x � yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � yð ÞTWTW x � yð Þ

q
¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W x � yð Þð ÞTW x � yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wx �Wyð ÞT Wx �Wyð Þ

q
¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xw � yw
� �T

xw � yw
� �q

¼ dðxw; yw; IÞ:
(9)

□
The matrix W is an instance of an operator that defines a rotation and a scaling of

the objects upon it operates. W maps a circle in the unweighted Euclidean space in an
ellipse in the weighted Euclidean space–see Fig. 4. Hence we can state the following
theorem.

Theorem 1. Applying a transformationW to all point of a circle of radius r the resulting
points form an ellipse whose center is the same as the circle and length of its axes equals r
times twice the square root of eigenvalues of M ¼ WTW.

Proof. An interesting demonstration can be found in Kurniawati, Jin & Shepherd
(1998). □

The weight matrix M can be decomposed in its rotation and scaling components by
means of the eigendecomposition operation. Specifically, by decomposing M ¼ QDQT

where Q is an orthogonal matrix with normalized column vectors, that is QTQ ¼ I and

QT ¼ Q�1, and D is a diagonal matrix12. D contains the eigenvalues λ1,λ2,…,λm
(organized in decreasing order) that are the scaling factors, while Q is the rotation
operator matrix that leaves unchanged the (squared) norm of vectors, that is Qxk k22¼
Qx;Qxh i ¼ xTQTQx ¼ xTx ¼ xk k22 (Strang, 1976).

Figure 4 The transformation between Euclidean spaces by the linear operator W.
Full-size DOI: 10.7717/peerj-cs.1106/fig-4

11 We can assert that each space of vectors
x comes with its dual-space of linear
functionals wT. In the scalar product wT

x, wT acts linearly upon vectors x and y,
i.e., wT (λx+ µy) = λwT x+ µwT y. At the
same time x acts linearly upon vT and
wT, i.e., (λvT + µwT)x = λvTx + µwTx. So
the linear functionals wT form a vector
space Dual or Conjugate to the space of
vectors x. Each space is dual to the
other, and they have the same finite
dimension.

12 The eigendecoposition results in a safe
operation because M is a (square) real
symmetric matrix, furthermore it can be
demonstrated (spectral theorem
(Strang, 1976)) that M is diagonalizable
by the matrix of its eigenvectors, i.e.,
from the fundamental equation about
the eigendecomposition: MQ = QD, by
multiplying on the left both sides by QT

we have QTMQ = D. Finally the sym-
metry property leads to a set of real-
valued eigenvalues and, being M a
positive definite matrix, all the eigen-
values are positive.
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At this point it is possible to express the WED in terms of the above
eigendecomposition:

d x; y;Mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � yð ÞTM x � yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � yð ÞTWTW x � yð Þ

q
¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � yð ÞTQDQT x � yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QTx �QTy
� �T

D QTx �QTy
� �q

:
(10)

From Eq. (10) it follows that d x; y;Mð Þ can be expressed, through the
eigendecomposition of the weighting matrix M, with another weighted distance with
weights given by the eigenvalues matrix D. This new distance takes into account new
vectors: QTx ¼ x̂ and QTy ¼ ŷ that are the rotated counterparts of original vectors x and
y. In other words, the two vectors x̂ and ŷ are the rotated, but not scaled, version of xw and
yw that originate both in space S2. It can be demonstrated that the length of the axis of the

ellipsoid in the direction of i-th eigenvalue λi is equal to:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d x; y;Mð Þ=ki

p
.

Finally if the weighting matrix M is a diagonal matrix, with real entries, the above
eigendecomposition reduces to M ¼ EDET where E is the eigenvector matrix
E ¼ e1; e2;…; em½ �, whose columns contains the standard basis in Rm with the property

eTi ej ¼ dij, where δij is the Kronecker delta. In this case the matrix E represents the identity

element of the rotation operator, leaving vectors in the original place, while they are scaled
by a factors given by the entries of the diagonal of M, being the eigenvalues of a diagonal
matrix the diagonal entries of the same matrix. An example of this phenomenon is given in
Fig. 5.

CHARACTERIZATION OFA COMPOSITE COMPONENT-WISE
DISSIMILARITY
When the PR problem at hand deals with heterogeneous measures on objects and these
measures are both structurally and semantically different (graphs, time series, images, real
numbers, etc.), a composite dissimilarity measure can be useful, for example in clustering
applications. The dissimilarity measure is a combination of (sub)-dissimilarities suitably
defined depending on the nature of the data.

Figure 5 Vertical shrink and horizontal stretch of a unit square through a transformation induced
by adiagonal matrix with real positive entries. Full-size DOI: 10.7717/peerj-cs.1106/fig-5
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Before constructing a toy composite dissimilarity measure, it is worth to mention the
following corollary valid when a dissimilarity measure is computed by combining the
dissimilarities pertaining to all of the m attributes separately. In fact, given m features, a
dissimilarity measures can be computed as: dðx; yÞ ¼Pm

i¼1 f ðxi; yiÞ, where f (xj, xj) = 0 and
f (xj, yj) = f (yj, xj) ≥ 0 for all j. The corollary states:

Corollary 1. Let x; y 2 Rm. Then dðx; yÞ ¼Pm
i¼1 f ðxi; yiÞ is metric iff f is metric on R.

Proof. The proof can be done considering that f is non-negative, symmetric and it holds
that f (s, s) = 0 for s 2 R, then the first three axioms about metric spaces, i.e., reflexivity,
symmetry and definiteness, are fulfilled. Furthermore, since d is metric d(x, y) + d(y, z) ≥ d
(x, z) holds for all x, y, z. If we consider xj = cx, yj = cy, zj = zx, for all j and some constants cx,
cy, cj the Triangle inequality for d reduces to f(xc, yc) + f(yc, zc) ≥ f(xc, zc). The ⇒ proof is
trivial. □

Moreover, it can be demonstrated (Gower & Legendre, 1986) that, at least for the
Euclidean case (p = 2 in the Minkowski distance definition), if f : X � Y ! R0

þ is a
function, then dðx; yÞ ¼Pm

i¼1 f ðxi; yiÞ is metric iff d
0 ðx; yÞ ¼Pm

i¼1 f ðxi; yiÞ2
� 	1=2

is metric.
Now we show a demonstration of the following claim valid for a composite dissimilarity

measure, making use of Def. 3 that characterizes the Euclidean behavior for dissimilarity
matrices and Def. 2 for metric behavior.

Claim 1. Given two general objects x; y 2 H, where H is a generic feature space,

and a component wise custom-based dissimilarity dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�yÞTðx�yÞ

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 ðxi�yiÞ2
q

, then if at least one component-wise dissimilarity is not Euclidean the

dissimilarity matrix that arises from d applied on object within H, is not Euclidean.
As stated in “On Metric Spaces and Dissimilarity Matrices”, the expression “non-

Euclidean”means that there is no set of vectors in a vector space of any dimensionality for
which the Euclidean distances between the objects are identical to the given ones (Duin &
Pękalska, 2010). We show now how Claim 1 can be demonstrated with a constructive
example. Let x ¼ ðx1; x2;…xk; xkþ1;…xmÞ and y ¼ ðy1; y2;…yk; ykþ1;…ymÞ be two
objects in a vectorial spaceHv. We define a set of component-wise dissimilarities induced
for the first k components such as f cwj ðxj; yjÞ ¼ xj � yj

�� ��; j ¼ 1; 2;…; k and a single
component-wise dissimilarity induced for the remaining m − k components such as

f pðxs¼kþ1;…;m; ys¼kþ1;…;mÞ ¼ Pm
s¼kþ1 xs � ysj jp� �1

p. In other words we divide the starting

space Hv as the Cartesian product (Strang, 1976) between two sub-spaces, the space Hcw

generated from the first k components, in which the component-wise dissimilarities are
computed as f cw andHp where the dissimilarity is computed as the Minkowski distance f p

applied to the lastm − k components. Finally, the overall dissimilarity between two objects,
say x; y is induced by the ℓ2 norm in the following way:

d̂ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f cw � f pð ÞT f cw � f pð Þ

q
; (11)

where (f cw ⊕ f p) is the vector of dimension k + l constructed by the concatenation of the
two (sub)-dissimilarities f cwj, f

p, j = 1,2,…,k.
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To evaluate the validity of the Claim 1 the dissimilarity in Eq. (11) is computed on a
sample drawn from amulti-variate Gaussian distribution with dimensionm parameterized
as: m = k + l, where k is maintained fixed without loss of generality, and l is varied. It is
noted that the p parameter controls the nature of the Minkowski distance, making the
(sub)-dissimilarity f p metric or not metric (and even non-Euclidean13) depending on the
value of p as demonstrated above, such that for p ≥ 1 it is metric.

In order to measure the non-Euclidean behavior of the space induced by the Minkowski
distance, we introduce the Negative Eigen-Fraction (NEF):

NEF ¼
Ppþq

j¼pþ1 kij jPpþq
i¼1 kj
�� �� ; (12)

where (p, q) is the signature of the PE space, and λi are the eigenvalues of the Gram matrix
decomposition. The NEF measures the degree of the non-Euclidean influence evaluating
the ratio between the sum of the negative eigenvalues and the overall set of eigenvalues.
Another index that helps to commensurate the non-Euclidean influence is the Negative
Eigen-Ratio (NER):

NER ¼ r1 ¼ kminj j
kmax

; (13)

where λmin and λmax are the minimum and maximum eigenvalue of the Gram matrix. In
Fig. 6 are reported, following the same experimental scheme proposed in Pękalska et al.
(2006), several curves representing the NEF for a 100 points Gaussian sample varying
the p parameter of the Minkowski distance as a function of the dimensionality. Now it
is clear that the Minkowski distance is non-Euclidean for any p ≠ 2, but for very
high dimensionality values the Euclidean behavior is restored independently from p.

100 101
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Non-Euclidean Cofficient for various Minkowski-p measures

p=0.1
p=0.2
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Figure 6 Non-Euclidean influence measured by the Negative Eigen-Fraction for several values of the
p parameter of the Minkowski distance.Measures are computed starting from a 100-point multi-variate
Gaussian distribution by varying the dimensionality. Full-size DOI: 10.7717/peerj-cs.1106/fig-6

13 The Euclidean property defined in
Def. 3 is more restrictive than the metric
property. Thereby, there are spaces that
are metric but non-Euclidean. The
opposite does not hold.
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However, from Def. 3, we know that a n × n (n ≥m) dissimilarity (distance) matrixD is
Euclidean if it can be embedded in a Euclidean space Rm; d2ð Þ, where d2 is the standard
Euclidean distance. It means that the Gram matrix G obtained as described in “On Metric
Spaces and Dissimilarity Matrices” does not contain negative eigenvalues, hence it is a
positive semi-definite matrix. The remainder of the discussion is then based on the
eigenvalues spectrum of the Gram matrix computed from the dissimilarity matrix D̂ ¼ d̂ij.
In Fig. 7 are reported the eigenvalues spectra for the Gram matrix Ĝ obtained from the
dissimilarity matrix D̂ computed for a fixed k = 5 and varying the value for l = 0, 1,… 4.
The dashed lines are the case: l = 0 and l = 1. The first one represents the spectrum
deducted from the first k = 5 components of Hv and, as we expected, it contains only
positive eigenvalues, thereby the dissimilarity matrix D̂ is isometrically embeddable. The
same holds for l = 1 because trivially we have that

fpðx; yÞ ¼ x � yj jpð Þ
1
p ¼ x � yj j; 8x; y 2 R, thus the dissimilarity measure fp remains

metric. For l >1 the several spectra contain both positive and negative eigenvalues making
the Gram matrix Ĝ indefinite. As counterexample in Fig. 8 are depicted the spectra of the
dissimilarity in Eq. (11), where the parameter p of the Minkowski distance is set as p = 2.
As we expect, in this case, the dissimilarity behaves in an Euclidean fashion.

ON THE PRESENCE OF WEIGHTS IN A COMPONENT-WISE
DISSIMILARITYAND THE EIGENSPECTRUM OF THE GRAM
MATRIX
In the discussion related to Claim 1 it is introduced a suitable component-wise custom
dissimilarity that in general has the form: d ¼ �dc

�� ��
2
¼

ffiffiffiffiffiffiffiffiffiffi
�d
T
c
�dc

q
that is the ‘2 norm of the

vector14 �dc ¼ dF1 ; dF2 ;…; dFk½ � that is computed through suitable component-wise

Figure 7 Eigenspectrum of the Gram matrix Ĝ obtained from the dissimilarity matrix D̂ computed
by means of Eq. (11) in which the parameter of the Minkowski distance in fp is set as p = 0.8. Dashed
lines show a positive eigenspectrum, while continuous lines show a mixed eigenspectrum.

Full-size DOI: 10.7717/peerj-cs.1106/fig-7

14 The vector dc consists in the (sub)-dis-
similarities that are computed on objects
x that belongs to a suitable structured,
even non-metric, dataset.
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(sub)-dissimilarities, each one induced for a specific feature type Fj. Specifically, we had
two groups: the first (sub)-dissimilarities act on a vectorial subspace and they were
computed as the component-wise ‘1 norm: xi � yij j, while in the second group a unique
(sub)-dissimilarity is computed as the Minkowski distance (p = 0.8, hence neither metric,
nor Euclidean). Now we will discuss the case in which the same family of custom-based
dissimilarities are weighted, hence they have the form described in “The Weighted
Euclidean Distance” for the WED. In other words, given a pair of objects xi and yj, the
dissimilarity measure under analysis has the following form:

dw xi; yj
� � ¼ �dc

�� ��
w
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dc xi; yj
� �T

WTW�dc xi; yj
� �q

: (14)

Given n objects xi, i = 1,2,…,n, the weighted dissimilarity matrix whose entries are given
by dw xi; yj

� �
–see Eq. (14)–is hereinafter referred to as Dw , for convenience. The latter can

be decomposed according to Eq. (1) as Gw ¼ � 1
2JD�2

w J, where Gw is the Gram matrix
parametrized by the weight matrix W. As discussed in “Metric Learning”, the weights act
as a linear mapping M : x ! Wx. Starting from the above settings, two questions arise.
The first is if, in principle, it is possible to find a suitable weighting matrix W that makes
the dissimilarity matrix Dw “more Euclidean”. The second question is about the behavior
of the Gram matrix Gw in terms of eigendecomposition. In other words, one may ask what
is the relationship between the eigenvalues (and eigenvectors) of the non-weighted Gram
matrix G and the weighted one Gw.

Figure 8 Eigenspectrum of the Gram matrix Ĝ obtained from the dissimilarity matrix D̂ computed
by means of Eq. (11) in which the parameter of the Minkowski distance is set as p = 2, hence the
standard Euclidean distance. All spectra are positive, hence the custom-based dissimilarity in Eq.
(11) is Euclidean. Full-size DOI: 10.7717/peerj-cs.1106/fig-8
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The two questions are strongly interrelated. By the way, the first is simpler than the
second. To answer the first question one may conceive a simple problem in which one
wants to minimize the NEF defined in Eq. (12), hence, we can consider a diagonal matrix
Wdiag ¼ diagð w1;w2;…;wd½ �Þ and the task is to solve the following minimization problem:

arg min NEFðGwÞ;
Gw

s:t: 0 � wi � 1 i ¼ 1; 2;…; d:
(15)

The NEF – see Eq. (12) – depends on the eigenvalues λi of the Gram matrix which, in
turn, depend on the dissimilarity matrixDw through a non-linear operation, which in turn
depends on the weighted dissimilarity measure dw xi; yj

� �
, which, finally, depends on the

weights matrix Wdiag (if diagonal). The optimization problem can be performed via the
same setting used to discuss Claim 1. Specifically, it is a simple exercise in adopting a
meta-heuristic, such as a GA, in minimizing the optimization problem in Eq. (15). The two
subspaces,Hcw andHv have a dimensionality equal to 3 and the Minkowski parameter of
the distance acting on Hcw is set to 0.8 (hence neither metric, nor Euclidean).

Starting from a random population of 30 individuals (chromosomes) for the weights w,
the GA converges to the (sub)-optimal solution w� ¼ 1; 1; 0:999; 0:0001½ � with a fitness
value (the NEF) equals to 2.0380e-06, hence negligible. As we expected, the GA finds a
solution with higher weights for the “Euclidean” components and practically null value for
the “Minkowski” component.

Although the answer to the first question is trivial, the second question about the
relationship of the two spectra of G andGw is only apparently simple. Here we try to give a
sketch of the problem. Suppose that F is a vectorial space endowed with the standard
norm 	; 	h i, and X 2 Rm�n is a data matrix with the n data points organized as columns.
The discussion can be restricted to an Euclidean space equipped by the standard Euclidean
distance: d xi; xj

� � ¼ xi � xj
�� ��

2
for xi; xj 2 X. The scalar product matrix or the Gram

matrix, with the data matrix organized with data vectors in columns and the variables as
rows, is: G ¼ XTX. The linear mapping M : x ! Wx transforms the data matrix X
in M Xð Þ ¼ WX ¼ Y. Thereby, the Gram matrix becomes: Gw ¼ WXð ÞT WXð Þ ¼ XT

WTWX ¼ YTY. We note that if W is invertible we have the inverse map M�1 Yð Þ ¼
W�1Y. In trying to find a relation between the eigenvalues of YTY and those of XTX, we
can make use of the relation between the Singular Value Decomposition (SVD) of a m × n
matrix A and the eigendecomposition of the n × n matrix ATA. In fact, any m × n matrix
can be factored as A ¼ U�VT (Strang, 1976), where the columns of matrix U (m × m) are
the eigenvectors of AAT and the columns of V (n × n) are eigenvectors of ATA; finally, the
r ¼ rank Að Þ singular values in the diagonal of Σ (m × n) are the square roots of the non-
zero eigenvalues of both ATA and AAT15.

Let Y ¼ Uw�wVT
w be the SVD decomposition of Y and X ¼ U�VT be the

decomposition of X. If we multiply on the left side for W�1 both sides of the first relation
we obtain W�1Y ¼ W�1Uw�wVT

w, hence X ¼ W�1Y ¼ W�1Uw�wVT
w . If we compare

15 It is easy to show the relation between
the eigenvalues and the singular values:
AT A = (UΣVT)T (UΣVT) =VΣUTUΣVT

= VΣT VΣT, being UT U = I. In the same
way ATA = ΣUTΣUT, being VTV = I. V
and U are orthogonal matrices for a real
A (for complex A they are unitary
matrices). ΣTΣ = ΣΣT is a n × n diagonal
matrix with diagonal entries the square
roots of singular values of A that are the
eigenvalues of ATA or AAT.
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these two relations and multiply both sides for UT on the left side and V on the right
side and by further considering that VTV ¼ I ¼ UTU, we come to the relation:

UTU�VTV ¼ UTW�1Uw�wVT
wV that simplifies as:

� ¼ UTW�1Uw�wV
T
wV: (16)

Equation (16) is a (complex) relation between the (diagonal) singular values matrix Σ

that contains as entries the singular values of X and the singular values of Y ¼ WX, placed
in the diagonal of �w . Unfortunately, calculations cannot be further performed in closed
form unless we make additional assumption onW. The reason becomes clear if we think at
WX as the product of two matrices: in fact, the original question about the relationship
between the eigenvalues of the Gram matricesG andGw can be translated into the relation
of the eigenvalues of the following matrices A;B;AB. However, this so-wanted
relationship between the eigenvalues of the product of general matrices and its
multiplicands is still an open problem of mathematics, even if in the literature there are a
number of works that provide several inequalities for the matrix product and sum problem
(Zhang & Zhang, 2006; Fulton, 2000;Watkins, 1970; Thompson & Therianos, 1971). IfW is
a scalar matrix of the form W ¼ kI the relation shown in Eq. (16) becomes simple. In

Figure 9 Magnitude of the first and second eigenvalue of Gtest
w as a function of α and β.

Full-size DOI: 10.7717/peerj-cs.1106/fig-9

De Santis et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1106 19/26

http://dx.doi.org/10.7717/peerj-cs.1106/fig-9
http://dx.doi.org/10.7717/peerj-cs.1106
https://peerj.com/computer-science/


fact, we can write WX ¼ kIX ¼ Uw�wVT
w, but X ¼ U�VT , hence WX ¼ kIU�VT ¼

Uw�wVT
w. It means that the singular vectors are the same: U ¼ Uw and V ¼ Vw and

therefore Eq. (16) becomes:

� ¼ k�1�w ) �w ¼ k�; (17)

Hence, for the spectrum of Gw ¼ XTWTWX, we have �T� ¼ k�1�T
w�w

16.
Ultimately, there are no relationships between the spectrum of the product of two

generic matrices and one of the single matrices, unless in simple cases17. In general, two
generic matrices do not share the same set of eigenvectors and this makes the analysis
infeasible. In order to graphically show in a computational fashion the relationship
between the eigenvalues of the Gram matrix obtained from a weighted dissimilarity matrix
and those obtained from a non-weighted dissimilarity matrix, we have generated a random
bi-dimensional matrix Xtest 2 Rð2�20Þ, hence containing 20 random 2-D vectors.
Moreover, the dissimilarity matrix Dtest

w on Xtest is computed through the standard
Euclidean distance and finally the Gram matrix Gtest

w is extracted. The dissimilarity

measure is weighted with a diagonal matrix of the form: W ¼ a 0
0 b

� 

, where

a; b 2 0; 1ð �18. Finally the eigendecomposition of Gtest
w is performed, yielding the first two

eigenvalues kw1 and kw2 as function of W.
In Fig. 9 are depicted the value of the first and the second eigenvalues of Gtest

w ,
respectively, as a function of α and β in the predefined interval. In Fig. 10, as instead, it is

Figure 10 Magnitude of the first and second eigenvalue of Gtest
w in the case α = β = k, i.e., W = kI.

Full-size DOI: 10.7717/peerj-cs.1106/fig-10

16 A stretching or compression transfor-
mation by a scalar matrix kI leaves the
eigenvectors unchanged, yet it modifies
the eigenvalues.

17 It is possible to demonstrate that diag-
onalizable matrices share the same
eigenvector matrix S if and only if AB −
BA = 0, that is, if they commute (Strang,
1976). The result holds also for normal
matrices N, that is, matrices where N
commutes with NH (Wilkinson,
Wilkinson & Wilkinson, 1965).

18 We note that the eigenvalues of a diag-
onal matrix are the diagonal entries, i.e.,
α and β, and the eigenvectors are the
canonical basis in Rm.
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reported the value of the first and second eigenvalues in the case α = β = k, that is the case
W ¼ kI.

For completeness in Fig. 11 are reported the sum, the product, and the quotient of the
first two eigenvalues ofGtest

w , while in Fig. 12 we have the same operations in the case of α =
β = k.

CONCLUSION
In solving real-world problems in pattern recognition we may incur in a complex
representation of objects with the need of a custom-based dissimilarity measure whose
components are (sub)-dissimilarities tailored on the nature of the object at hand.

Figure 11 Product, Sum and Quotient of the two eigenvalues of Gtest
w as a function of α and β.

Full-size DOI: 10.7717/peerj-cs.1106/fig-11

Figure 12 Product, Sum and Quotient of the two eigenvalues of Gtest
w in the case α = β = k, i.e., W = kI.

Full-size DOI: 10.7717/peerj-cs.1106/fig-12
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Moreover, the starting space can be non-metric and standard machine learning algorithms
cannot operate directly due to the absence of a vectorial space endowed with some well-
defined norm. The dissimilarity template can be a weighted Euclidean distance where
weights are learned by exploiting a metric learning paradigm. Often, in real-world
applications, the adopted custom-based dissimilarity measure leads to non-Euclidean
dissimilarity matrices. The non-Euclidean behavior can be suitably measured by studying
the spectrum of the related Gram matrix. The adopted framework shows how the
(sub)-dissimilarity measure adopted can affect the Euclidean behavior and how a
weighting scheme can suitably address this phenomenon. The weighting scheme concerns
the spectra of the underlying dissimilarity, but only in some simple cases the problem can
be addressed theoretically. Alongside the present work of a more theoretical nature, as
regards the future directions, we have planned to evaluate the impact of the non-metricity
of the dissimilarity matrices in some real-world applications (e.g., predictive maintenance)
and as a correction expressed directly in the objective function (in line with our theoretical
discussion) of an optimization system impacts on the performance of a classification
system in terms of generalization capabilities.
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