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ABSTRACT
Predicting crop yields is a critical issue in agricultural production optimization and
intensification research. Accurate foresights of natural circumstances a year in advance
can have a considerable impact on management decisions regarding crop selection,
rotational location in crop rotations, agrotechnical methods employed, and long-
term land use planning. One of the most important aspects of precision farming is
sustainability. The novelty of this study is to evidence the effective of the temperature,
pesticides, and rainfall environment parameters in the influence sustainable agriculture
and economic efficiency at the farm level in Saudi Arabia. Furthermore, predicting
the future values of main crop yield in Saudi Arabia. The use of artificial intelligence
(AI) to estimate the impact of environment factors and agrotechnical parameters on
agricultural crop yields and to anticipate yields is examined in this study. Using artificial
neural networks (ANNs), a highly effective multilayer perceptron (MLP) model was
built to accurately predict the crop yield, temperature, insecticides, and rainfall based
on environmental data. The dataset is collected from different Saudi Arabia regions
from 1994 to 2016, including the temperature, insecticides, rainfall, and crop yields
for potatoes, rice, sorghum, and wheat. For this study, we relied on five different
statistical evaluation metrics: the mean square error (MSE), the root-mean-square
error (RMSE), normalized root mean square error (NRMSE), Pearson’s correlation
coefficient (R%), and the determination coefficient (R2). Analyses of datasets for crop
yields, temperature, and insecticides led to the development of the MLP models. The
datasets are randomly divided into separate samples, 70% for training and 30% for
testing. The best-performing MLP model is characterized by values of (R= 100%)
and (R2

= 96.33) for predicting insecticides in the testing process. The temperature,
insecticides, and rainfall were examined with different crop yields to confirm the
effectiveness of these parameters for increasing product crop yields in Saudi Arabia; we
found that these items had highest relationships. The average values are R= 98.20%,
96.50, and 99.14% with for the temperature, insecticides, and rainfall, respectively.
Based on these findings, it appeared that each of the parameter categories that are
considered (temperature, pesticides, and rainfall) had a similar contribution to the
accuracy of anticipated yield projection.
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INTRODUCTION
Because of rising concerns about food security, crop output prediction is becoming more
relevant. Early crop production forecasts can significantly contribute to the reduction of
famine by predicting the availability of food for the rising global population. Increased food
yields are a possible way to end global hunger, which is one of the most severe problems
of our day. According to the World Health Organization, an insufficient food supply still
exists for 820 million people throughout the world, despite recent improvements. The
United Nations’ Sustainable Development Goals (SDGs) aim to eradicate hunger, achieve
food security, and promote sustainable agriculture by 2030, with a particular emphasis on
agriculture (WHO, 2021). By 2050, the Food and Agriculture Organization of the United
Nations (FAO) predicts a 60% rise in food demand to feed the world’s population of 9.3
billion people (UN, 2021). Crop production forecasting, as a result, may provide critical
information for building a feasible approach to fulfilling the goal of ending hunger (Kheir
et al., 2021).

Improvements in agroclimatic conditions, rainfall persistence, soil quality, and other
infrastructure are all critical aspects in ensuring that Norway’s agricultural output
generation is sustainable (Eltun, Korsaeth & Nordheim, 2002). Due to the rapid growth
in the world’s population, farmers are faced with a huge challenge in producing more
amounts of higher-quality grains (Klaus, 2005). It is our goal in this research to examine
agricultural production prediction at the farm scale. According to our expectations, it will
give farmers useful insights on the specific kinds and amounts of crops that will be available
throughout certain seasons depending on geographical locations and other environmental
parameters. Additional benefits include increased food security and the facilitation of
decision making at different administrative levels.

When it comes to crop production, several variables should be considered, making
it challenging to develop a good forecast model using standard approaches. In recent
years, however, advances in computer technology have made the creation and training
of a new technique for agricultural production prediction a possibility. As a result of its
diverse data technologies and high-performance processing capabilities, deep learning
is an important approach that is widely employed in the agricultural area. One subfield
of machine learning is known as ‘‘deep learning’’, and it is characterized by the use of
multiple layers of neural networks that are capable of gaining knowledge from inputs that
are both unstructured and unlabeled. The learning may be supervised, semi-supervised,
or unsupervised, depending on the learning environment. Sarker (2021) pointed out that
deep learning approaches are focused on learning abstract characteristics from big datasets,
as opposed to traditional machine learning techniques. To effectively anticipate crop
production, it is necessary to have a thorough understanding of the relationships that exist
between functional qualities and interacting variables. Such correlations require the use of
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large datasets and high-efficiency algorithms, both of which may be accomplished via the
use of deep learning (Tranfield, Denyer & Smart, 2003; Kitchenham & Charters, 2007).

Machine learning has been an extensively investigated area during the last decade, and
it is now being used to forecast and increase agricultural yield outputs all around the
globe (Klompenburg, Kassahun & Catal, 2020; Shao, Ren & Campbell, 2018). Numerous
studies have shown that crop production prediction models developed at the county level
are well suited for use at the regional or national level. Farm-scale production prediction,
on the other hand, has only been the subject of a few studies (Wang et al., 2018). Because of
a lack of support for sustainable agriculture and the high cost of obtaining satellite photos,
farm-scale ground-truth data are scarce (Lobell et al., 2015; Basso, Cammarano & Carfagna,
2013). These barriers, however, seem to be fading in the agricultural sector. Since 2017,
complete agricultural reports, including farm-scale information, have beenmade accessible
to the public in Norway. Copernicus, the European Union’s Earth observation program,
provides high-resolution satellite photographs, which may be accessed via the Copernicus
website.

Considerable improvement is still needed in terms of a robust and an appropriate
approach to creating an accurate and rapid learning framework, even though artificial
intelligence (AI) technologies have resulted in important applications for cropdevelopment.
A novel neural network (ANN) model is developed to satisfy the above-mentioned needs.
Input–output dynamics are well-represented by ANNs. The main contributions of the
presented study are listed below:
• By using AI models, it is feasible to evaluate how temperature changes, rainfall

amounts, and insecticides all affect yield. A series of yield data, which was influenced by
agricultural measures and external meteorological conditions in Saud Arabia, was initially
used in the study to establish its applicability.
• Themultilayer perceptron (MLP)model was used to predict future values for different

crop yields, such as potatoes, rice, sorghum, and wheat.
• Using a congruence correlative empirical orthogonal function, the AI approach

reduces the time needed to predict crop yields. Data are analyzed using an AI model to
identify useful or insignificant elements. Instead of using all of the dataset’s attributes for
crop production prediction, only the most relevant features are employed.
• Different measures are used to evaluate the suggested MLP method’s performance,

and the findings reveal that it outperforms the other baseline techniques.

RELATED WORK
Traditional methodologies, such as the static regression approach and the mechanistic
approach, have limited application and uncertainty (Horie, Yajima & Nakagawa, 1992) and
make developing a reliable crop production forecastmodel challenging. Several studies have
used machine learning to forecast agricultural production. Machine learning algorithms,
unlike traditional statistical models, interpret the output variable, crop production, as an
implicit function of the input parameters, such as weather and soil conditions, which might
be complex (Jeong et al., 2016). Unfortunately, the nonlinear link between input and output
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variables is not captured by supervised learning algorithms in machine learning (Islam
et al., 2021b). However, technological improvements in recent years have made it feasible
to construct an enhanced crop production forecast model based on deep learning, which
is now under development. In machine learning, deep learning is a family of techniques
that employs hierarchical structures to connect layers of data. Its ability to evaluate both
unlabeled and unstructured data distinguishes it from other standard machine learning
methods (Islam et al., 2021a). In the agricultural area, deep learning is widely utilized
because it can analyze large datasets, understand the links between numerous factors,
and employ nonlinear functions. Deep learning is particularly useful since it can analyze
and learn the correlations between many variables. These unsupervised techniques may
be used to extract features from large datasets in an unsupervised setting. While standard
machine learning algorithms perform better in feature extraction, deep learning approaches
outperform them (LeCun, Bengio & Hinton, 2015). Because an accurate crop yield forecast
is dependent on the elements that influence crop development, deep learning has a great
capacity to extract features from existing data, which is particularly useful in agriculture.

Deep neural networks (DNNs) are comprised of a set of nonlinear layers that, at each
layer, transform the untested input data into an extracted form, thereby forming a network.
To identify the nonlinear associations between input and response variables, DNNs with
several hidden layers are required. But they are challenging to train and need the use
of freshly discovered hardware and optimization methods (Goodfellow et al., 2016). As a
result, increasing the number of hidden layers may be useful, but it comes with certain
limitations that can be overcome by using certain strategies. A technique known as residual
skip connections for the network (Khaki, Wang & Archontoulis, 2020a; Szegedy et al., 2015)
has been shown to be effective in alleviating the vanishing gradient issue in deeper neural
networks. Furthermore, the performance of deep learning systems has been enhanced
by the use of numerous techniques, such as stochastic gradient descent (SGD), batch
normalization, and dropouts.

In numerous exciting disciplines, such as powder metallurgy and material
analysis (Cherian, Smith & Midha, 2000; Smith, German & Smith, 2002), the applications
of artificial neural networks (ANNs) have been investigated. It is stated in Sanzogni &
Kerr (2001) that a feedforward ANN with a postprocessing polynomial may be used to
forecast milk production on dairy farms. M Korosec and colleagues provide a neuro-fuzzy
model that relies on the idea of ‘‘product manufacturability’’ to define and accept the
degree of ‘‘pretentiousness-machining’’ difficulty (Korosec, Balic & Kopac, 2005; Hu et al.,
2009; Agrawal & Schorling, 1996). Because buyers and sellers are impacted by a variety
of unforeseen variables that interact in an intricate manner, accurately forecasting the
global rice trade is always difficult. The dependability of ANNs is compared to that of
ARIMA models in a study by Co & Boosarawongse (2007), and an exponential smoothing
is predicted for Thailand’s rice exports.

Several research studies have been conducted on Chinese fruit production, but only a
few have been published in the literature (Ali & Imran, 2020; Vakil-Baghmisheh & Pavešić,
2003). Friis & Nielsen (2016) suggested banana plantation investments in the United
States (Luang Namtha Province, Laos). Viani et al. (2017) developed an autonomous
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wireless decision support system for water agriculture that was integrated into the network
gateway. Calculating the moisture content (MC) and humidity of agricultural goods using
a capacitive sensor has been specified in some regions (McIntosh & Casada, 2008). Ochiai
et al. (2011) obtained data on agricultural applications using DTN-based sensor gathering.

Machine learning and deep learning methods are increasingly being used to remotely
sense data to evaluate and forecast various agricultural yields (You et al., 2017; Cai et al.,
2019). Several researchers have suggested that nonlinear approaches can surpass linear
models for predicting and estimating yields from remotely sensed data (Johnson, 2014).
Climate and management are two important aspects that might have an effect on crop
phenology. Phenology is described as ‘‘the study of the timing of recurrent biological
occurrences’’. A crop’s phenology shifts from one season to the next as a result of changes
in the climate and agricultural practices (Nejedlik, Oger & Sigvald, 2021). For Jiang et al.
(2019), the objective of their project was to determine whether a phenology-based LSTM
model could be utilized to estimate maize yields. During the course of the growing season,
a crop of corn goes through a total of six unique stages of development, some of which
include being planted, emerging, silking, doughing, denting, and maturing. Following this
protocol, growing corn was divided down into five different stages in this study. Each stage
of development corresponds to a single time step in the LSTM (from seedling to emergent,
emerging to silking, silking to dough, dough to dented, and dented tomature). Throughout
each and every time step, we were required to analyze three weather features in addition
to a single vegetation index. The Wide Dynamic Range Vegetation Index (WDRVI) is a
vegetation index that is comparable to the National Vegetation Data Index (NDVI). When
a high density of biomass exists, the saturation effect is less of a problem (Walker, Olesen
& Phillips, 2001). This outcome is better than the RuleQuest Cubist (0.96), although it is
impossible to directly compare since the number of seasons included in the training and
the seasons in which the training took place are not the same (Nejedlik, Oger & Sigvald,
2021).

Crop yield prediction is another areawhereDNNshave been extensively employed, either
alone or as part of a multimodal combination. To determine the most accurate model for
predicting winter wheat production, Cao et al. (2020) compared DNN to machine learning
techniques, such as a support vector machine (SVM) and random forest. The DNN
technique to estimate biomass was examined by Jin et al. (2019). It was initially successful
with 15 vegetative indicators, but the accuracy of the DNN’s biomass estimate increased
when the leaf area index (LAI) and 15 indices were used together. For end-of-season and
within-season crop production predictions, a binarized neural network (BNN) performed
better thanmachine learning techniques.Ma et al. (2021) showed that using a region-based
convolutional neural network (R-CNN) reduced the number of possible areas for object
identification while maintaining high accuracy. For strawberry flower and fruit detection,
researchers examined R-CNN, fast R-CNN, and faster R-CNN. Faster R-CNN had the best
performance and required the least amount of time to train. Formultimodal data mining to
be effective, it must be possible to consistently represent intermodality and cross-modality
in the global space in which the data are integrated (Mkhabela et al., 2011; Barbosa et al.,
2021; Bronstein et al., 2010; Poria et al., 2017). Multimodal data fusion is a key component
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of this process. Using 3D-CNN and Conv-LSTM networks together, Gavahi, Abbaszadeh
& Moradkhani (2021) came up with a deep yielding technique. A DNN architecture with
feature fusion at the input and intermediate levels was utilized to forecast agricultural
production by Maimaitijiang et al. (2019). According to the suggested multimodal deep
learning framework, the intermediate-level feature fusion DNN framework outperformed
its input-level feature fusion DNN framework in terms of prediction accuracy, spatial
adaptability, and resilience. Multimodal deep learning was employed by Danilevicz et
al. (2021) by integrating tab-DNN, sp-DNN, two linear layers of fusion, and ReLU. The
weights from the last layers of tab-DNN and sp-DNNwere combined for the fusionmodule
input. The method worked effectively for predicting early crop yields. Machine learning,
deep learning, and ensemble approaches stack many networks on top of one another and
employ the characteristics gleaned from each one. Sun et al. (2020) combinedmanymodels
into one network and stacked it using convolution, pooling, and fully connected networks.

In conclusion, we will conduct a literature study on the use of artificial intelligence
techniques in crop yield prediction. Because it has the capacity to reveal the existing
research gaps in a certain area of artificial intelligence methodology and aids us in assessing
those gaps, the justification for the practice of doing a literature review is that it is important
to do so. the influence that vegetation indicators and environmental conditions have on
the growth of crops. This research is viewed from a different angle thanks to the literature
review, which analyzes the benefits of the study. In the process of estimating crop yields
using artificial intelligence models, the most appropriate technology is remote sensing.
predicated on the necessities of data collecting, as well as the numerous factors that play
a role in crop yield prediction In addition, information on temperature, precipitation,
soil conditions, and pesticides are all taken into account when attempting to forecast crop
yield. There is less research being done to uncover individual traits that have a substantial
impact on crop yield prediction as a result of the fact that crop yield prediction currently
makes use of a large number of features. As a result, in-depth study is required in order to
gain a better overview of these variables and factors influencing crop production forecast
than can be achieved through modeling based on previous research.

MATERIALS AND METHODS
Figure 1 displays the framework of the proposed system to predict crop yields in Saudi
Arabia. In this research, the ANN model was proposed to predict future values.
The current research is being directed by the following research questions, which have been
prepared to serve as a guide.

Q1. What artificial intelligence approaches are used for crop yield prediction?
Q3. How develop artificial intelligence for predicting future crop yield in Saudi Arabia?
Q4. What are important environmental parameters for increasing crop yield in Saudi

Arabia
This study investigates the feasibility of developing neural network models that can

make use of data on crop yields to make farm-scale yield predictions in Saudi Arabia with
the goal of ensuring continued access to nutritious food supplies. Through the utilization
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Figure 1 Framework of the proposed system.

Full-size DOI: 10.7717/peerjcs.1104/fig-1

of various AI technologies, the primary purpose of this work is to make projections about
the future values of important crop yields in Saudi Arabia. In addition, determining the
relationship between environmental factors such as precipitation, temperature, and the use
of insecticides and the yields of various crops, such as potatoes, rice, sorghum, and wheat,
is another important step.

Datasets
Predicting crop productivity is a significant issue in agriculture. Producing high-quality
food for human consumption heavily relies on a variety of factors, chief among them being
the weather (such as temperature and rainfall), insecticides, and historical data on crop
productivity. In the end, we all need the same fundamental essentials for survival. Corn,
wheat, rice, and other basic crops make up the bulk of our diet. AI was used in this study to
anticipate the consumed yields throughout Saudi Arabia. Ten of themost often grown crops
were included. Regression was an issue we had to deal with. The datasets contained crop
yields, temperature, insecticides, and rainfall. For the crop yields of maize, potatoes, rice,
sorghum, andwheat, we collected data between 1994 and 2016. The dataset is available at the
following link: https://www.kaggle.com/code/kushagranull/crop-yield-prediction/notebook.

Figure 2 shows the dataset after normalization, as well as the statistical metrics means
and standard division that we calculated. It can be observed that the dataset after min-max
normalization values are as follows:mean= 0.20973 and STD= 0.270; theY -axis represents
the scaling of data, and the sample identifications are presented on the X-axis.

Normalization method
Normalizing data with min-max normalization is an often-used practice. The minimum
and maximum values of each feature are translated into zero and a decimal between 0 and
1, respectively, for each feature.

zn=
x−xmin

xmax−xmin

(
Newmaxx −Newminx

)
+Newminx . (1)

The x_max and x_min are the maximum and minimum values, respectively. New (min_
x) is the smallest number, while New (max_x) is the largest number.
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Figure 2 Normalization data: (A) crop yield, (B) temperature, and (C) insecticides.

Full-size DOI: 10.7717/peerjcs.1104/fig-2

Proposed model
ANNs are a kind of AI that mimics the human brain (Gavahi, Abbaszadeh & Moradkhani,
2021). Densely coupled neurons, the network architecture, and the learning technique
influence a neural network’s function. These are simulations of biological brain networks.
The ANN technique may help in pattern identification and data classification (Alkahtani
& Aldhyani, 2022;Mehedi et al., 2021; Alkahtani & Aldhyani, 2021b; Aldhyani & Alkahtani,
2022). The MLP model is the most often utilized ANN, notably in environmental research.
This method may be used to match features and solve pattern recognition problems.
MLP may also be used to categorize various linear patterns. These are feedforward neural
networks (FNNs) that include several layers of units between the input and output layers.
Examples of how a neuron’s output might be expressed are as follows:

ξ =

n∑
i=1

wixi−b=wTx−b (2)

y = σ (ξ) (3)

σ (ξ)=
1

1+e−(ξ)
, (4)

where xi is the number of the ith input, wi isthe link weight from the ith input,
w = (w1 ...wn)T is the total weight, where xi is the number of the ith input (x1 ...xn). A
threshold or bias is denoted by the letter b, while the number n indicates the total number of
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inputs. The job of the activation function s(x) is typically to transfer the real numbers into
the interval, and this duty can be performed by a continuous or discontinuous function. It
is also possible to utilize the sigmoidal activation function. It is possible to express it using
the form (Alkahtani & Aldhyani, 2021a).

Training (learning), testing, and validation helped to improve the network design.
The sum-of-squares error function was used to evaluate the performance of each neural
network in the subsequent stages of model creation. The ANN training method involved
an iterative adjustment of the strength of connections between neurons in adjacent layers
and the parameters of activation functions. An attempt was made to reduce the training
error (El) using the training data set (Chen, 2020). The test error (Et) was also determined
for each iteration of the training process to evaluate its accuracy. Network overtraining
can occur when E1s cease decreasing or when they decrease but Ets increase, which usually
implies overtraining. This can be detected by looking for an increase in E1s and a decrease
in Ets. The Levenberg–Marquardt function was used to train the neural networks.

Model performance
Different MLP neural network models and their practical appropriateness were evaluated
using statistical criteria for prognostic model validation in this study. The models’ accuracy
in terms of fitting was assessed using the coefficient of determination (R2). In this study,
the normalized root mean square error (NRMSE), mean square error (MSE), and root
mean square error (RMSE) were used to calculate the average absolute difference between
forecasts and observations.

MSE=
1
n

n∑
i=1

(yi,exp−yi,pred)2 (5)

RMSE=

√√√√ n∑
i=1

(
yi,exp−yi,pred

)2
n

(6)

R%=
n
(∑n

i=1yi,exp×yi,pred
)
−
(∑n

i=1yi,exp
)(∑n

i=1yi,pred
)√[

n
(∑n

i=1yi,exp
)2
−
(∑n

i=1yi,exp
)2][n(∑n

i=1yi,pred
)2
−
(∑n

i=1yi,pred
)2]×100

(7)

R2
= 1−

∑n
i=1(yi,exp−yi,pred)

2∑n
i=1(yi,exp−yavg,exp)2

(8)

NRMSE=

√
1
n
∑n

k=1(yi,exp−yi,pred)2

yi,pred
. (9)

In this case, the yi,exp represents the experimental value of the data point i and yi,pred
is the predicted value of the data point i. The yavg,exp is the represented average of the
experimental values, and n is the total training values
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Table 1 Parameters of the developedMLPmodel.

First hidden layer 15
Second hidden layer 15
Input layer 4
maxIterations 100
Maximum number of epochs 70
Delays [1 2 5 7]
Gradient 1.26
Validation check 6

EXPERIMENTS
Models involving densely interconnected structures in which numerous interactions exist
and where there is no basis for linear approximation are some of the most powerful
approaches to solving engineering problems. Complex system modeling could benefit
from the use of ANNs, which have been shown in numerous studies to have excellent
prediction accuracy, generalization capacity, and robustness to noisy input. In this study,
we attempted to use MLP to construct a prediction model for modeling and predicting the
crop yields in Saudi Arabia.

As previously noted, an efficient MLP model was created based on the datasets
gathered from different regions in Saud Arabia. The computational platform used for
the modeling was MATLAB 2020. The input variables employed for the modeling were
crop yield, temperature, rainfall, and insecticides. The Min-Max approach was employed
for standardizing the data. The prediction performance of the constructed model was
assessed using three statistical metrics: MSE, RMSE, and R2.

Development of the MLP model
The MLP model contains an input layer, a hidden layer, and an output layer; the first
two have 15 neurons, while the output layer contains one neuron. The input variables
are represented by the number of neurons in the input layer, while the projected output
value is represented by a single neuron in the output layer. It is utilized for cross-validation
of the prediction model, which is further constituted of two hidden units and executes
computational tasks. In training, one unit is employed; in validation, trainlm is a network
training function that uses Levenberg–Marquardt optimization to update weight and
bias values in the network. With a loss function that is the sum of squared errors, the
Levenberg–Marquardt algorithm is best suited for this use.

Figure 3 depicts the MPL model for predicting crop yields in Saudi Arabia, while Table
1 lists the model’s parameter values.

Training process of the MLP model
Training is a key step in the development of a highly effective model based on some
experimental data. Of the total datasets, 70% were used at this stage for this purpose. As
can be seen in Fig. 4 and Table 2, the constructed MLP model performs admirably in terms
of the evaluation metrics. The correlation between the prediction values and the crop
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 Figure 3 The topology of the MPLmodel for crop yield.
Full-size DOI: 10.7717/peerjcs.1104/fig-3

Table 2 Performance of the MLPmodel in the training stage.

Dataset MSE RMSE NRMSE R R2

Crop yield 0.00381 0.06173 0.04493 96.2 92.84
Temperature 0.00270 0.01643 0.02038 93.26 91.84
Insecticides 2.8236× 10−06 0.00168 0.00105 100 91.18

yield parameters values is presented. The MLP model has high values of R (>100%) for
predicting insecticide values and R2 (>0.9284) for predicting the crop yield, in addition
to low values of MSE, RMSE, and NRMSE. These values show that the system has been
optimized to meet the specified objectives.

The histogram inaccuracy of the predicted values at the training state is depicted in
Fig. 5. To determine the amount of deviation that exists between the predicted values
and the target values, the error histogram metrics were examined. Because these error
values explain how the anticipated values differ from the target values, these values can be
negative. Also, it specifies how the predicted values deviate from the target values. It was
reported that the greatest errors were 0.000946, 0.000544, and 0.000258 for the crop yield,
temperature, and insecticides, respectively.

Testing process of the MLP model
To verify the accuracy of the MLP model, the testing phase utilized 30% of the datasets,
which consisted of previously undisclosed data. The results of the MLPmodel performance
in the testing stage are shown in Table 3, respectively. As can be seen in Fig. 6, there is

Al-Adhaileh and Aldhyani (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1104 11/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1104/fig-3
http://dx.doi.org/10.7717/peerj-cs.1104


 

 
Figure 4 The topology of the MPLmodel for crop yield. Performance of the MLP model in the training
process: a) crop yield, b) temperature, c) insecticides.

Full-size DOI: 10.7717/peerjcs.1104/fig-4

Table 3 Results of MLP compare with different prediction results of food security system.

Dataset MSE RMSE NRMSE R R2

Crop yield 0.000548 0.02341 0.02087 92.16 91.93
Temperature 0.004512 0.02124 0.0259 81.05 75.28
Insecticides 0.00111 0.03340 0.0170 100 96.33

an outstanding agreement between the values that were predicted and the values that
were sought to be found through experimentation. In addition, it was found that the
values of R% were very high (100%), and the value of R2 was very high (96.33%), for
predicting insecticides while the values of MSE and RMSE were very low (0.0045 and 0.021
respectively) for predicting temperature values. These demonstrate that the MLP model
that was created to forecast the crop yield, temperature and insecticides and it is solutions
is both accurate and reliable.
Figure 7 shows the histogram inaccuracy of the MLP model during testing for forecasting
crop yield. Histogram errors are metrics that are employed to determine the discrepancies
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 Figure 5 Histogram of the MLPmodel in the training process: (A) crop yield, (B) temperature, (C) and
insecticides.

Full-size DOI: 10.7717/peerjcs.1104/fig-5

Table 4 Results of MLP compare with different prediction results of food security system.

Ref Model Crop yield Region Results

Khaki & Wang (2019) Deep neural network Maize United States and
Canada

RMSE= 12.18
R= 84.01

Pham et al. (2022) Principal component anal-
ysis (PCA) and M

Rice- Vietnam RMSE= 5%–12%

Gong et al. (2021) Temporal convolutional
network (TCN) and recur-
rent neural network (RNN)

Tomato Newcastle, UK RMSE= 10.45

Khaki, Wang & Ar-
chontoulis (2020b)

(CNN-RNN) Corn and soybean United States RMSE= 8%–9%

Our model Multilayer perceptron
(Proposed system)

Maize, potatoes, rice,
sorghum, and wheat

Saudi Arabia RMSE= 0.04493
R= 96.02

between the observed and predicted data. Themean errors in the histograms were 0.000094,
0.00544, and 0.00025 for the crop yield, temperature, and insecticides, respectively.

Analysis of the important parameters for increasing the crop yield in
Saud Arabia
Our economy and sustainable growth depend on accurate forecasts of agricultural
production, which is why crop production forecasting has become a major concern.
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Figure 6 Histogram of the MLPmodel in the training process: (A) crop yield, (B) temperature, (C) and
insecticides.

Full-size DOI: 10.7717/peerjcs.1104/fig-6

It aids farmers and the government in developing better post-harvest management in
terms of transportation, storage, and distribution at the local, regional, and national levels.
Agricultural production optimization and intensification face numerous challenges, one
of which is predicting crop yields. Natural conditions can have a considerable impact on
crop selection, crop rotations, applied agrotechnical approaches, and long-term land use
planning. All these items are essential components of systems that assist farmers in making
knowledgeable, expert decisions.

One of the most important aspects of the AI approach is the requirement for a large
enough number of training examples based on high-quality observations of a complicated
system. The precision of training in intelligent systems is closely related to the amount of
information provided and the dependability of that information.

To estimate the effect of meteorological conditions of the previous year on the yield of
the current year in Saudi Arabia, we employed a vector formed of the average monthly
values of rainfall, temperatures, and insecticides. These three essential elements have a
greater impact on Saudi Arabia’s crop harvest than others, but many factors affect the
agricultural output in Saudi Arabia. Thus, long-term stationary experiments are utilized
to determine them. Figure 8 displays the structure of an MLP model for determining the
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Figure 7 Histogram of the MLPmodel in the testing process: (A) crop yield, (B) temperature, and (C)
insecticides.

Full-size DOI: 10.7717/peerjcs.1104/fig-7

 

Figure 8 Structure of the MLP for finding the regression between rainfall, temperatures, insecticides,
and different crop yields.

Full-size DOI: 10.7717/peerjcs.1104/fig-8

effects of rainfall, temperature, and insecticides on different crop yields, such as those for
potatoes, rice, sorghum, and wheat.

We also used the MLP model to determine the relationship between crop yields and
these parameters to formulate appropriate recommendations for agricultural technology
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Figure 11. Performance of the MLP model for finding correlations between temperature and crop 

yields for a) potatoes, b) rice, c) sorghum, and d) wheat in the training and testing processes. 

 

Figure 9 Performance of the MLPmodel for finding correlations between temperature and crop yields
for (A) potatoes, (B) rice, (C) sorghum, and (D) wheat in the training and testing processes.

Full-size DOI: 10.7717/peerjcs.1104/fig-9

for the upcoming year, taking into account the collected experience and weather conditions
monitored over time. Hence, we have looked into the possibility of predicting crop yields
using AI. We have applied the MLP model to determine the relationship between the
temperature, insecticides, and rainfall amounts with different crop yields, such as potatoes,
rice, sorghum, and wheat. Figure 9 shows the regression plot of the MLP model for finding
the correlation between temperatures and crop yields It can be observed that temperature
had more influence on the crop yields in Saudi Arabia. The MLP score was R> 98% for all
the crops.

Figure 10 shows the regression between insecticides and crop yields for potatoes, rice,
sorghum, and wheat. It shows that insecticides had the most influence on increasing crop
yields in Saudi Arabia. TheMLPmodel had the highest regression scores (between R> 90%
and 99%) for crop yields in the testing and training processes.

Temperatures in Saudi Arabia (SA) can vary widely from place to place and depending
on the time of year. Spring and winter have the largest incidences of rainfall, according
to an analysis. The rainfall is an important resource for increasing the percentage of
the predicted crop yield. Therefore, we have applied the MLP model to determine the
relationship between rainfall and crop yields for rice, sorghum, and wheat. Figure 11 shows
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Figure 10 Performance of the MLPmodel for finding correlations between insecticides and the crop
yields for (A) potatoes, (B) rice, (C) sorghum, and (D) wheat in the training and testing processes.

Full-size DOI: 10.7717/peerjcs.1104/fig-10

the regression graph, which shows that rainfall helps increase the crop yield. The scores
were R> 91% for the testing phase and R> 98% for the training phase.

According to the findings of this research project, the effect of weather conditions
from the previous year, such as rainfall, temperature, and the use of insecticides, on the
yield of the current year is comparable to the overall effect of the agricultural practices
that are implemented in Saudi Arabia. Therefore, to accurately predict crop yields for the
subsequent agricultural period, it is essential to take into account not only the agricultural
practices that are going to be utilized but also the anticipated temperature range, amount
of precipitation, and composition of insecticides. Table 4 shows the MLP result against
different existing food security systems.

CONCLUSION
In agriculture, predicting crop yields is critical. An accurate record of crop yields is vital for
making risk management decisions in agriculture. Crop productivity has been the subject
of numerous studies utilizing a variety of data mining approaches. Crop yield prediction
accuracy, however, has not improved, and AI models have been developed to overcome the
difficulties. We created an MLP-based framework to anticipate crop yield in Saudi Arabia
utilizing temperature, pesticides, and rainfall to examine the performance of AI models for
ecological challenges, especially when temporal and spatial correlations are found in the
data. The following conclusions can be derived from this study’s positive findings:
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Figure 11 Performance of the MLPmodel for finding correlations between insecticides and crop
yields for (A) potatoes, (B) rice, (C) sorghum, and (D) wheat during the training and testing processes.

Full-size DOI: 10.7717/peerjcs.1104/fig-11

• An efficientMLPmodel was successfully developed to predict crop yields, temperature,
and insecticides, and high values ofR%andR2 with low values ofMSE/RMSEwere reported
for the training and testing phases.
• The MLP model investigated the relationship between the crop yield types, including

potatoes, rice, sorghum, and wheat, with environment parameters, namely, temperature,
pesticides, and rainfall. Temperature, pesticides, and rainfall were effective in increasing
the product crop yield in Saudi Arabia.
• This research shows that an AI model may be used to estimate agricultural yields

based on a variety of environmental factors. New agricultural techniques that help to attain
more sustainable and secure food production could be developed based on the results in
this study.
• More complex models that are more accurate and easier to understand will be a focus

of our future research.
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