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ABSTRACT
The Internet of Vehicles (IoV) is an interactive network providing intelligent traffic
management, intelligent dynamic information service, and intelligent vehicle control
to running vehicles. One of the main problems in the IoV is the reluctance of vehicles
to share local data resulting in the cloud server not being able to acquire a sufficient
amount of data to build accurate machine learning (ML) models. In addition,
communication efficiency and ML model accuracy in the IoV are affected by noise
data caused by violent shaking and obscuration of in-vehicle cameras. Therefore we
propose a new Outlier Detection and Exponential Smoothing federated learning
(OES-Fed) framework to overcome these problems. More specifically, we filter the
noise data of the local ML model in the IoV from the current perspective and
historical perspective. The noise data filtering is implemented by combining data
outlier, K-means, Kalman filter and exponential smoothing algorithms. The
experimental results of the three datasets show that the OES-Fed framework
proposed in this article achieved higher accuracy, lower loss, and better area under
the curve (AUC). The OES-Fed framework we propose can better filter noise data,
providing an important domain reference for starting field of federated learning in
the IoV.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Internet of Things
Keywords Federated learning, Internet of vehicles, Noise data filtering, Outlier detection, Kalman
filter, Exponential smoothing

INTRODUCTION
The rotten apple injures its neighbors.——An old proverb

The Internet of Vehicles (IoV) is an interactive network consisting of an inter-
vehicle network, intra-vehicle network, and vehicular mobile internet data (Raza et al.,
2021; Gunagwera & Zengin, 2022). The IoV collects information by using wireless
communication devices such as GPS, RFID, sensors, cameras other in-vehicle devices, then
transmits the vehicle’s local data to the server. The server receives these local data, then
uses related technology to analyse and process it, and finally provides intelligent traffic
management, intelligent dynamic information service, and intelligent vehicle control to the
running vehicles.
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Nowadays, most IoV models are established using cloud-based servers, which facilitates
the analysis of the collected vehicle image data and the results back to the running vehicles.
In the near future, a vehicle with sensors and cameras will collect at least 10 terabytes of
daily data. According to the statistics of the global market of the IoV, it can be seen that it
reached 245.42 billion dollars in 2015, growing to 643.44 billion dollars in 2020, and is
expected to exceed 1.5 trillion dollars in 2025. Meanwhile, the global IoV penetration
rate increased from 30.7% in 2018 to 45% in 2020, and is expected to cover approximately
60% of vehicles globally by 2025. As a result, the data generated by vehicles will also
increase dramatically, while a myriad of local vehicle data is a heavy load for the IoV. For
the transmission efficiency of a wireless networks, many researchers have proposed their
own solutions (Chithaluru, Tiwari & Kumar, 2021; Chithaluru et al., 2021b). For example,
Chithaluru et al. (2021a) proposed a process which includes a collection of physical
environmental parameters on a single board computer-based to help improve the
efficiency of a wireless network. Singh et al. (2022) proposed a Hybrid Genetic Firefly
Algorithm-based Routing Protocol to solve the optimal routing of sparse, dense and real
traffic network scenarios in vehicular ad-hoc network (VANET). In addition, the data
is vulnerable to issues such as unstable networks and vehicle high speed during
transmission, so the local data of vehicles used for training is redundant for the IoV.Wang,
Song & Liu (2020) argued that 15–20% of the data in the vehicle network is noise data,
while Ghane et al. (2020) believed that the percentage of the noise data should be 18–25%.
The isolated data island has arisen due to data privacy issues that have received high
attention (Yang et al., 2021a, 2021b). The isolated data island can lead to less data being
collected, yet machine learning models need more data for training in order to achieve
excellent accuracy (Burlet & Hindle, 2017; Baumer, 2018; Wang et al., 2021).

Based on the above problems, the use of federated learning emerges as a feasible
solution. Federated learning is a distributed machine learning paradigm proposed by
Google (Tehseen, Farooq & Abid, 2021; Lakhan et al., 2021; Novikova et al., 2022). Instead
of centralizing the dataset in a particular data centre, it chooses to acquire local
machine learning (ML) model parameters trained by the client on its private local data and
then aggregates the parameters only. This approach does not involve the private local data
itself, only the parameters of the local ML model are transmitted. Furthermore, training
the ML model locally on the client side not only decentralizes the computational tasks
from the cloud service centre, but also saves communication costs and reduces the network
burden. Regarding the IoV and federation learning, Du et al. (2020) discussed the
significance and technical challenges of applying federated learning in the IoV and pointed
out future research directions. For combining the IoV with federated learning, Posner et al.
(2021) proposed a novel federated vehicle network (FVN) concept that improves the
scalability and stability of IoV communication.

LITERATURE REVIEW
Federated learning and isolated data islands
As an emerging information and communication technology widely used in everyday
transportation, the IoV generates a large amount of data and information interaction
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during its operation. However, there is an increasing focus on data privacy, leading to the
isolated data island in IoV. To address this problem, many scholars have incorporated
some federated learning frameworks into the IoV network. Pokhrel & Choi (2020b)
proposed a new efficient communication and privacy-preserving federated learning
framework for further improving the efficiency of the IoV training data. However, the
framework lacks an analysis of the loss and accuracy incurred in training the network
model data. Bao et al. (2021) used distributed approaches to designate some vehicles as
edge vehicles and used the edge vehicles as federated learning clients for local model
training, resulting in an efficient deep learning network architecture. Also, Zhao et al.
(2020) advanced federated learning and local differential privacy (LDP), as well as four
LDP mechanisms to scramble the gradients generated by the vehicles, to provide high
accuracy with a small privacy budget. The literature (Pokhrel & Choi, 2020b; Bao et al.,
2021; Zhao et al., 2020) amply illustrates that the combination of vehicular networking and
federated learning can be a solution to the problem of isolated data islands in the IoV.
Although the models in the literature can improve the training accuracy of the network
models, the global models are susceptible to noise data, leading to biases that make the
global models inefficient to learn and slow to converge.

Solutions of the noise data
To face the noise data problem, a reasonable data filter is needed to increase the training
efficiency of network models, which is one of the important aspects of network model
training. Data filters play an important role when dealing with large-scale datasets with
a large number of samples and features (Toet, 2016; Goudarzi & Rahmani, 2021; Li,
Yang &Wen, 2021). We found that the noise data can be filtered from both the current and
the historical perspectives of the noise data.

� Current perspective: data outlier

Data outliers are the most used and powerful method for noise data processing. In data
analysis, outliers are deviated and unexpected observations. Reunanen, Räty & Lintonen
(2020) proposed a method to optimize anomaly detection integration using a limited
number of outlier samples, which improves the efficiency of outlier detection by defining
the limited outliers. However, this method requires some manual adjustment of the
parameters or setting them according to the rule of thumb. Besides, Goh, Chiew & Foo
(2020) introduced a novel method based on combined distances, capable of high accuracy
outlier detection. But this did not work for outliers in high-density regions. Based on
these problems, Li, Wang & Guan, 2019 proposed a graph-based outlier detection method
that can significantly improve the performance of existing outlier detection methods.
The method does not distinguish between local outliers and global outliers. Therefore, a
new outlier detection algorithm K-Nearest Neighbor-Local Outlier Factor (KNN-LOF)
was proposed by Xu et al. (2022). The K-nearest neighbour algorithm is used to region the
outlier attributes, calculate the average sequence distance from data objects in the
hierarchy, and redefine the reachable distance of the objects to introduce new local outlier
factors. The outlier detection method is convenient and efficient and can be used for
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most data, which is superior to other methods. The detection results of the outlier
detection method are constrained by the clustering method itself. There is no universally
applicable clustering method for different data sets, so corresponding adaptations are
required for the IoV scenario and data parameters.

� Historical perspective: data iteration

Kalman filter and exponential smoothing are often used to filter noise data from data
iteration. Seth, Swain & Mishra (2018) used the traditional Kalman filter to estimate the
position and trajectory of a single target in motion, and obtained the actual trajectory
by connecting the center of the obtained moving object image. For the processing of
vehicle-related data in the IoV, Zhang et al. (2018) used Kalman filter for the selection of
data from simple inertial navigation and data from various positioning system sources with
different errors, which can effectively improve accuracy and reliability. Exponential
smoothing is a way to simplify the classification process. Therefore, Rahajoe (2019)
adopted a new feature matrix as the basis for selection and used exponential smoothing to
encapsulate it with the Genetic Algorithm Support Vector Machine (GASVM) method,
which significantly improved the accuracy and the number of filtered parameters. In the
big data era of the IoV, multiple perspectives of analysis may yield completely different
results due to the diversity of data sources. Therefore, we needed to combine the Kalman
filter and exponential smoothing to ensure the accuracy of the filtering results according to
the actual situation of the IoV.

Since federated learning is an emerging field, its use in handling noise data is rarely
covered. So this article refers to Ahmed et al. (2020), Ye et al. (2020), Li, Wang & Guan
(2019), Xu et al. (2022), Seth, Swain &Mishra (2018), Zhang et al. (2018) for a comparative
analysis of federated learning algorithms applied to different domains with the
mechanism proposed in this article, as shown in Table 1.

SCENE DESCRIPTION
Figure 1 shows a real-life Vehicle to Vehicle (V2V) scenario of federated learning applied
in the IoV, where the vehicle transmits local ML model parameters to the central server via
the access point provider after training local models, which solves the problems of network
latency, poor model computing power and low efficiency in IoV data training. Vehicles
pass the intersection smoothly in around 1–3 min. Therefore it is questionable how the
approach proposed in this article can accomplish the operation in such a short time.
Fortunately, manufacturers represented by Tesla, Audi, and Mercedes-Benz in the new
generation vehicle have increased the intelligent driving arithmetic power to 500–1,000
Tops level. This is sufficient to support federated learning and will not result in
asynchronous model training and transmission. In other words, we do not need to
consider the vehicle’s computing power or time. However, as shown in the top left corner
of Fig. 1, there are still issues to be resolved.

Challenge 1: Vehicles in the IoV network are reluctant to share data, creating isolated data
islands. This results in the cloud server of the IoV network not being able to acquire a sufficient
amount of data to build accurate ML models to complete the calculation tasks. Even if
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they are willing to share data, the IoV network will still be affected by factors such as vehicle
high speed and low network transmission rate, resulting in the accuracy of the ML models
built by the cloud server not being able to meet the calculation tasks.

Challenge 2: The vehicle local ML model training effect is poor due to the problems
such as violent shaking and obscuration of in-vehicle cameras. The model parameters of
such clients are like “the rotten apple”, which not only increases the communication

Table 1 Comparison of federated learning and noise data filtering algorithms for different domains.

Technologies Application scenario Innovations

Ahmed et al.
(2020)

Federated learning, Active
learning

Natural disaster, Refuse
classification

Modifies some federal learning model parameters and allows the
machine learning (ML) model to automatically select and tag the data
it learns.

Ye et al.
(2020)

Federated learning IoV The two-dimensional contract theory is used as the distributed
framework and greedy algorithm is added.

Li, Wang &
Guan
(2019)

Outlier detection Data filtering Outlier detection based on graph clustering outliers are allowed.

Xu et al.
(2022)

Outlier detection, K-nearest
algorithm

Data filtering Use the K-nearest neighbor algorithm to divide different regions for
outlier attributes, and then use the division of different regions for
outlier attributes to introduce local outlier factors

Seth, Swain
& Mishra
(2018)

Kalman filter Position and trajectory
estimation of moving
objects

The exponential function and the Kalman gain

Zhang et al.
(2018)

Kalman filter IoV Kalman filter is used to fuse the position information. GPS, SINS, DR
and TDOA are selected to simulate the fusion algorithm.

OURS Federated learning, Outlier
detection, K-nearest algorithm,
Kalman filter

IoV Outliers are detected by selecting excellent subsets, and combined with
K-means algorithm, cubic exponential smoothing and Kalman filter
algorithm.

Figure 1 IoV scenario. Full-size DOI: 10.7717/peerj-cs.11011101/fig-1
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consumption, but also affects the learning efficiency and convergence speed of the global
model.

Challenge 3: Local ML model parameters that are not relevant to the computational
task have an impact on the global model. For example, the data of pedestrians on both
sides of the road and shops are not relevant to the vehicle driving task. These data affect the
convergence speed and accuracy of the global model.

This article defines the poorly trained ML model data and irrelevant data (in Challenges
2 and 3) as noise data in federated learning. Therefore, the key point to be explored is
to alleviate the burden of the huge amount of data faced during the training of the IoV
while at the same time being able to clean the noise data from the IOV data completely so
as to ensure high communication efficiency and ML model accuracy of the data when
combining federated learning with the IoV.

OUR CONTRIBUTION
This article mainly focuses on the problem that the training efficiency of federated learning
in the connected vehicle scenario is easily affected by noise data. We propose a new Outlier
Detection and Exponential Smoothing federated learning (OES-Fed) framework.

� From the current perspective of noise data, this article provides an outlier detection
method based on K-means. By screening excellent subsets and taking them as the initial
clustering center, we solved the problem of significant changes in vehicle data sets in
IOV, and preliminarily reduced the noise data.

� From the historical perspective of noise data, we consider the past training performance
of the vehicle. Due to the influence of noise data, this article proposed the fusion of the
Kalman filter and exponential smoothing to achieve the effect of noise reduction.

� After current and historical noise reduction, the actual accuracy of vehicles will be
significantly affected. This article solved the problem by reintroducing the results of the
iterative data filtering into the K-means algorithm and updating the filtering criteria.

� The proposed OES-Fed framework is trained on three datasets, and the global ML
models are evaluated using accuracy, loss and area under the curve (AUC) metrics
respectively. As a result, the OES-Fed framework proposed in this article achieved
higher accuracy, lower loss, and better AUC.

SYSTEM MODEL AND PROBLEM DESCRIPTION
System model
This article sets up a federated learning framework composed of vehicles participating in
local ML parameters sharing and the central server to simulate the real scene of safe
and reliable IoV. As shown in Fig. 2, the system model includes three entities: central
server, access point (AP) and vehicles. The specific functions of the different entities are as
follows.

1. The central server is the core processing node of IoV, with high-speed computing
capability and good scalability, which can run reliably for a long time and can undertake
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any level of computing work in the network. Meanwhile, the server does not receive the
original data collected by the vehicle, but only the local ML model parameters
transmitted by the access point (AP), which are the parameters of the ML model formed
by the vehicle through training the local dataset of the vehicle client. This article assumes
that the server has infinite computing power.

2. The AP is the base station or roadside unit, which is equipped with communication and
computational processing. In addition, the AP adjusts the training resources of the
vehicle according to the instructions of the server.

3. The vehicle will generate a large amount of driving data and related pictures at the
vehicle equipment during the driving process, and the driving data will be processed and

saved locally, forming the local dataset: DataLocaln;i ¼ xn;i 2 Ti; yn;i 2 Ti
n o

; xn;i is the

input sample vector for vehicle n to participate in training, and yn;i is the label of the
input sample vector. When the server has started some task, the vehicle will train the ML
model for the base and upload the local ML model parameters to the server via the AP.

Problem description
In this section, considering that multiple vehicles conduct federated learning in the
Internet of Vehicles to provide the data model for the server, the instability of vehicle high
speed and on-board equipment, transmission bandwidth, time delay and other factors

Figure 2 System model. Full-size DOI: 10.7717/peerj-cs.11011101/fig-2
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affect the transmission of the model in the real case, so only a fraction of compliant
vehicles participate in the federated learning algorithm to share local ML model
parameters to improve models’ quality and efficiency. The impact of vehicle selection on
the performance of the federated learning algorithm is described in the following sessions.

In the above proposed model, when the central server needs to request the vehicle
dataset: Vehicle ¼ V1;V2;V3;V4;…Vnf g, the vehicle privacy data of n 2 N for a
particular road study, the central server posts the task and the nearby edge node AP
receives the task to send to the vehicle dataset: Vehicle ¼ V1;V2;V3;V4;…Vnf g, and
waits for the feedback of vehicle resource information. From the feedback, the central
server selects the appropriate vehicles to participate in the training model. The local dataset
for each vehicle: DataLocaln;i ¼ Xi

n;i;Y
i
n;i

n o
;Xn;i is the input sample vector for vehicle n to

participate in training, Yn;i is the label for the input sample vector. The amount of data
for all participating local training is Data ¼PN

n¼1
PI

i¼1 DataLocaln;i, i 2 I is the i-th
sample of the input. n 2 I is the participating vehicles and N is the set of vehicles
participating in data sharing.

After the vehicle client has trained the local model, it transmits the parameters of
the local model: ParametersLocaln;i ¼ Fi

n;i to the server via the AP. i 2 I is the i-th
parameter of the input and n 2 I is the participating vehicle. The server receives the
parameters of the local model from each vehicle client and stores them in

ParametersGlobaln;i ¼
PN

n¼1
PI

i¼1 ParametersLocaln;i, i 2 I is the i-th parameter of the

input and n 2 I is the participating vehicle. A weight parameterWn is defined to represent
the local model parameters trained by vehicle n. The goal of the whole training process is to
find the parameters Xn and Yn obtained by the learning algorithm with training to make
the model converge to achieve prediction accuracy and minimize the loss function. Xn and
Yn are the set of input sample vectors and the set of input sample vector labels. A
convolutional neural network (CNN) uses the original image as input, which can
effectively learn the corresponding features from a large number of samples. CNN can
avoid the complicated feature extraction process and directly process images. With these
advantages, CNN has been widely used in image processing (Kim & Hong, 2020; Wang,
Ma & Wu, 2020; Poudyal et al., 2021). For example, Yang et al. (2021a, 2021b) proposed a
Multi-scale Texture Difference model (MTD-Net) and Multi-scale Self-Texture Attention
Generative Network (MSTA-Net) based on improved CNN, respectively, to detect forged
data. Therefore, we chose the CNN as the learning algorithm in this article. The net input
of the i-th parameters mapping of the first layer Zðl;iÞ is as follows.

Zðl;iÞ ¼
XD
d¼1

Wðl;i;dÞ � Xðl�1;dÞ þ bðl;iÞ (1)

Xðl�1;dÞ is the input parameters mapping for the first layer, Xðl�1;dÞ 2 RM�N�D. Each
output parameters mapping requires D convolution kernels as well as a bias. The predicted
results Ŷn;i are as follows.
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Ŷn;i ¼ Zn;iW
T
n þ bn;i (2)

Therefore, the prediction accuracy function of the federated learning model is as
follows.

Accuracy ¼ 1
N

XN
i¼1

Ŷn;i ¼ Yn;i (3)

Ŷn;i is the true label if it is the predicted label trained on the test set using the trained

classification model. For the loss function of the federated learning, we chose the logistic
regression method to describe it, then the loss function of the local model is as follows.

fnðwÞ ¼ log2 1þ exp �Yn;iw
T
nXn;i

� �� �
(4)

The objective is the formula (2).

minf ðwÞ ≜ min
1
N

XN
n¼1

fnðwÞ
( )

(5)

Each vehicle n updates the model in round ewe
n ¼ we�1

n � l wn�1
n

� �
l is a predefined learning rate, and then the updated model parameters are passed

through the edge nodes to the central server, which trains the e round global model
parameters.

we ¼ 1
N

XN
n¼1

XI

i¼1

we
nDataLocaln;i
DataLocal

(6)

The probability of each vehicle being selected is as follows.

pn ¼
XI

i¼1

DataLocaln;i
DataLocal

(7)

We validated the model capability by calculating the AUC values of the completed
global model for the training, setting the dataset with a total of M positive samples, N
negative samples, and M + N predictions bYn;i.

AUC ¼
PN

i¼1 1 bYn;i ¼ Yn;i

n o
M� N

(8)

According to formulas (1) and (2), vehicles with highly accurate and reliable local ML
model parameters can converge local loss functions fnðwÞ and global model parameters
f (w) faster. From the formula (3), it can be seen that the global ML model parameters
trained by the central server depend on the local ML model parameters transmitted by the
vehicle, as well as the quality of the training dataset. On the contrary, the global ML model
parameters in turn determine the local model updates. Therefore, the local ML model
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parameters must be selected with high accuracy, low loss and better AUC to achieve
convergence between local and global model updates in fewer iterations. In addition, the
learning efficiency of federated learning can be improved significantly.

OUR PROPOSED FRAMEWORK: OES-FED
As mentioned above, there is a myriad of data in the IoV. Moreover, there is a lot of noise
data in the IoV due to problems such as unstable networks, signal delays or obscuration of
in-vehicle cameras. The noise data also affected the modelling quality of the IoV network
model, and reduced the accuracy and efficiency of image recognition. This article used
federated learning as the base network model, whose expressions are shown below.

grþ1ðwÞ ¼
XK
k¼1

nk
n
Fk;rðwÞ; Fk;rðwÞ ¼ 1

nk

X
i2Pk

ci;rðwÞ (9)

grþ1ðwÞ is the global model parameter for round r+1, and Fk;rðwÞ is the label after
averaging the clients for round r. n is the number of clients used for averaging, K is the set
of all clients, and ci;rðwÞ is the model parameter for each client in round r.

Tables 2–4 show all the notations and definitions used in this article. Figure 3 shows the
overall training process of the OES-Fed framework proposed in this article.

Table 2 Parameter definition of OES-Fed algorithm.

Symbols Definition

r Global communication rounds

D Discard rate

V Vehicle set

v Vehicle

m Vehicle weights

Accv Vehicle accuracy

global Global model

Accg Global model accuracy

step Vehicle training resources

Table 3 Parameter definition of Outlier algorithm.

Symbols Definition

e Clustering parameters

D Sample distance formula

d Sample dimension

k Arbitrary real numbers

k Number of clustering centers

Aj Center of clustering

nj Number of samples of class j
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As shown in Fig. 3 we divided the overall training process of the initialized framework
into three steps. Step A is the current perspective of nosie data with the K-means algorithm
based on outliers, Step B is the historical perspective of noise data with exponential
smoothing based on Kalman filtering and Step C is the overall scheme of data iteration and
resource alignment. Initialization stage: the obtained total clients
ðV1;r;V2;r;V3;r; . . . ;Vk�1;r;Vk;r; Vkþ1;r; . . . ;Vn;r;Vn�1;r;Vn�2;rÞ are subjected to ordinary

federated averaging to obtain the initial client accuracy and the initial accuracy of the global
model (FedAVG).

Phase A: current perspective of nosie data
Motivation: current perspective of nosie data filtering
In this article, we chose the outlier point algorithm as the main filtering algorithm for noisy
data processing. We propose a new K-means algorithm based on the combination of the

Table 4 Parameter definition of ESmooth algorithm.

Symbols Definition

X Filtered processing value

P The variance value corresponding to X

K Filtering gain value

S Smoothing value

R Smoothing period

a; b; c Exponential smoothing coefficient

Figure 3 OES-Fed framework. Full-size DOI: 10.7717/peerj-cs.11011101/fig-3
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outlier algorithm and K-means algorithm. As shown in Step A in Fig. 3, V1;r is an inactive
vehicle, so it will not enter the training round r. Finally, by training the vehicles
ðV1;r;V2;r;V3;r;…;Vk�1;r;Vk;r;Vkþ1;r;…;Vn;r;Vn�1;r;Vn�2;rÞ, the outlier vehicles
V2;r;Vk�1;r are selected after comparing the training accuracy of these vehicles with the

accuracy of FedAVG.

Selecting the initial clustering centre: the excellent subset
For the noise data filtering in the IoV, the original outlier detection is able to filter out
some of the outliers. Still, it is but is not sufficient to better classify noise data and valid
data. Therefore, in this article, based on the idea of Li, Wang & Guan (2019), the
performance of the outlier detection method can be improved by filtering out the good
subset as the initial clustering centre of the outliers, and the algorithm expression of the
method is shown below.

Br ¼
XN
i¼1

xi Accvr;i ⩾ Accgr
� �

(10)

Br is defined as the initial clustering centre of round r, xi is the model parameters of
vehicle i, Accvr;i is the vehicle accuracy of vehicle i of round r, and Accgr is the global model
accuracy of round r.

Outlier algorithm based on excellent subset
Based on the excellent subset, this article uses the outlier algorithm to perform the initial
cleaning of the noise data from the perspective of data outliers, and the algorithm
expression is shown below.

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXe

j¼1

Xnr;j
q¼1

Xd
a¼1

WðaÞ
r;jq � BðaÞr;j

� �2
=ðn� 1Þ

vuut (11)

d is the sample dimension, nr;j is the number of samples within j class in the r-round
clustering result, and e is the clustering parameter. W is defined as the sample dataset
in outlier detection, B defined as the initial clustering centre, Xi is the input sample vector
of the sample dataset, and Yi is the label of the input sample vector.

Current perspective on noise data: the improved K-means scheme based on

the outlier algorithm
In order to achieve the deep elimination of the noise data, this article adds the K-means
algorithm to the above Steps (2) and (3) to cluster the remaining clients, by calculating the
distance from the outliers to each category and classifying each outlier into categories.
The algorithm is able to classify the clients more effectively and accurately, thus separating
the noise data from the valid data more accurately. In this article, the euclidean
distance measure is used to achieve the K-means classification of the sample data. The
distance formula for W and B is as follows.
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Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

xi � yið Þ2
vuut (12)

Therefore, the adaptation function is:

f ðxÞ ¼ kPk
j¼1

P
xi2Br;j

D xi;Br;j
� � (13)

k is an arbitrary real number, and Br;jðj ¼ 1; 2; 3; � � � ; kÞ is the center of r-round
clustering.

Phase B: historical perspective of noise data
Motivation: historical perspective of noise data filtering

Since the IoV data is always being updated and iterated, the client cannot be judged as
good or bad from the accuracy of one training round. Therefore, both past and present
data must be considered. We combine Kalman filtering with the exponential smoothing
algorithm to improve the efficiency of the exponential2s smoothing algorithm.
Furthermore, the exponential smoothing algorithm can better adapt to the changes in the
24 sequence itself. As shown in Step B in Fig. 3, the vehicles are reordered from the lowest
to the highest accuracy, and the subscripts corresponding to the vehicles change with the
number of rounds because the data are processed by Kalman filtering in each round. We
eliminated Vk;r as the outlier by comparing the actual vehicle accuracy with the r-th round
accuracy.

Kalman filter processing
This article performs a second screening of the client from the historical perspective of
noise data, i.e., the iterative data perspective. However, as noise data is involved, the actual
performance results of the client may be biased. So this article uses the Kalman filter to
perform noise reduction on the client. The exact process of the Kalman filter algorithm is
shown below.

For the iterative update of the measurement data: the Kalman filter processing value
obtained at moment r − 1 is set to the initial system state value at the current moment r.

XðxÞrjr�1 ¼ XðxÞr�1jr�1 (14)

XðxÞr�1jr�1 r − 1 is the Kalman filter processing value obtained at the moment and r − 1 is

the number of processing times. When x = 1, 2, 3, it represents the primary processing
value, secondary processing value and tertiary processing value respectively. The variance
value of the initial state value of the system is as follows.

PðxÞrjr�1 ¼ PðxÞr�1jr�1 þ Qr (15)

Lei et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1101 13/28

http://dx.doi.org/10.7717/peerj-cs.1101
https://peerj.com/computer-science/


PðxÞr�1jr�1 is the variance value corresponding to the Kalman filter processing values,

when x = 1, 2, 3, it represents the variance values of the primary, secondary and tertiary
processing values therein. Qr is the covariance matrix of the Kalman filter.

For each of the three Kalman filter treatments, the data is processed to obtain the
Kalman filter processing value.

XðxÞrjr ¼ XðxÞrjr�1 þ KðxÞr Xðx�1Þrjr � XðxÞrjr�1
� �

(16)

Therefore, the three processing values of the Kalman filter are Xð1Þrjr , X
ð2Þ
rjr , and Xð3Þrjr . K

ðiÞ
r

the gain value of Kalman filter.

KðxÞr ¼ PðxÞrjr�1= PðxÞrjr�1 þ Rr

� �
(17)

Therefore, the three Kalman filter gains obtained are Kð1Þt , Kð2Þt , and Kð3Þt .
After the three Kalman filtering processes, the variance values corresponding to the

Kalman filter values can be updated as follows.

PðxÞrjr ¼ 1� KðxÞr

� �
PðxÞrjr�1 ðx ¼ 1; 2; 3Þ (18)

Historical perspective of noise data: the improved exponential smoothing
scheme based on Kalman filter

After the noise reduction using Kalman filtering, the exponential smoothing algorithm is
used to make the results obtained by the exponential smoothing algorithm more stable.
This article uses the exponential smoothing algorithm three times, combined with the
client accuracy in every third round, to calculate the actual performance accuracy of the
client in the third round.

For the traditional cubic exponential smoothing model in r + R period:

ŜrþR ¼ aþ bRþ cR2 (19)

ŜrþR is the predicted value of a period, R is the number of prediction periods, and a, b, c
are the parameter of the prediction model.

a ¼ 3Sð1Þr � 3Sð2Þr þ Sð3Þr
b ¼ a ð6� 5aÞSð1Þr � 2ð5� 4aÞSð2Þr þ

h
ð4� 3aÞSð3Þr

i
= 2� ð1� aÞ2	 


c ¼ a2 Sð1Þr � 2Sð2Þr þ Sð3Þr
� �

= 2ð1� aÞ2	 


9>>>>>=>>>>>;
(20)

Therefore, we replace the smoothing coefficients with the Kalman filter tertiary gain
values in formulas (15) and (16) above. Also, use the primary processing value Xð1Þrjr ,
secondary processing value Xð2Þrjr and tertiary processing value Xð3Þrjr in Eqs. (15) and (16) to
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substitute as the primary smoothing value Sð1Þr , secondary smoothing value Sð2Þr , and
tertiary smoothing Sð3Þr , for the solution of corresponding a, b, c in the formula (19).

a ¼ 3Xð1Þrjr � 3Xð2Þrjr þ Xð3Þrjr (21)

b ¼
Kð3Þr

2 1� Kð3Þr

h i2 6� 5Kð3Þr

h i
Xð1Þrjr �

�
2 5� 4Kð3Þr

h i
Xð2Þrjr þ 4� 3Kð3Þr

h i
Xð3Þrjr

�
8>>><>>>: (22)

c ¼
Kð3Þr

h i2
Xð2Þrjr � 2Xð2Þrjr þ Xð3Þrjr
h i
2 1� Kð3Þr

h i2 (23)

Therefore, the newly obtained a, b, c are substituted into Eq. (19) to create a new cubic
exponential smoothing model for the secondary screening of clients. The Improved
K-means Based Outlier and Improved Kalman Filter Based Exponential smoothing are
shown in Algorithm 1.

Phase C: the overall scheme of data iteration and resource alignment
Motivation: the overall scheme
As shown in Step C in Fig. 3, after the r round passes the second filtering, we take the
results of the three exponential smoothing in Step B into Step A again to update the
filtering criteria. We consider the clients V1;r;V2;rVk�1;r selected by the outlier
optimization algorithm and the exponential smoothing optimization algorithm as the
weaker vehicles by the new filtering criteria. The Vn�1;r;Vn�2;r selected in Step B are
considered stronger vehicles. For V1;r;V2;r;Vk�1;r , we increase the training resources for
such vehicles to make such vehicles excellent by the increase in training resources. For
Vn�1;r;Vn�2;r , we reduce the training resources of such clients to reduce the waste of

training resources and improve training resource utilization.

Data iteration: (Kalman filter + Exponential smoothing) + (Excellent subset +

Outlier + Improved K-means)
When the exponential smoothing algorithm is based on Kalman filtering, the previous
client-side filtering criteria are no longer valid due to changes in the actual accuracy of the
client. For this reason, we introduce the results of the Kalman filter into the K-means algorithm
to update the filtering criteria and accurately filter the noise data. The algorithm expression is
as follows. The obtained ŜrþR are put into the fitness function formula (12).

Client training adjustment
The model combining the IoV with federated learning has computational resource
optimization. Therefore, in this article, the client training resources are adjusted.
The poorer performing clients get more training resources to improve the performance of
the training parameters. Meanwhile, the better performing clients reduce the load of the
model by reducing epochs to improve efficiency.
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epochsðr; i;AccÞ ¼

epoch� step ifAccr;v .Accr;g
epochþ step ifAccr;v ,Accr;g

and lenðepochþ stepÞ
¼ lenðepoch� stepÞ

epoch otherwise

8>>>><>>>>: (24)

Z
ŜrþR
� � ¼ kPk

j¼1
P

ŜrþR
� �

i 2Wr;jD ŜrþR
� �

i0Br;j

� � (25)

The epochs required for vehicle in i-rounds are determined by Accr;v in r − 1 rounds,
and Accr;g is the accuracy of the r-round global variables. The overall flow of our OES-Fed
algorithm is shown in Algorithm 2.

Algorithm 1: Outlier algorithm & ESmooth algorithm.

OutlierðB;W; eÞ :
for each a = 1,2,… do

Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 xi � yið Þ2
q

f ðxÞ ¼ kPk
j¼1

P
xi2Wj

D xi;Wj
� �

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPe

j¼1
Pnj

q¼1
Pd

a¼1 WðaÞ
jq �WðaÞ

j

� �2
=ðn� 1Þ

r
end

return J

ESmoothðX; x 2 XÞ:
for each round r = 4,5,….. do

XðxÞrjr�1  XðxÞr�1jr�1
PðxÞrjr�1  PðxÞr�1jr�1 þ Qr

XðxÞrjr  XðxÞrjr�1 þ KðxÞr Xðx�1Þrjr � XðxÞrjr�1
� �

KðxÞr  PðxÞrjr�1= PðxÞrjr�1 þ Rr

� �
PðxÞrjr  1� KðxÞr

� �
PðxÞrjr�1 ðx ¼ 1; 2; 3Þ

ŜrþR  aþ bRþ cR2

a 3Xð1Þrjr � 3Xð2Þrjr þ Xð3Þrjr

b 
Kð3Þr

2 1� Kð3Þr

h i2 6� 5Kð3Þr

h i
Xð1Þrjr �

n
2 5� 4Kð3Þr

h i
Xð2Þrjr þ 4� 3Kð3Þr

h i
Xð3Þrjr

o
8>>><>>>:

c 
Kð3Þr

h i2
Xð2Þrjr � 2Xð2Þrjr þ Xð3Þrjr
h i
2 1� Kð3Þr

h i2
end

return ŜrþR
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Algorithm 2: OES-Fed algorithm.

for each round r = 1,2, … do

ms ← max(D * V,1)

SV ← (random set of ms clients)

for each client v 2 SV in parallel do

mv
r0  ClientUpdateðv;mrÞ

Accvr;v  testðmv
r0 Þ

end

mr0  
PV

v¼1
nv
n
mv

r0

Accr;v  testðmr0 Þ
Accr;g  testðglobalrÞ
if Accvr;v > Accr;g then

B Accr;v

else W  Accr;v;

end

for each b 2W do

if b ¼¼ Accr;g then

Nor  b

else L b;

end

end

outr  OutlierðL;BÞ
G outr

X  ðremove outr from LÞ
sesr  ESmoothðAccx;v;wÞ
G sesr

L ðremove sesr from XÞ
for each client 2 V do

if client 2 L then

v þstep
else if client 2 G then

v  �step
else

unchange step

(client ∈ Nor)

end

end

end

end

mv
r00  ðselect mv

r0 from LÞ
mr00  

PL
v¼1

nv
n
mv

r0

end

return mr00 to server
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RESULTS
MNIST datasets are widely used in Internet of Vehicles research. For example, Manias &
Shami (2021) used MNIST to validate their intelligent transportation systems combined
with federated learning; Yang et al. (2022) used MNIST to validate a differentially private
federated learning via reconfigurable intelligent surface; and Pokhrel & Choi (2020a)
validated an autonomous blockchain-based joint learning (BFL) framework using MNIST.
The CIFAR-10 dataset has numerous applications in vehicle Internet research, too. For
example, Yang et al. (2020) used CIFAR-10 to test a federated learning framework based on
air computing communication efficiency. Husnoo & Anwar (2021) tested the pixel attack
in modern deep neural networks (DNNS) in autonomous vehicles using MNIST and
CIFAR-10. Based on previous studies, we used three datasets, MNIST (LeCun, Cortes &
Burges, 2010), CIFAR-10 (Krizhevsky, Nair & Hinton, 2014) and the vehicle classification
dataset (PaddlePaddle, 2021), to verify the experiment.

This experiment used the windows platform, Intel Core i7-11700K 3.60 GHz processor,
and the software anaconda 3 + Jupyter notebook + pytorch 1.4.0 + python 3.8.5.

This article conducted pre-experiments using FedAVG, FedSGD and OES-Fed as
network models. For each network model setup, we used 40 clients with 10 local
communication rounds and 30 global communication rounds to train on the MNIST
dataset, the CIFAR-10 dataset and the vehicle classification dataset. The MNIST dataset
consists of 60,000 training images and 10,000 28 × 28 pixel test images and the CIFAR-10
dataset consists of 60,000 training images and 10,000 32 × 32 pixel test images. The vehicle
classification dataset is related to vehicle classification, which includes 2,000 training
images and 200 test images. More specifically, the training images are divided into nine
types of vehicles: bus, taxi, truck, family sedan, minibus, jeep, SUV, heavy truck, racing car
and fire engine. We also used the non-iid for the dataset to better simulate the uneven
distribution of the IoV data, as shown in Table 5. The loss function was defined as follows,
where PFalse is the number of incorrectly parsed images for this model and PTrue is the
number of correctly parsed images.

Table 5 Parameter setting of the experiment.

Symbols MNIST CIFAR-10 Vehicle classification

Number of training set images 60,000 2,000

Number of images in the test set 10,000 200

Client 40 40

Total number of rounds 30 30

Number of local training rounds 10 10

Learning efficiency 0.01 0.01

Data type non-iid non-iid

Local data batch size 64 64

Convolution kernel 5 * 5 5 * 5
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loss ¼ PFalse
PTrue þ PFalse

(26)

Current and historical perspective’s noise data filtering results
Figure 4 shows the actual number of clients integrated by the OES-Fed model per round of
cloud server after filtering by outliers with the Kalman filter when running the MNIST
dataset, the CIFAR-10 dataset and the vehicle classification dataset. In other words, the
results of client filtering by current noise perspective and historical noise perspective are
shown. The black line in Fig. 4 shows the number of clients per round after removing
outliers from the current noise perspective, and the red part shows the actual number of
clients per round in the end from the combined historical noise perspective. When using
the MNIST dataset, the OES-Fed model retains as many client model parameters as
possible, while the number of actual clients tends to level off as the number of rounds
increases. When using the CIFAR-10 dataset and the vehicle classification dataset, more
clients are screened out due to their current round performance vs their historical
performance. As a result, outliers and the Kalman filter play a key role in the filtering of
clients.

OES-FED framework’s accuracy, loss and AUC results
As shown in Fig. 5, we compared the accuracy of the three models, FedAVG, FedSGD and
OES-Fed, using the MNIST and CIFAR-10 datasets. The accuracy of the three models
continued to improve as the number of global communication rounds increased. For the
MNIST, the model accuracy of OES-Fed improved by about 2.36% over that of FedAVG
and 44.46% over that of FedSGD. For the CIFAR-10, the model accuracy of OES-Fed
was approximately 42.02% higher than that of FedAVG and about 47.6% higher than that

Figure 4 Statistics on the number of actual clients in the OES-Fed model using the MNIST dataset,
the CIFAR-10 dataset and the vehicle classification dataset.

Full-size DOI: 10.7717/peerj-cs.11011101/fig-4
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Vehicle classification

Vehicle classification

Vehicle classification

Figure 5 Comparison of the accuracy of each model for MNIST, CIFAR-10 and the vehicle
classification datasets using different models and non-iid data settings.

Full-size DOI: 10.7717/peerj-cs.11011101/fig-5
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of FedSGD. For the vehicle classification dataset, the accuracy of the OES-Fed was 32.4 %
higher than FedAVG, and 68.0 % higher than FedSGD.

As shown in Fig. 6, we compared the loss values of the three models, FedAVG, FedSGD
and OES-Fed, using the MNIST and CIFAR-10 datasets. The losses of the three models
kept increasing as the number of global communication rounds increased. In the case of
MNIST, the model loss of OES-Fed was approximately 0.23 lower than that of FedAVG
and approximately 2.11 lower than that of FedSGD. In the case of CIFAR-10, the
model loss of OES-Fed was approximately 0.38 lower than that of FedAVG and
approximately 0.44 lower than that of FedSGD. For the vehicle classification dataset, the
loss of OES-Fed is 0.59 lower than FedAVG and 1.27 lower than FedSGD.

As shown in Figs. 7–9, we compared the AUC values of the FedAVG, FedSGD and
OES-Fed models using the MNIST, CIFAR-10 and the vehicle classification datasets.
From the results shown in the figure, the AUC values of OES-Fed were 0.22 higher than
those of FedAVG and 0.32 higher than those of FedSGD in the MNIST. The AUC values
of OES-Fed were 0.14 higher than those of FedAVG and 0.17 higher than those of
FedSGD in the CIFAR-10. In the vehicle classification dataset, the AUC value of OES-Fed
was 0.27 higher than FedAVG and 0.33 higher than FedSGD.

Figure 10 shows the accuracy comparison of all clients at the final round using the
OES-Fed model and the FedAVGmodel for the MNIST dataset and the CIFAR-10 dataset,
respectively. The red line is the OES-Fed accuracy for the 40 clients in the final round,
sorted from smallest to largest; the black line is the FedAVG accuracy for the 40 clients in
the final round, also sorted from smallest to largest. The grey-shaded force between
the red and black lines is the difference in accuracy between this OES-Fed and FedAVG. In
other words, the larger the shaded area, the larger the difference. When the dataset was
MNIST, the OES-Fed model was used to make more substantial improvement in the
accuracy of the worse vehicles. When the dataset was CIFAR-10, the accuracy of each
vehicle in the OES-Fed model improved by 30% compared to the FedAVG model. For the
vehicle classification dataset, the accuracy of each vehicle in the OES-Fed model improved
by 40% compared to the FedAVG model.

DISCUSSION
As seen in Table 6, the model accuracy of OES-Fed was 2.36% higher than the accuracy of
the FedAVG model and 44.46% higher than the accuracy of the FedSGD model in the
MNIST. The model loss of OES-Fed was 0.23 lower than the loss of the FedAVG model
and 2.11 lower than the loss of the FedSGD model. Also, the AUC value of OES-Fed was
0.22 higher than the AUC value of FedAVG and 0.32 higher than the AUC value of
FedSGD. In the CIFAR-10, the model accuracy of OES-Fed was 42.02% higher than the
accuracy of the FedAVG model and 47.6% higher than the average accuracy of the
FedSGD model. Moreover, the model loss for OES-Fed was 0.38 lower than the average
loss for FedAVG and 0.44 lower than the average loss for FedSGD. The AUC value for
OES-Fed was 0.14 higher than the AUC value for FedAVG and 0.17 higher than the AUC
value for FedSGD. In the vehicle classification dataset, the model accuracy of OES-Fed was
32.4% higher than the accuracy of FedAVG model and 68.0% higher than the average
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Vehicle classification
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Figure 6 Comparison of loss values for each model for MNIST, CIFAR-10 and the vehicle
classification datasets using different models and non-iid data settings.

Full-size DOI: 10.7717/peerj-cs.11011101/fig-6
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accuracy of FedSGDmodel. Moreover, the model loss for OES-Fed was 0.59 lower than the
average loss for FedAVG and 1.27 lower than the average loss for FedSGD. The AUC value
for OES-Fed was 0.27 higher than the AUC value for FedAVG and 0.33 higher than the
AUC value for FedSGD.

In summary, the OES-Fed model can better filter out noise data for the global model. It
can also greatly improve the recognition accuracy of the model on image data while
ensuring communication efficiency. Since only a small number of training clients are
removed, the algorithm is still able to maintain the security of the private data of the IoV in
the federated learning framework.

Figure 7 Comparison of AUC values for each model for MNIST using different models and non-iid
data settings. Full-size DOI: 10.7717/peerj-cs.11011101/fig-7

Figure 8 Comparison of AUC values for each model for CIFAR-10 using different models and
non-iid data settings. Full-size DOI: 10.7717/peerj-cs.11011101/fig-8
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Figure 10 Accuracy comparison of all clients in the last round for the MNIST dataset, CIFAR-10
dataset and the vehicle classification dataset using the OES-Fed model and FedAVG model.

Full-size DOI: 10.7717/peerj-cs.11011101/fig-10

Table 6 Comparison of accuracy, loss values and AUC values for the MNIST dataset, CIFAR-10 and
the vehicle classification dataset using FedAVG, FedSGD and OES-Fed.

MNIST CIFAR-10 Vehicle classification

accuracy 54.20 14.15 9.9

FedSGD loss 2.18 2.30 2.30

AUC 0.53 0.55 0.57

accuracy 96.30 19.73 45.5

FedAVG loss 0.30 2.24 1.62

AUC 0.63 0.58 0.63

accuracy 98.66 61.75 77.9

OES-Fed loss 0.07 1.86 1.03

AUC 0.85 0.72 0.90

Figure 9 Comparison of AUC values for each model for the vehicle classification dataset using
different models and non-iid data settings. Full-size DOI: 10.7717/peerj-cs.11011101/fig-9
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CONCLUSION
In this article, a federated learning framework based on Outlier Detection and Exponential
Smoothing (OES-Fed) is proposed for IoV networks. The OES-Fed framework realizes
noise data filtering while solving the isolated data island by adopting the basic framework
of federated learning. By implementing the current and historical perspective of noise data
filtering, the accuracy is higher, the loss is lower and the AUC is better to significantly
improve the training efficiency of federated learning. To sum up, the framework in this
article can effectively optimize the noise data filtering process of federated learning in the
IoV. Our proposed OES-Fed framework can effectively filter noise data, but there are still
some deficiencies. How to deal with emergencies in the IoV in time and how to apply the
OES-Fed framework in the fields of face recognition or network video security would be
our further research focus.
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