Feerd neviewing vianuscript

Isolated guitar transcription using a deep
belief network
Gregory Burlet! and Abram Hindle!

IDepartment of Computing Science, University of Alberta, Edmonton, Canada

ABSTRACT

Music transcription involves the transformation of an audio recording to common music notation, colloqui-
ally referred to as sheet music. Manually transcribing audio recordings is a difficult and time-consuming
process, even for experienced musicians. In response, several algorithms have been proposed to auto-
matically analyze and transcribe the notes sounding in an audio recording; however, these algorithms are
often general-purpose, attempting to process any number of instruments producing any number of notes
sounding simultaneously. This paper presents a polyphonic transcription algorithm that is constrained
to processing the audio output of a single instrument, specifically an acoustic guitar. The transcription
system consists of a novel note pitch estimation algorithm that uses a deep belief network and multi-label
learning techniques to generate multiple pitch estimates for each analysis frame of the input audio signal.
Using a compiled dataset of synthesized guitar recordings for evaluation, the algorithm described in this
work results in an 11% increase in the f-measure of note transcriptions relative to a state-of-the-art
algorithm in the literature. This paper demonstrates the effectiveness of deep, multi-label learning for the
task of polyphonic transcription.

Keywords: Deep learning, music information retrieval, instrument transcription

INTRODUCTION

Music transcription is the process of converting an audio signal into a music score that informs a musician
which notes to perform and how they are to be performed. This is accomplished through the analysis of
the pitch and rhythmic properties of an acoustical waveform. In the composition or publishing process,
Z\/(\/_bp_é@ manually transcribing each note of a musical passage to create a music score for other musicians is a
labour-intensive procedure (Hainsworth and Macleod, 2003). Manual transcription is slow and error-
prone: even notationally fluent and experienced musicians make mistakes, require multiple passes over
the audio signal, and draw upon extensive prior knowledge to make complex decisions about the resulting

transcription (Benetos et al., 2013).

In response to the time-consuming process of manually transcribing music, researchers in the multi-
disciplinary field of music information retrieval (MIR) have summoned their knowledge of computing
science, electrical engineering, music theory, mathematics, and statistics to develop algorithms that aim to
automatically transcribe the notes sounding in an audio recording. Although the automatic transcription
of monophonic (one note sounding at a time) music is considered a solved problem (Benetos et al., 2012),
the automatic transcription of polyphonic (multiple notes sounding simultaneously) music “falls clearly
behind skilled human musicians in accuracy and flexibility” (Klapuri, 2004). In an effort to reduce the
complexity, the transcription problem can be constrained by limiting the number of notes that sound
simultaneously, the genre of music being analyzed, or the number and type of instruments producing

W i.,,4. -2y sound. A constrained domain allows the transcription system to “exploit the structure” (Martin, 1996)
_EVERALES & KAV A and consequently reduce the difficulty of transcription. This parallels systems in the more mature field of

Pors T €T ZRELY

g 2pe oW T e ONS, speech recognition where practical algorithms are often language, gender, or speaker dependent (Huang
rie etal., 2001).
D,’r’f 4 D I5TLHST 79 Automatic guitar transcription is the problem of automatic music transcription with the constraint that

the audio signal being analyzed is produced by a single electric or acoustic guitar. Though this problem
is constrained, a guitar is capable of producing cherds=of six notes simultaneously, which still offers a
multitude of challenges for modern transcription algorithms. The most notable challenge is the estimation

Peer) Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

1

VLT oM T AL

RE/(L?.@S YFENS Acr

FeCeiJ Reviewing vianuscript

of the pitches of notes comprising highly polyphonic chords, occurring when a guitarist strums several
strings at once.

Yet another challenge presented to guitar transcription algorithms is that a large body of guitarists
publish and share transcriptions in the form of tablature rather than common western music notation.
Therefore, automatic guitar transcription algorithms should also be capable of producing tablature. Guitar
tablature is a symbolic music notation system with a six-line staff representing the strings on a guitar.
The top line of the system represents the highest pitched (smallest diameter) string and the bottom line
represents the lowest pitched (highest diameter) string. A number on a line denotes the guitar fret that
should be depressed on the respective string. An example of guitar tablature below its corresponding
common western music notation is presented in Figure 1.

#

Frais
b1y
1

o
-IP—*P—I =—®
L

NN
L)

N
19
Nk)
k)
[

[
]

T
e

EEAl
T e

7
EEEN)

L'?b

@
L
Q
G
L

FINE

Figure 1. A system of modern guitar tablature for the song “Weird Fishes” by Radiohead, complete with
common western music notation above.

A solution to the problem of isolated instrument transcription has substantial commercial interest
with applications in musical games, instrument learning software, and music cataloguing. However,
these applications seem far out of grasp given that the MIR research community has collectively reached
a plateau in the accuracy of automatic music transcription systems (Benetos et al., 2012). In a paper
addressing this issue, Benetos et al. (2012) stress the importance of extracting expressive audio features
and moving towards context-specific transcription systems. Also addressing this issue, Humphrey et al.
(2012, 2013) propose that effort should be focused on audio features generated by deep belief networks
instead of hand-engineered audio features, due to the success of these methods in other fields such as
computer vision (Lee et al., 2009) and speech recognition (Hinton et al., 2012). The aforementioned
literature provides motivation for applying deep belief networks to the problem of isolated instrument
transcription.

This paper presents a polyphonic transcription system containing a novel pitch estimation algorithm
that addresses two arguable shortcomings in modern pattern recognition approaches to pitch estimation:
first, the task of estimating multiple pitches sounding simultaneously is often approached using multiple
one-versus-all binary classifiers (Poliner and Ellis, 2007; Nam et al., 2011) in lieu of estimating the
presence of multiple pitches using a single classifier; second, there exists no standard method to impose
constraints on the polyphony of pitch estimates at any given time. In response to these points, the pitch
estimation algorithm described in this work uses a deep belief network in conjunction with multi-label
learning techniques to produce multiple pitch estimates for each audio analysis frame.

After estimating the pitch content of the audio signal, existing algorithms in the literature are used to
track the temporal properties (onset time and duration) of each note event and convert this information to
guitar tablature notation.

RELATED WORK

The first polyphonic transcription system for duets imposed constraints on the frequency range and timbre
of the two input instruments as well as the intervals between simultaneously performed notes (Moorer,
1975).! This work provoked a significant amount of research on this topic, which still aims to further the
accuracy of transcriptions while gradually eliminating domain constraints.

In the infancy of the problem, polyphonic transcription algorithms relied heavily on digital signal
processing techniques to uncover the fundamental frequencies present in an input audio waveform. To
this end, several different algorithms have been proposed: perceptually motivated models that attempt to

Timbre refers to several attributes of an audio signal that allows humans to attribute a sound to its source and to differentiate
between a trumpet and a piano, for instance. Timbre is often referred to as the “colour” of a sound.

2/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

N7

ExncTiLy

FeeiJ neviewing ivianuscript

model human audition (Klapuri, 2005); salience methods, which transform the audio signal to accentuate
the underlying fundamental frequencies (Klapuri, 2006; Zhou et al., 2009); iterative estimation methods,
which iteratively select a predominant fundamental from the frequency spectrum and then subtract
an estimate of its harmonics from the residual spectrum until no fundamental frequency candidates
remain (Klapuri, 2006); and joint estimation, which holistically selects fundamental frequency candidates
that, together, best describe the observed frequency domain of the input audio signal (Yeh et al., 2010).

The MIR research community is gradually adopting a machine-learning-centric paradigm for many
MIR tasks, including polyphonic transcription. Several innovative applications of machine learning
algorithms to the task of polyphonic transcription have been proposed, including hidden Markov models
(HMMs) (Raphael, 2002), non-negative matrix factorization (Smaragdis and Brown, 2003; Dessein et al.,
2010), support vector machines (Poliner and Ellis, 2007), artificial shallow neural networks (Marolt,
2004) and recurrent neural networks (Boulanger-Lewandowski, 2014). Although each of these algorithms
operate differently, the underlying principle involves the formation of a model that seeks to capture the
harmonic, and perhaps temporal, structures of notes present in a set of training audio signals. The trained
model then predicts the harmonic and/or temporal structures of notes present in a set of previously unseen
audio signals.

Training a machine learning classifier for note pitch estimation involves extracting meaningful features
from the audio signal that reflect the harmonic structures of notes and allow discrimination between
different pitch classes. The obvious set of features exhibiting this property is the short-time Fourier
transform (STFT), which computes the discrete Fourier transform (DFT) on a sliding analysis window
over the audio signal. However, somewhat recent advances in the field of deep learning have revealed that
artificial neural networks with many layers of neurons can be efficiently trained (Hinton et al., 2006) and
form a hierarchical, latent representation of the input features (Lee et al., 2009).

Using a deep belief network (DBN) to learn alternate feature representations of DFT audio features,
Nam et al. (2011) exported these audio features and injected them into 88 binary support vector machine
classifiers: one for each possible piano pitch. Each classifier outputs a binary class label denoting whether
the pitch is present in a given audio analysis frame. Using the same experimental set up as Poliner and
Ellis (2007), Nam et al. (2011) noted that the learned features computed by the DBN yielded significant
improvements in the precision and recall of pitch estimates relative to standard DFT audio features.

After note pitch estimation it is necessary to perform note tracking, which involves the detection
of note onsets and offsets (Benetos and Weyde, 2013). Several techniques have been proposed in the
literature including a multitude of onset estimation algorithms (Bello et al., 2005; Dixon, 2006), HMM
note-duration modelling algorithms (Benetos et al., 2013; Ryyninen and Klapuri, 2005), and an HMM
frame-smoothing algorithm (Poliner and Ellis, 2007). The output of these note tracking algorithms are a
sequence of note event estimates, each having a pitch, onset time, and duration.

These note events may then be digitally encoded in a symbolic music notation, such as tablature

Hu Mo L3\ L% notation, for cataloguing or publishing. Arranging tablature is challenging because the guitar is capable of

producing the same pitch in multiple ways. Therefore, a “good” arrangement is one that is biomechanically
I — KO ZCl (8 easy for the musician to perform, such that transitions between notes do not require excessive hand move-
DA{““'J il ment and the performance of chords require minimal stretching of the hand (Heijink and Meulenbroek,

2002). Solutions to the problem of tablature arrangement include graph-search algorithms (Radicioni and
Lombardo, 2005; Radisavljevic and Driessen, 2004; Burlet and Fujinaga, 2013), neural networks (Tuohy
and Potter, 2006), and genetic algorithms (Tuohy and Potter, 2005; Burlet, 2013).

DEEP BELIEF NETWORKS

Before introducing the developed pitch estimation algorithm, it is worthwhile to review the structure and
training procedure of a deep belief network. The intent of deep architectures for machine learning is to
form a multi-layered and structured representation of sensory input with which a classifier or regressor
can use to make informed predictions about its environment (Utgoff and Stracuzzi, 2002).

Recently, Hinton et al. (2006) proposed a specific formulation of a multi-layered artificial neural
network called a deep belief network (DBN), which addresses the training and performance issues arising
when many hidden network layers are used. A preliminary unsupervised training algorithm aims to
set the network weights to good initial values in a layer-by-layer fashion, followed by a more holistic
supervised fine-tuning algorithm that considers the interaction of weights in different layers with respect
to the desired network output (Hinton, 2007).

3/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

FeerJ neviewing vianuscript

Unsupervised Pretraining
In order to pretrain the network weights in an unsupervised fashion, it is necessary to think of the network
as a generative model rather than a discriminative model. A generative model aims to form an internal
model of a set of observable data vectors, described using latent variables; the latent variables then attempt
to recreate the observable data vectors with some degree of accuracy. On the other hand, a discriminative
model aims to set the value of its latent variables, typically used for the task of classification or regression,
without regard for recreating the input data vectors. A discriminative model does not explicitly care how
the observed data was generated, but rather focuses on producing correct values of its latent variables.
Hinton et al. (2006) proposed that a deep neural network be composed of several restricted Boltzmann
machines (RBMs) stacked on top of each other, such that the network can be viewed as both a generative
model and a discriminative model. An RBM is an undirected bipartite graph with m visible nodes and n
hidden nodes, as depicted in Figure 2. Typically, the domain of the visible and hidden nodes are binary
such that v e {0,1}" and h € {0, 1}", respectively, such that

1
1+ W'h’
where W € R™" is the matrix of weights between the visible and hidden nodes. For simplicity, Equation 1
does not include bias nodes for v and h.

P(hj=1|v)= and P(vi=1fh) = €))

14+e WiV

Figure 2. A restricted Boltzmann machine with m visible nodes and n hidden nodes. Weights on the
undirected edges have been omitted for clarity.

Each RBM in the DBN is trained sequentially from the bottom up, such that the hidden nodes of the
previous RBM are input to the subsequent RBM as an observable data vector. The unsupervised training
of a single RBM involves iteratively modifying the model weights according to a learning signal that
measures how well the generative model reflects reality. More specifically, the objective of the generative
model is to maximize the log likelihood of the training data vectors by calculating the gradient of this
objective function with respect to each edge weight.

Supervised Fine-tuning

The unsupervised pretraining of the stacked RBMs is a relatively efficient method that sets good initial
values for the network weights. Moreover, in the case of a supervised learning task such as classification
or regression, the ground-truth labels for each training data vector have not yet been considered. The
supervised fine-tuning step of the DBN addresses these issues.

One method of supervised fine-tuning is to add a layer of output nodes to the network for the purposes
of (logistic) regression and to perform standard backpropagation as if the DBN was a multi-layered neural
network (Bengio, 2009). Rather than creating features from scratch, this fine-tuning method is responsible
for modifying the latent features in order to adjust the class boundaries (Hinton, 2007).

After fine-tuning the network, a feature vector can be fed forward through the network and a result
realized at the output layer. In the context of pitch estimation, the feature vector represents the frequency
content of an audio analysis frame and the output layer of the network is responsible for classifying the
pitches that are present.

ISOLATED INSTRUMENT TRANSCRIPTION

The workflow of the proposed polyphonic transcription algorithm is presented in Figure 3. The algorithm
consists of an audio signal preprocessing step, followed by a novel DBN pitch estimation algorithm. The

4/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

FeelJd Reviewing vianuscript

&
Audio Waveform
_ >
{ y 1
1 Signal Decimation I
1
Pitch Estimation’ Sy " Note Tracking}

L DBN Pitch Probabilities)

v

[DBN Polyphony Estimation

HMM Frame Smoothing T

¥

Onset Quantization](—

Frame-wise [0,0,..1,0,1,..0]
Pitch MIDI
Estimates [0,0, ...0, 1,0, ... 0]

Music Notation Generation;

Common Western Music Notation

Ja
X &

Guitar Tablature Arrangement]

+ 0

Muslic
XML

N
b [N

Figure 3. Workflow of the proposed polyphonic transcription algorithm, which converts the recording of
a single instrument to a sequence of MIDI note events that are then translated to tablature notation.

note-tracking component of the polyphonic transcription algorithm uses a combination of the existing
frame-smoothing algorithm developed by Poliner and Ellis (2007) and the existing spectral flux onset
estimation algorithm described by Dixon (2006) to produce a MIDI file. MIDI is a binary file format
composed of tracks holding a sequence of note events, which each have an integer pitch from 0-127,
a velocity value indicating the intensity of a note, and a tick number indicating when the note event
occurs. This sequence of note events is then translated to guitar tablature notation using the graph-search
algorithm developed by Burlet and Fujinaga (2013).

Audio Signal Preprocessing

The input audio signal is first preprocessed before feature extraction. If the audio signal is stereo, the
channels are averaged to produce a mono audio signal. Then the audio signal is decimated to lower the
sampling rate f; by an integer multiple, k¥ € N*. Decimation involves low-pass filtering with a cut-off
frequency of f;/2k Hz to mitigate against aliasing, followed by selecting every k™ sample from the
original signal.

Note Pitch Estimation
The structure of the DBN pitch estimation algorithm is presented in Figure 4. The algorithm extracts
features from an analysis window that slides over the audio waveform. The audio features are subsequently

fed forward through the deep network, resulting in an array of posterior probabilities used for pitch and

polyphony estimation.

First, features are extracted from the input audio signal. The power spectrum of each audio analysis
frame is calculated using a Hamming window of size w samples and a hop size of i samples. The power
spectrum is calculated by squaring the magnitude of each frequency component of the DFT. Since the
power spectrum is mirrored about the Nyquist frequency when processing an audio signal, half of the
spectrum is retained, resulting in m = |w/2| + 1 features. The result is a matrix of normalized audio
features @ € [0, 1]"*™, such that n is the number of analysis frames spanning the input signal.

The DBN consumes these normalized audio features; hence, the input layer consists of m nodes.
There can be any number of stochastic binary hidden layers, each consisting of any number of nodes.

5/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

€O

\ -~ A rd t T A v
\/‘)\) 0 LoDADLT WAN

|
) () 3 - e w ! Ved
A Sl maxk cvee TUe

N L T il
KoLy prev? aT., THe
\ np TG Tée

%&‘\JT{L{J! (/"/ l[\(NL”L

Lovo Matwt ¢
I\ ’[' ﬁy/kf/% v
JoW'”

Feerd neviewing Vianuscript

sliding window —— >

Audio
Frame
Features

Visible
Layer

Feed Forward

Polyphony Probabilities}

0,0,..,1,0,1,1..00 —l

Figure 4. Structure of the deep belief network for note pitch estimation. Edge weights are omitted for
clarity.

The output layer of the network consists of k+ p nodes, where the first k nodes are allocated for pitch
estimation and the final p nodes are allocated for polyphony estimation. The network uses a sigmoid
activation as the non-linear transfer function.

The feature vectors @ are fed forward through the network with parameters ©, resulting in a matrix of
probabilities P(¥|®,®) € [0, 1]**7 that is then split into a matrix of pitch probabilities P(?(Pich) |, @)
and polyphony probabilities P(f’(””’y) |®,®). The polyphony of the i" analysis frame is estimated by
selecting the polyphony class with the highest probability using the equation

pi = argmax (P(f/,-ﬂ-””’”@,-, ®)) :)
J

Pitch estimation is performed using a multi-label learning technique similar to the MetaLabeler
system (Tang et al., 2009), which trains a multi-class classifier for label cardinality estimation using the
output values of the original label classifier as features. Instead of using the matrix of pitch probabilities as
features for a separate polyphony classifier, increased recall was noted by training the polyphony classifier
alongside the pitch classifier using the original audio features. Formally, the pitches sounding in the i
analysis frame are estimated by selecting the indices of the p; highest pitch probabilities produced by the
DBN. With these estimates, the corresponding vector of pitch probabilities is converted to a binary vector
17,.("’ el {0, 1}* by turning on bits that correspond to the p; highest pitch probabilities.

For training and testing the algorithm, a set of pitch and polyphony labels are calculated for each
audio analysis frame using an accompanying ground-truth MIDI file. A matrix of pitch annotations
ylpick) ¢ fp, 1}k, where k is the number of considered pitches, is computed such that an enabled bit
indicates the presence of a pitch. A matrix of polyphony annotations ¥ (P°lY) ¢ {0,1}"*P, where p is the
maximum frame-wise polyphony, is also computed such that a row is a one-hot binary vector in which the
enabled bit indicates the polyphony of the frame. These matrices are horizontally concatenated to form
the final matrix ¥ € {0, 1}**+P) of training and testing labels.

The deep belief network is trained using a modified version of the greedy layer-wise algorithm
described by Hinton et al. (2006). Pretraining is performed by stacking a series of restricted Boltzmann

6/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

.'\J &
‘ <

Reou
\
!
& d
Myeat Ot

be
v
\Y)

N ELen iy

So Thes T ACToRuT
A LTTTLE WELRD,

As Theee’s AN

FeerJ Seviewing vianuscript

machines and sequentially training each in an unsupervised manner using 1-step contrastive diver-
gence (Bengio, 2009). Instead of using the “up-down” fine-tuning algorithm proposed by Hinton et al.
(2006), the layer of output nodes are treated as a set of logistic regressors and standard backpropagation
is conducted on the network. Rather than creating features from scratch, this fine-tuning method is
responsible for modifying the latent features in order to adjust the class boundaries (Hinton, 2007).

The canonical error function to be minimized for a set of separate pitch and polyphony binary classifi-
cations is the cross-entropy error function, which forms the training signal used for backpropagation:

n k+p
E@)=-)) Y;InP(¥;|®;,0)+ (1 -Y;)In(1 - P(¥;;|®;,0)) 3)
i=1j=1
The aim of this objective function is to adjust the network weights ® to pull output node probabilities
closer to one for ground-truth label bits that are on and pull probabilities closer to zero for bits that are off.

TupcceT I ST 3¢, The described pitch estimation algorithm was implemented using the Theano numerical computation
{ y

%CTWEQN THE YVitcu
&p\,‘k—"?‘m\{ f)vn—'q.’“’lt'o 1l
(o B Lonwtous?

iy o O
%‘/ A Vpea Ui,

library for Python (Bergstra et al., 2010). Computations for network training and testing are parallelized
on the graphics processing unit (GPU). Feature extraction and audio signal preprocessing is performed
using Marsyas, a software framework for audio signal processing and analysis (Tzanetakis and Cook,
2000).

Note Tracking

Although frame-level pitch estimates are essential for transcription, converting these estimates into note
events with an onset and duration is not a trivial task. The purpose of note tracking is to process these
pitch estimates and determine when a note onsets and offsets.

Frame-level Smoothing

The frame-smoothing algorithm developed by Poliner and Ellis (2007) is used to postprocess the DBN
pitch estimates ¥ (7<) for an input audio signal. The algorithm allows a frame-level pitch estimate to
be contextualized amongst its neighbours instead of solely trusting the independent estimates made by a
classification algorithm.

Formally, the frame-smoothing algorithm operates by training an HMM for each pitch. Each HMM
consists of two hidden states: ON and OFF'. The transition probabilities are computed by observing the
frequency with which a pitch transitions between and within the ON and OFF states across analysis frames.
The emission distribution is a Bernoulli distribution that models the certainty of each frame-level estimate
and is represented using the pitch probabilities P(?(P7<")|®,®). The output of the Viterbi algorithm,
which searches for the optimal underlying state sequence, is a revised binary vector of activation estimates

for a single pitch. Concatenating the results of each HMM results in a revised matrix of pitch estimates
Y(pilch)‘

Onset Quantization
If the HMM frame-smoothing algorithm claims a pitch arises within an analysis frame, it could onset
at any time within the window. Arbitrarily setting the note onset time to occur at the beginning of the
window often results in “choppy” sounding transcriptions. In response, the onset detection algorithm that
uses spectral flux measurements between analysis frames (Dixon, 2006) is run at a finer time resolution
to pinpoint the exact note onset time. The onset detection algorithm is run on the original, undecimated
audio signal with a window size of 2048 samples and a hop size of 512 samples. When writing the note
event estimates as a MIDI file, the onset times calculated by this algorithm are used. The offset time is
calculated by following the pitch estimate across consecutive analysis frames until it transitions from ON
to OFF, at which point the time stamp of the end of this analysis frame is used. Note events spanning less
than two audio analysis frames are removed from the transcription to mitigate against spurious notes.
Output of the polyphonic transcription algorithm at each stage—from feature extraction to DBN
pitch estimation to frame smoothing and quantization (note tracking)—is displayed in Figure 5 for a
four-second segment of a synthesized guitar recording. The pitch probabilities output by the DBN show
that the classifier is quite certain about its estimates; there are few grey areas indicating indecision.

Music Notation Arrangement

The MIDI file output by the algorithm thus far contains the note event (pitch, onset, and duration)
transcriptions of an audio recording. However, a MIDI file lacks certain information necessary to write

716

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

FeerJd seviewing Ivianuscript

2000 . Spectr'ogram . + DBN .Htch Probablllmes 1:0 - Note Tracking
0.9
. 0.8 5 z
g 1500 é 73t 02 é 73 6}
= 14 & 5 — — - [} 5% 3 — — -
2 - . z - ' - . a z - - -
c 1000} d 4 — o 61 - » - 050 —» o 61 = S
5 ‘) 2 o
3 ——. Dot - el 4 0.4 =}
o y = z
g St = b — s z —
I soof TS (2o 4 8 48| 03F 0 48} it
v — = — ! 0.2 = —— [¢]
—— e " T
cm[“. o b £ e L o . - -
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time (s) Time (s) Time (s)

Figure 5. An overview of the transcription workflow on a four-second segment of a synthesized guitar
recording.

sheet music in common western music notation such as time signature, key signature, clef type, and the
value (duration) of each note described in divisions of a whole note.

There are several robust opensource programs that derive this missing information from a MIDI file
using logic and heuristics in order to generate common western music notation that is digitally encoded in
the MusicXML file format. MusicXML is a standardized extensible markup language (XML) definition
allowing digital symbolic music notation to be universally encoded and parsed by music applications. In
this work, the command line tools shipped with the opensource application MuseScore are used to convert
MIDI to common western music notation encoded in the MusicXML file format.?

The graph-based guitar tablature arrangement algorithm developed by Burlet and Fujinaga (2013)
is used to append a guitar string and fret combination to each note event encoded in a MusicXML
transcription file. The guitar tablature arrangement algorithm operates by using Dijkstra’s algorithm to
search for the shortest path through a directed weighted graph, in which the vertices represent candidate
string and fret combinations for a note or chord, as displayed in Figure 6.

:

5
NS

T e

1
TT7e

s

Figure 6. A directed acyclic graph of string and fret candidates for a note and chord followed by two
more notes. Weights have been omitted for clarity. The notation for each node is (string number, fret
number).

The edge weights between nodes in the graph indicate the biomechanical difficulty of transitioning
between fretting-hand positions. Three biomechanical complexity factors are aggregated to form each
edge weight: the fret-wise distance required to transition between notes or chords, the fret-wise finger
span required to perform chords, and a penalty of one if the fretting hand surpasses the seventh fret.
The value of this penalty and fret threshold number were determined through subjective analysis of the
resulting tablature arrangements. In the event that a note is followed by a chord, the fret-wise distance is
calculated by the expression

Fe max (g) — min(g)

- :)

2http://musescore.org

8/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

’J:T‘é U NWEAR ow

Tirs ENTELAID b/ﬂ%’é

DETHTL ~q‘lblh"\E

ot QT 7

ave SHLMORE § DUT
Tt Aweo»T T
onLeed TUAT S The

Conc (et 5669

. <0, Pe?
Loz, £7 MUt 827

rFeciy Reviewlng ividnuscript

such that f € N is the fret number used to perform the note and g is a vector of fret numbers used to
perform each note in the chord. For more detailed information regarding the formulation of this graph,
please refer to the conference proceeding of Burlet and Fujinaga (2013) or thesis of Burlet (2013).

TRANSCRIPTION EVALUATION

The polyphonic transcription algorithm described in this paper is evaluated on a new dataset of synthesized
guitar recordings. Before processing these guitar recordings, the number of pitches ¥ and maximum
polyphony p of the instrument must first be calculated in order to construct the DBN. Knowing that the
input instrument is a guitar with six strings, the pitch estimation algorithm considers the k = 51 pitches
from C2-D6, which spans the lowest note capable of being produced by a guitar in Drop C tuning to
the highest note capable of being produced by a 22-fret guitar in Standard tuning. Though a guitar with
six strings is only capable of producing six notes simultaneously, a chord transition may occur within a
frame and so the maximum polyphony may increase above this bound. This is a technical side effect of a
sliding-window analysis of the audio signal. Therefore, the maximum frame-wise polyphony is calculated
from the training dataset using the equation

pope(r8))1,

where 1 is a vector of ones. The addition of one to the maximum polyphony is to accommodate silence
where no pitches sound in an analysis frame.

The experiments outlined in this section will evaluate the accuracy of pitch estimates output by
the DBN across each audio analysis frame as well as the accuracy of note events output by the entire
polyphonic transcription algorithm. A formal evaluation of the guitar tablature arrangement algorithm
used in this work has already been conducted (Burlet and Fujinaga, 2013).

®

Ground-truth Dataset

Ideally, the note pitch estimation algorithm proposed in this work should be trained and tested using
recordings of acoustic or electric guitars that are subsequently hand-annotated with the note events being
performed. In practice, however, it would be expensive to fund the compilation of such a dataset and there
is a risk of annotation error. Unlike polyphonic piano transcription datasets that are often created using a
mechanically controlled piano, such as a Yamaha Disklavier, to generate acoustic recordings that are time
aligned with note events in a MIDI file, mechanized guitars are not widely available. Therefore, the most
feasible course of action for compiling a polyphonic guitar transcription dataset is to synthesize a set of
ground-truth note events using an acoustic model of a guitar.

Using the methodology proposed by Burlet and Fujinaga (2013), a ground-truth dataset of 45
synthesized acoustic guitar recordings paired with MIDI note-event annotations was compiled. The
dataset was created by harvesting the abundance of crowdsourced guitar transcriptions uploaded to
www.ultimate-guitar.com as tablature files that are manipulated by the Guitar Pro desktop ap-
plication.? The transcriptions in the ground-truth dataset were selected by searching for the keyword
“acoustic”, filtering results to those that have been rated by the community as 5 out of 5 stars, and selecting
those that received the most numbers of ratings and views. The dataset consists of songs by artists ranging
from The Beatles, Eric Clapton, and Neil Young to Led Zeppelin, Metallica, and Radiohead.

Each Guitar Pro file was manually preprocessed to remove extraneous instrument tracks other than
guitar, remove repeated bars, trim recurring musical passages, and remove note ornamentations such as
dead notes, palm muting, harmonics, pitch bends, and vibrato. The guitar model for note synthesis was
set tartin & Co. acoustic guitar with steel strings. Finally, each Guitar Pro file is synthesized as a
WAV file and also exported as a MIDI file, which captures the note events occurring in the guitar track.
The MIDI files in the ground-truth dataset are publicly available on archive.org. * The amount of
time required to manually preprocess a Guitar Pro tablature transcription and convert it into the necessary
data format ranges from 30 minutes to 2.5 hours, depending on the complexity of the musical passage.

In total the dataset consists of approximately 104 minutes of audio, an average tempo of 101 beats per
minute, 44436 notes, and an average polyphony of 2.34. The average polyphony is calculated by dividing

3www.guitar—pro.com

4https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions

9/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

HﬁuwiBéux%&.

To VTAOGUTSE
Prrgs (he4rs
(%uﬂaJ &!*yféﬁgwﬂﬂb

(s sTe)

FEeEerJd meviewing Vanuscript

the number of note events by the number of chords plus the number of individual notes. The distribution
of note pitches in the dataset is displayed in Figure 7.

4000 . . ; . :

3500
g 3000
2500
2000}
1500
1000}
500

ces
T

Number of Insta

50 60 70
MIDI Note Number

90

Figure 7. Distribution of note pitches in the ground-truth dataset.

Algorithm Parameter Selection

Before training and evaluating the described polyphonic transcription algorithm on the ground-truth
dataset, several preliminary experiments were conducted to select reasonable parameters for the algorithm.
Each preliminary experiment involved the following variables: audio sampling rate (Hz), window size
(samples), sliding window hop size (samples), number of network hidden layers, number of nodes per
hidden layer, and input features: either the power spectrum or Mel frequency cepstral coefficient (MFCC)
features, which are often used in the field of speech recognition (Hinton et al., 2012). Each preliminary
experiment selected one independent variable, while the other variables remained controlled. The
dependent variable was the standard information retrieval metric of f-measure, which gauges the accuracy
of the pitch estimates produced by the DBN over all audio analysis frames. For these preliminary
experiments, the ground-truth dataset was partitioned into two sets, such that roughly 80% of the guitar
recordings are allocated for training and 20% are allocated for model validation.

The results of the preliminary experiments with the proposed transcription system revealed that a
sampling rate of 22050 Hz, a window size of 1024 samples, a hop size of 768 samples, a network
structure of 400 nodes in the first hidden layer followed by 300 nodes in the penultimate layer, and power
spectrum input features yielded optimal results. For network pretraining, 400 epochs were conducted with
a learning rate of 0.05 using 1-step contrastive divergence with a batch size of 1000 training instances. For
network fine-tuning, 30000 epochs were conducted with a learning rate of 0.05 and a batch size of 1000
training instances. The convergence threshold, which ceases training if the value of the objective function
between epochs does not fluctuate more than the threshold, is set to 1E — 18 for both pretraining and
fine-tuning. These algorithm parameters are used in the experiments detailed in the following sections.
The experiments conducted in this paper were run on a machine with an Intel® Core™ i7 3.07 GHz quad
core CPU, 24 GB of RAM, and an Nvidia GeForce GTX 970 GPU with 1664 CUDA cores. For more
details regarding these preliminary experiments, consult the thesis of Burlet (2015).

Frame-level Pitch Estimation Evaluation

5-fold cross validation is used to split the songs in the compiled ground-truth dataset into 5 sets of training
and testing partitions. For each fold, the transcription algorithm is trained using the parameters detailed in
the previous section. After training, the frame-level pitch estimates computed by the DBN are evaluated
for each fold using the following standard multi-label learning metrics (Zhang and Zhou, 2014): precision
(p), recall (), f-measure (f), one error, and hamming loss. The precision calculates the number of correct
pitch estimates divided by the number of pitches the algorithm predicts are present across the audio
analysis frames. The recall calculates the number of correct pitch estimates divided by the number of
ground-truth pitches that are active across the audio analysis frames. The f-measure refers to the balanced
Jf-score, which is the harmonic mean of precision and recall. The one error provides insight into the
number of audio analysis frames where the predominant pitch is estimated incorrectly. The hamming

17/ Tue E5 TZHATZors
‘ 10/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

Feerd Reviewing vVianuscript

Tpoly p r f ONE HAMMING
ERROR LOSS
BEFORE HMM 0.55 0.73 0.70 0.71 0.13 0.03
AFTER HMM 0.55 0.81 074 0.77 0.13 0.02

Table 1. 5-fold cross validation results of the frame-level pitch estimation evaluation metrics: Tpoly
denotes the polyphony recall, p denotes precision, r denotes recall, and f denotes f-measure.

loss provides insight into the number of false positive and false negative pitch estimates across the audio
analysis frames. In addition, the frame-level polyphony recall (rpo1y) is calculated to evaluate the accuracy
of polyphony estimates made by the DBN.

Using the ground-truth dataset, pretraining the DBN took an average of 172 minutes while fine-tuning
took an average of 246 minutes across each fold. After training, the network weights are saved so that
they can be reused for future transcriptions. The DBN took an average of 0.26 seconds across each
fold to yield pitch estimates for the songs in the test partitions. The results of the DBN pitch estimation
algorithm are averaged across the 5 folds and presented in Table 1. After HMM frame smoothing the
results substantially improve with a precision of 0.81, a recall of 0.74, and an f-measure of 0.77. Figure 5
provides visual evidence of the positive impact of HMM frame smoothing on the frame-level DBN pitch
estimates, showing the removal of several spurious note events.

The results reveal that the 55% polyphony estimation accuracy likely hinders the frame-level f-
measure of the pitch estimation algorithm. Investigating further, when using the ground-truth polyphony
for each audio analysis frame, an f-measure of 0.76 is noted before HMM smoothing. The 5% increase
in f-measure reveals that the polyphony estimates are close to their ground-truth value. With respect to
the one error, the results reveal that the DBN’s belief of the predominant pitch—the label with the highest
probability—is incorrect in only 13% of the analysis frames.

Note Event Evaluation

Although evaluating the pitch estimates made by the algorithm for each audio analysis frame provides
vital insight into the performance of the algorithm, we can continue with an evaluation of the final note
events output by the algorithm. After HMM smoothing the frame-level pitch estimates computed by the
DBN, onset quantization is performed and a MIDI file, which encodes the pitch, onset time, and duration
of note events, is written. An evaluation procedure similar to the music information retrieval evaluation
exchange (MIREX) note tracking task, a yearly competition that evaluates polyphonic transcription
algorithms developed by different research institutions on the same dataset, is conducted using the metrics
of precision, recall, and f-measure.’ Relative to a ground-truth note event, an estimate is considered
correct if its onset time is within 250ms and its pitch is equivalent. The accuracy of note offset times are
not considered because offset times exhibit less perceptual importance than note onset times (Costantini
et al., 2009). A ground-truth note event can only be associated with a single note event estimate.

These metrics of precision, recall, and f-measure are calculated on the test partition within each of
the 5 folds used for cross validation. Table 2 presents the results of the polyphonic transcription algorithm
averaged across each fold. The result of this evaluation is an average f-measure of 0.67 when considering
note octave errors and an average f-measure of 0.69 when disregarding note octave errors. Octave errors
occur when the algorithm predicts the correct note pitch name but incorrectly predicts the note octave
number. An approximately 2% increase in f-measure when disregarding octave errors provides evidence
that the transcription algorithm does not often mislabel the octave number of note events, which is often
a problem with digital signal processing transcription algorithms (Maher and Beauchamp, 1994). Note
that the frame-level pitch estimation f-measure of 0.77, presented in Table 1, does not translate to an
equivalently high f-measure for note events because onset time is considered in the evaluation criteria as
well as pitch.

Another interesting property of the transcription algorithm is its conservativeness: the precision of the
note events transcribed by the algorithm is 0.81 while the recall is 0.60, meaning that the algorithm favours
false negatives over false positives. In other words, the transcription algorithm includes a note event in

Shttp://www.music-ir.org/mirex

11/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

t*l&'&i’ Howt 15

DV-C‘ ™ THE

f)—C(Lt.u\,e";S, Buor Moot
(SONLD Tev

Zr;,uv Y Tue

DANT HEeee

< Detecrzons?

=

FEEeIJ Reviewing Vianuscript

DBN TRANSCRIPTION
PRECISION RECALL f-MEASURE RUNTIME (S)

OCTAVE ERRORS 0.81 0.60 0.67 48.33
NO OCTAVE ERRORS 0.84 0.63 0.69 -

Zhou et al. (2009)
PRECISION RECALL f-MEASURE RUNTIME (S)

OCTAVE ERRORS 0.70 0.50 0.56 293.52
NO OCTAVE ERRORS 0.78 0.56 0.62 -

Table 2. 5-fold cross validation results of the precision, recall, and f-measure evaluation of note events
transcribed using the DBN transcription algorithm compared to the Zhou et al. (2009) transcription
algorithm. The first row includes octave errors while the second row excludes octave errors.

the final transcription only if it is quite certain of the note’s correctness, even if this hinders the recall
of the algorithm. Another cause of the high precision and low recall is that when several guitar strums
occur quickly in succession, the implemented transcription algorithm often transcribes only the first chord
and prescribes it a long duration. This is likely a result of the temporally “coarse” window size of 1024
samples or a product of the HMM frame-smoothing algorithm, which may extend the length of notes
causing them to “bleed” into each other. A remedy for this issue is to lower the window size to increase
temporal resolution; however, this has an undesirable side-effect of lowering the frequency resolution
of the DFT which is undesirable. A subjective, aural analysis of the guitar transcriptions reflects these
results: the predominant pitches and temporal structures of notes occurring in the input guitar recordings
are more or less maintained.

Additionally, the guitar recordings in the test set of each fold are transcribed by a state-of-the-art,
digital signal processing polyphonic transcription algorithm developed by Zhou et al. (2009), which was
evaluated in the 2008 MIREX and received an f-measure of 0.76 on a dataset of 30 synthesized and real
piano recordings (Zhou and Reiss, 2008). The Zhou et al. (2009) polyphonic transcription algorithm
processes audio signals at a sampling rate of 44100 Hz. A window size of 441 samples and a hop size of
441 samples is set by the authors for optimal transcription performance (Zhou and Reiss, 2008).

The transcription algorithm described in this paper resulted in an 11% increase, or a 20% relative
increase, in f-measure compared to the transcription algorithm developed by Zhou et al. (2009) when
evaluated on the same dataset, and further, performed these transcriptions in a sixth of the time. This
result emphasizes a lucrative property of neural networks: after training, feeding the features forward
through the network is accomplished in a small amount of time.

With a precision of 0.70 and a recall of 0.50 when considering octave errors, the Zhou et al. (2009)
transcription algorithm also exhibits a significantly higher precision than recall; in this way, it is similar to
the transcription algorithm described in this paper. When disregarding octave errors, the f-measure of the
Zhou et al. (2009) transcription algorithm increases by approximately 6%. Therefore, this state-of-the-art
digital signal processing transcription algorithm makes three times the number of note octave errors as the
transcription algorithm described in this paper.

DISCUSSION

Considering the results of the experiments outlined in the previous section, there are several benefits of
using the developed transcription algorithm. As previously mentioned, the accuracy of transcriptions
generated by the algorithm surpasses the current state of the art and makes less octave errors. Moreover, the
developed polyphonic transcription algorithm can generate transcriptions for full-length guitar recordings
in the order of seconds, rather than minutes or hours. Given the speed of transcription, the proposed
polyphonic transcription algorithm could be adapted for real-time transcription applications, where live
performances of guitar are automatically transcribed. This could be accomplished by buffering the input
guitar signal into analysis frames as it is performed. Another benefit of this algorithm is that the trained
network weights can be saved to disk such that future transcriptions do not require retraining the model.

12/16

Peer) Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

e V0o Dot
Cie g V(2]

T

/
O:i " A =7 Z.
REGU LA F2 47T Fon

Vouswengiota,

v AT 4\0[1 UESTATAW..,

FEeerJd Reviewing vianuscript

As well, the size of the model is relatively small (less than 12MB) and so the network weights can fit on a
portable device or microcontroller. Feeding forward audio features through the DBN is a computationally
inexpensive task and could also operate on a portable device or microcontroller. Finally, the developed
polyphonic transcription algorithm could easily be adapted to accommodate the transcription of other
instruments. All that is required is a set of audio files that have accompanying MIDI annotations for
supervised training.

On the other hand, there are several detriments of the transcription algorithm. First, the amount of
time required to properly train the model is substantial and varies depending on several parameters such as
the audio sampling rate, window size, hop size, and network structure. To make training time reasonable,
the computations should be outsourced to a GPU that is capable of performing many calculations in
parallel. Using a GPU with less CUDA cores, or just a CPU, significantly increases the amount of time
required to train the model. After training ceases, either by reaching the set number of training epochs
or when the objective function stops fluctuating, it is not guaranteed that the resulting network weights
are optimal because the training algorithm may have settled at a local minima of the objective function.
As a consequence of the amount of time required to train the pitch estimation algorithm, it is difficult to
search for good combinations of algorithm parameters. Another arguable detriment of the transcription
algorithm is that the underlying DBN pitch estimation algorithm is essentially a black box. After training,
it is difficult to ascertain how the model reaches a solution. This issue is exacerbated as the depth of
the network increases. Finally, it is possible to overfit the model to the training dataset. When running
the fine-tuning process for another 30000 epochs, the f-measure of the transcription algorithm began
to deteriorate due to overfitting. To mitigate against overfitting, the learning rate could be dampened as
the number of training epochs increase. Another solution involves the creation of a validation dataset,
such that the fine-tuning process stops when the f-measure of the algorithm begins to decrease on the
guitar recordings in the validation dataset. The method used in this paper is early stopping, where the
fine-tuning process is limited to a certain number of epochs instead of allowing the training procedure to
continue indefinitely.

CONCLUSION

When applied to the problem of polyphonic guitar transcription, deep belief networks outperform state-of-
the-art transcription algorithms. Moreover, the developed transcription algorithm is fast: the transcription
of a full-length guitar recording occurs in the order of seconds and is therefore suitable for real-time guitar
transcription. As well, the algorithm is adaptable for the transcription of other instruments, such as the
bass guitar or piano, as long as the pitch range of the instrument is provided and MIDI annotated audio
recordings are available for training.

The polyphonic transcription algorithm described in this paper is capable of forming discriminative,
latent audio features that are suitable for quickly transcribing guitar recordings. The algorithm workflow
consists of audio signal preprocessing, feature extraction, a novel pitch estimation algorithm that uses deep
learning and multi-label learning techniques, frame smoothing, and onset quantization. The generated note
event transcriptions are digitally encoded as a MIDI file, that is processed further to create a MusicXML
file that encodes the corresponding guitar tablature notation.

An evaluation of the frame-level pitch estimates generated by the deep belief network on a dataset of
synthesized guitar recordings resulted in an f-measure of 0.77 after frame smoothing. An evaluation of
the note events output by the entire transcription algorithm resulted in an f-measure of 0.67, which is 11%
higher than the f-measure reported by a state-of-the-art, single-instrument transcription algorithm (Zhou
et al., 2009) on the same dataset.

The results of this work encourage the use of deep architectures such as belief networks to form
alternative representations of industry-standard audio features for the purposes of instrument transcription.
Moreover, this work demonstrates the effectiveness of multi-label learning for pitch estimation, specifically
when an upper bound on polyphony exists.

Future Work

There are several directions of future work to improve the accuracy of transcriptions. First, there are
substantial variations in the distribution of pitches across songs, and so the compilation of more training
data is expected to improve the accuracy of frame-level pitch estimates made by the DBN. Second,
alternate methods could be explored to raise the accuracy of frame-level polyphony estimates, such as

13/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

‘rH,;j CoocD
Jse »eHe

(A7) AVN

Feerd Reviewing Manuscript

training a separate classifier for predicting polyphony on potentially different audio features. Third, an
alternate frame-smoothing algorithm that jointly considers the probabilities of other pitch estimates across
analysis frames could further increase pitch estimation f-measure relative to the HMM method proposed
by Poliner and Ellis (2007), which smooths the estimates of one pitch across the audio analysis frames.
Finally, it would be beneficial to investigate whether the latent audio features derived for transcribing one
instrument are transferable to the transcription of other instruments.

In the end, the big picture is a self-sufficient guitar tablature transcription algorithm that is capable of
feeding itself data to improve its transcriptions. There are many guitarists that share manual tablature
transcriptions online that would personally benefit from having an automated system capable of generating
transcriptions that are almost correct and can subsequently be corrected manually. There is incentive to
manually correct the output transcriptions because this method is potentially faster than performing a
transcription from scratch, depending on the quality of the automated transcription and the difficulty of
the song. The result is a crowdsourcing model that is capable of producing large ground-truth datasets for
polyphonic transcription that can then be used to further improve the polyphonic transcription algorithm.
Not only would this improve the accuracy of the developed polyphonic transcription algorithm, but it
would also provide a centralized repository of ground-truth guitar transcriptions for MIR researchers to
train and test future state-of-the-art transcription algorithms.

ACKNOWLEDGMENTS

Special thanks are owed to Ruohua Zhou and Joshua Reiss for the opensource implementation of their
transcription algorithm evaluated in this work, as well as the individuals who uploaded manual tablature
transcriptions to www.ultimate-guitar.com.

REFERENCES

Bello, J. P,, Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. B. (2005). A tutorial on
onset detection in music signals. IEEE Transactions on Speech and Audio Processing, 13(5):1035-1047.

Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., and Klapuri, A. (2013). Automatic music
transcription: Challenges and future directions. Journal of Intelligent Information Systems, 41(3):407—
434,

Benetos, E., Dixon, S., Giannoulis, D., Kirchoff, H., and Klapuri, A. (2012). Automatic music transcrip-
tion: Breaking the glass ceiling. In Proceedings of the International Society for Music Information
Retrieval Conference, pages 1002-1007, Porto, Portugal.

Benetos, E. and Weyde, T. (2013). Explicit duration hidden Markov models for multiple-instrument
polyphonic music transcription. In Proceedings of the International Conference on Music Information
Retrieval, pages 269-274, Curitiba, Brazil.

Bengio, Y. (2009). Learning deep architectures for Al. Foundations and Trends in Machine Learning,
2(1):1-127.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley,
D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference, pages 3—10, Austin, TX.

Boulanger-Lewandowski, N. (2014). Modeling High-Dimensional Audio Sequences with Recurrent
Neural Networks. PhD thesis, Université de Montréal.

Burlet, G. (2013). Automatic guitar tablature transcription online. Master’s thesis, McGill University.

Burlet, G. (2015). Guitar tablature transcription using a deep belief network. Master’s thesis, McGill
University.

Burlet, G. and Fujinaga, 1. (2013). Robotaba guitar tablature transcription framework. In Proceedings of
the International Society for Music Information Retrieval, pages 421-426, Curitiba, Brazil.

Costantini, G., Perfetti, R., and Todisco, M. (2009). Event based transcription system for polyphonic
piano music. Signal Processing, 89(9):1798-1811.

Dessein, A., Cont, A., and Lemaitre, G. (2010). Real-time polyphonic music transcription with non-
negative matrix factorization and beta-divergence. In Proceedings of the International Society for
Music Information Retrieval Conference, Utrecht, Netherlands.

Dixon, S. (2006). Onset detection revisited. In Proceedings of the International Conference on Digital
Audio Effects, pages 133—-137, Montréal, QC.

14/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

Feerd Reviewing Manuscript

Hainsworth, S. W. and Macleod, M. D. (2003). The automated music transcription problem. Technical
report, Department of Engineering, University of Cambridge.

Heijink, H. and Meulenbroek, R. G. J. (2002). On the complexity of classical guitar playing: Functional
adaptations to task constraints. Journal of Motor Behavior, 34(4):339-351.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., Sainath, T. N., and Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech
recognition. IEEE Signal Processing Magazine, 29(6):82-97.

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10):428-
434,

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527-1554.

Huang, X., Acero, A., and Hon, H. (2001). Spoken Language Processing: A guide to theory, algorithm,
and system development. Prentice Hall, Upper Saddle River, NJ.

Humphrey, E., Bello, J., and LeCun, Y. (2012). Moving beyond feature design: Deep architectures and
automatic feature learning in music informatics. In Proceedings of the International Society for Music
Information Retrieval, pages 403—408, Porto, Portugal.

Humphrey, E., Bello, J., and LeCun, Y. (2013). Feature learning and deep architectures: New directions
for music informatics. Journal of Intelligent Systems, 41(3):461-481.

Klapuri, A. (2004). Automatic music transcription as we know it today. Journal of New Music Research,
33(3):269-282.

Klapuri, A. (2005). A perceptually motivated multiple-FO estimation method. In Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, pages 291-294, New Paltz,
NY.

Klapuri, A. (2006). Multiple fundamental frequency estimation by summing harmonic amplitudes. In
Proceedings of the International Society for Music Information Retrieval Conference, pages 216-221,
Victoria, BC.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. (2009). Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In Proceedings of the International Conference
on Machine Learning, pages 609-616, Montréal, QC.

Mabher, R. C. and Beauchamp, J. W. (1994). Fundamental frequency estimation of musical signals using a
two-way mismatch procedure. Journal of the Acoustical Society of America, 95(4):2254-2263.

Marolt, M. (2004). A connectionist approach to automatic transcription of polyphonic piano music. JEEE
Transactions on Multimedia, 6(3):439-449.

Martin, K. D. (1996). A blackboard system for automatic transcription of simple polyphonic music.
Technical Report 385, Massachusetts Institute of Technology.

Moorer, I. A. (1975). On the segmentation and analysis of continuous musical sound by digital computer.
PhD thesis, Department of Music, Stanford University, Stanford, CA.

Nam, J., Ngiam, J., Lee, H., and Slaney, M. (2011). A classification-based polyphonic piano transcription
approach using learned feature representations. In Proceedings of the International Society for Music
Information Retrieval, pages 175-180, Miami, FL.

Poliner, G. E. and Ellis, D. P. W. (2007). Improving generalization for polyphonic piano transcription. In
Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages
86-89, New Paltz, NY.

Radicioni, D. P. and Lombardo, V. (2005). Computational modeling of chord fingering for string
instruments. In Proceedings of the International Conference of the Cognitive Science Society, pages
1791-1796, Stresa, Italy.

Radisavljevic, A. and Driessen, P. (2004). Path difference learning for guitar fingering problem. In
Proceedings of the International Computer Music Conference, Miami, FL.

Raphael, C. (2002). Automatic transcription of piano music. In Proceedings of the International Society
for Music Information Retrieval Conference, pages 1-5, Paris, France.

Ryynénen, M. and Klapuri, A. (2005). Polyphonic music transcription using note event modeling. In
Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages
319-322, New Paltz, NY.

Smaragdis, P. and Brown, J. C. (2003). Non-negative matrix factorization for polyphonic music tran-
scription. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and

15/16

Peer] Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

FeerdReviewing Manuscript

Acoustics, pages 177-180, New Paltz, NY.

Tang, L., Rajan, S., and Narayanan, V. K. (2009). Large scale multi-label classification via metalabeler.
In Proceedings of the International Conference on World Wide Web, pages 211-220, New York, NY.

Tuohy, D. R. and Potter, W. D. (2005). A genetic algorithm for the automatic generation of playable guitar
tablature. In Proceedings of the International Computer Music Conference, pages 499-502, Barcelona,
Spain.

Tuohy, D. R. and Potter, W. D. (2006). An evolved neural network/HC hybrid for tablature creation in
GA-based guitar arranging. In Proceedings of the International Computer Music Conference, pages
576-579, New Orleans, LA.

Tzanetakis, G. and Cook, P. (2000). MARSYAS: A framework for audio analysis. Organised Sound,
4(3):169-175.

Utgoff, P. E. and Stracuzzi, D. J. (2002). Many-layered learning. Neural Computation, 14:2497-2539.

Yeh, C., Roebel, A., and Rodet, X. (2010). Multiple fundamental frequency estimation and polyphony
inference of polyphonic music signals. IEEE Transactions on Audio, Speech, and Language Processing,
18(6):1116-1126.

Zhang, M. and Zhou, Z. (2014). A review on multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819-1837.

Zhou, R. and Reiss, J. D. (2008). A real-time polyphonic music transcription system. In the Music Infor-
mation Retrieval Evaluation eXchange, http://www.music—ir.org/mirex/abstracts/
2008/F0_zhou.pdf.

Zhou, R., Reiss, J. D., Mattavelli, M., and Zoia, G. (2009). A computationally efficient method for
polyphonic pitch estimation. EURASIP Journal on Advances in Signal Processing, 2009(729494):1-11.

16/16

Peer) Comput. Sci. reviewing PDF | (CS-2015:07:5874:0:0:NEW 18 Jul 2015)

