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ABSTRACT

Sea surface temperature (SST) is an important parameter to measure the energy and
heat balance of sea surface. The change of sea surface temperature has an important
impact on the marine ecosystem, marine climate and marine environment.
Therefore, sea surface temperature prediction has become an significant research
direction in the field of ocean. This article proposes a DBULSTM-Adaboost model
based on ensemble learning. The model is composed of Deep Bidirectional and
Unidirectional Long Short Term Memory (DBULSTM) and Adaboost strong learner.
DBULSTM can capture the forward and backward dependence of time series, and the
DBULSTM model is integrated with Adaboost strong learner to reduce the variance
and bias of prediction and realize the short and medium term prediction of SST at a
single point scale. Experimental results show that the model can improve the
accuracy and stability of SST prediction. Experiments on the East China Sea and
South China Sea with different prediction lengths show that the model is almost
superior to other classical models in different sea areas and at different prediction
levels. Compared with full-connected LSTM (FC-LSTM) model, the root-mean-
square error is reduced by about 0.1.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords DBULSTM, Adaboost, Deep learning, Sea surface temperature prediction, Marine
environment

INTRODUCTION

Sea surface temperature (SST) has played an indispensable role in the ocean atmosphere
interaction, that is, the exchange of matter, energy, and momentum between the ocean and
the atmosphere (Wentz et al., 2000; Sumner et al., 2003; Constable et al., 2014). As a result,
changes in SST have incalculable impacts on global climate and marine ecosystem (Bouali,
Sato ¢ Polito, 2017; Cane et al., 1997; Meehl, 1990; Castro, Wick & Steele, 2016; Chaidez
et al., 2017). SST predictions also have implications for applications related to the ocean,
such as weather forecasting, fisheries and marine environmental protection. For example,
SST changes affect precipitation distribution which further may lead to droughts and
floods (Salles et al., 2016; Xiao et al., 2019). Therefore, it is critically necessary to predict
dynamic changes of SST in the future to help people identify and prevent severe weather
events and it is also of great significance for scientific research and applications (Chen et al.,
2014).

The prediction method of sea surface temperature has been widely used and concerned,
which has become a hot topic. These prediction methods are generally divided into three
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categories, including physics-based numerical methods, data-driven methods and methods
combining the two Patil, Deo ¢» Ravichandran (2016). Numerical methods in general is the
use of the kinetics and thermodynamics equation to describe the SST changes, thus solving
a series of differential equations, using physics and some important theory to establish the
mathematical model of oceanography, described based on the physical conditions and
processes of SST variation law. The methods shall be carried out in accordance with the
change rule to SST forecast, and are usually used for areas with low resolution, rather than
specific stations with high resolution (Stockdale, Balmaseda ¢ Vidard, 2006).
Krishnamurti et al. (2006) used integrated analysis and hyper-integration methods to
predict SST anomalies, achieving SST prediction of the integrated model, and evaluating
SST seasonal forecast and SST anomalies using deterministic and probabilistic methods.
Noori et al. (2017) proposed a reduced order model based on feature vectors, which used 10
modes to accurately predict SST in the northwestern Indian Ocean, achieving simplicity
and accuracy in predicting SST. However, numerical methods are usually complex and
require a lot of computation and time, which makes it difficult to solve equations.

The data driven method is mainly used to predict the future ocean surface temperature
from the perspective of data. The model is constructed by learning the relationships and
patterns between historical SST data, and further using the learned relationship model to
approximate the future SST data. The data-driven method is not as complex as the
numerical method and is suitable for SST prediction of high resolution regions. Data-
driven methods mainly involve traditional statistical data analysis methods, machine
learning and artificial intelligence methods. Among them, traditional statistical techniques
mainly include the Markov model (Xue, Leetmaa ¢ Ji, 2000), empirical canonical
correlation analysis and the regression model (Laepple ¢ Jewson, 2007; Patil et al., 2013).
Xue & Leetmaa (2000) used SST data and seasonal SST data to construct a Markov model
in multivariate space, and realized the prediction of SST in the tropical Pacific. Collins,
Reason ¢ Tangang (2004) designed an empirical model using canonical correlation
analysis containing the first 12 empirical orthogonal functions of Indian Ocean SST, and
realized the prediction of sea level pressure and Indian Ocean SST in the next year under
different historical time series lengths. Li-Wei, Fei ¢ Jiang (2013) combined dynamic and
statistical methods to construct a linear regression model based on the lag relationship
between SST in tropical Indian Ocean and NINO 3.4 SST index, and realized the
prediction of SST in equatorial eastern Pacific for 24 months.

The recurrent neural network (RNN) is an artificial neural network model used for time
series processing, such as natural language processing, stock prediction and other time
series problems, which can effectively extract time features from time series, so RNN can
be used to predict SST (Graves, Mohamed ¢ Hinton, 2013). However, RNN will have
serious problems of gradient disappearance or gradient explosion after multiple gradient
propagation in the training process, and it is difficult to train, so it cannot be applied in the
field of long-term series prediction. SST prediction is highly dependent on marine data, so
RNN will not perform well. In order to solve this long-term time-dependence problem,
Hochreiter ¢ Schmidhuber (1997) proposed LSTM network. LSTM is a special recursive
neural network, which can remember longer time series information through its cyclic
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structure and gating mechanism, so as to obtain better prediction results. Zhang et al.
(2017) used LSTM network and the network framework of full connection layer to realize
short-term prediction of 1 and 3 days’ future SST as well as long-term prediction of weekly
and monthly mean. As an improved variant of LSTM, the gated recurrent unit (GRU)
has fewer gates and simpler structure while retaining the advantages of LSTM memory for
long time series, which reduces training parameters. Therefore, GRU has higher
computational efficiency and alleviates the phenomenon of over-fitting and under-fitting
of network. A novel model is proposed by Yang et al. (2018), which essentially combines
the temporal and spatial information to predict future SST values. This model solves
the problem of ignoring spatial factors in temperature prediction. Dey ¢ Salem (2017) used
GRU and full connection layer to capture the time characteristic rule of SST series, and
realized the accuracy and stability prediction of monthly average and seasonal SST in the
Bohai Sea region. Xie et al. (2019) designed a mechanism of the adaptive mechanism
based on GRU helped and attention to predict sea surface temperature, the mechanism of
using GRU helped to capture the changes of sea surface temperature in the static and
dynamic effect chain is used to capture the dynamic effect, the sea surface temperature
coding and early prediction of the future sea surface temperatures, and therefore solves the
long scale dependency problem. Xiao et al. (2019) proposed a machine learning method
that combined the long and short-term memory deep recursive neural network model
with Adaboost algorithm to predict short-term and medium-term daily SST. Feng, Sun ¢
Li (2021) used time-domain convolutional network to achieve short-term small-scale SST
prediction of the Indian Ocean. Han et al. (2019) used convolutional neural network
method to achieve regional prediction of SST, sea surface height and ocean salinity in the
Pacific. Park et al. (2019) used the proposed temperature prediction model to fill in the
missing data to recover the missing SST data. After filling in all the missing data, the
model based on LSTM was retrained to achieve the prediction of short-term SST in the
future 6, 12 and 24 h. Zhang, Geng ¢» Yan (2020) proposed a multi-layer convolutional
long and short-term memory model to predict 3d ocean temperature. The model is
composed of convolutional neural network and long and short-term memory, which can
predict horizontal and vertical changes of ocean temperature below about 2,000 m. Yang
et al. (2018) added attention mechanism to weight the output of each step of LSTM
model to adjust the prediction results, which improves the prediction accuracy of the
approach. Li et al. (2022) utilized the probability entropy and distance entropy to evaluate
the data, which has reference significance for data preprocessing.

The existing studies on SST prediction only consider the one-way time series
dependence and ignore the reverse time series information when capturing the time
features. In order to make full use of all the information contained in the SST time series as
well as the periodicity and regularity of the series, this article not only considers the
forward and reverse dependence of the time series, but also obtains a prediction model
with lower bias and variance. A deep bidirectional and unidirectional long short term
memory (DBULSTM-Adaboost) model based on ensemble learning is proposed. The
model realizes the prediction of short and medium SST at single point scale and improves
the accuracy and stability of prediction.
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The contribution of this article can be summarized in the following two aspects: (1) In
this article, we apply bidirectional long short term memory (BLSTM) to SST prediction for
the first time. An deep bidirectional and unidirectional long short term memory
(DBULSTM) is proposed. Stacking BLSTM and LSTM constructs DBULSTM deep
architecture, further integrates forward and backward dependence, and captures all feature
information in time series. (2) The DBULSTM model and Adaboost strong ensemble
learning model are integrated with an average strategy to obtain a prediction model with
low bias and low variance. The SST model has been used to predict SST at different scales
on two real data sets in the East China Sea and the South China Sea. Experiments verify the
effectiveness of the DBULSTM-Adaboost model in obtaining the forward and backward
dependence relationship, and it is almost superior to other baseline models in different sea
areas and different prediction lengths, showing the stability of prediction. The rest of the
article is organized as follows. “Research Area and Data” introduces the marine area
selected in this study and the SST dataset used in the experiment. The “Methods” proposes
the novel STAGCN model for SST prediction in detail. “Experiments and Discussion”
visualize the experimental results and make correlative discussions. Finally, “Conclusion”
gives the conclusion of the article.

RESEARCH AREA AND DATA

In order to illustrate the prediction performance of the proposed DBULSTM-Adaboost
model, two research regions are selected in this section, namely, the East China Sea and the
South China Sea. The East China Sea is rich in natural resources and is the confluence of
several rivers. With the Bohai Sea in the north and Taiwan Strait in the south, it is a
strategic maritime area for China, Japan, South Korea and other countries. The South
China Sea is one of China’s three marginal seas, rich in mineral resources and an important
checkpoint for maritime resource transportation. Therefore, it is very important to study
the dynamic changes of SST data in the East China Sea and the South China Sea for
China’s maritime transportation and the production and life of people in neighboring
countries. In this section, six representative points in the East China Sea and South China
Sea are selected as research points, and each location point is marked by a green dot box, as
shown in Figs. 1 and 2. The six points in the East China Sea are denoted as E1 to E6,
wherein E1 to E3 are close to the coast, E4 to E6 are selected as locations far from the
coast, and the coordinate positions of the six points are E1 (32.125°N,123.125°E), E2
(29.875°N,124.125°E), E3 (26.875°N,123.125°E), E4 (31.125°N,127.125°E), E5 (28.875°
N,126.125°E), E6 (26.875°N,126.875°E) respectively. The geographic coordinates of the six
points in the South China Sea are denoted as S1 (15.125°N,110.125°E), S2 (13.625°
N,110.625°E), S3 (15.125°N,111.625°E), S4 (14.125°N,112.625°E), S5 (13.125°N,114.375°E),
S6 (14.125°N,116.625°E).

The data used in this study are noaa’s 1/4° daily best interpolated sea surface
temperature. In order to reduce the error of measurement data, the national Oceanic and
Atmospheric Administration platform adopts interpolation method to complete the
missing values, which makes the SST spatial data more complete. In this section, the SST
data sets of six locations in the East China Sea from 1982/1/1 to 2019/12/31 and the SST
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Figure 1 Location of the East China Sea research area. Full-size Kal DOI: 10.7717/peerj-cs.1095/fig-1
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Figure 2 Location of the South China Sea research area.
Full-size K&l DOT: 10.7717/peerj-cs.1095/fig-2

data sets of six locations in the South China Sea from 2000/1/1 to 2019/12/31 were selected
to verify the prediction performance of DBULSTM-Adaboost model and verify the
superiority of DBULSTM-Adaboost model over other baseline models in predicting
performance on two datasets. Before using data for prediction, we eliminated abnormal
values and use interpolation method to deal with the missing values. Tables 1 and 2 show
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Table 1 Statistical characteristics of SST at six coordinate points in the East China Sea.

Location Mean Stv. Min 25% 50% 75% Max

E1l 17.813 6.258 6.030 11.700 18.400 23.460 30.650
E2 20.689 5.282 10.500 15.589 20.880 25.640 30.470
E3 24.022 3.179 16.800 21.189 23.859 26.920 30.840
E4 21.629 4.363 14.070 17.570 21.010 25.539 31.449
E5 23.015 3.960 15.360 19.300 22.869 26.619 31.080
E6 25.448 2.662 19.000 23.060 25.269 27.910 31.289

Table 2 Statistical characteristics of SST at six coordinate points in the South China Sea.

Location Mean Stv. Min 25% 50% 75% Max

S1 27.515 1.919 22.369 25.930 27.820 29.179 31.260
S2 27.683 1.544 23.619 26.439 27.900 28.910 31.109
S3 27.986 1.299 24.150 27.029 28.090 28.949 31.429
S4 27.841 1.460 23.490 26.699 28.039 28.949 31.590
S5 28.188 1.212 24.320 27.310 28.220 29.039 31.939
S6 28.385 1.204 24.500 27.510 28.449 29.199 32.070

the statistical characteristics of SST at the selected six coordinate points in the East China
Sea and the South China Sea. It can be seen from the table that the average sea surface
temperature at the east China Sea position point E1 has similar average values. In the South
China Sea data set, S1, S2, S3 and S4 have similar mean values, while S5 and S6 have similar
mean values and variances. E1 has the smallest temperature value on 1/4, 1/2, 3/4 data set,
which may be because El1 is closest to the mainland and the ocean depth is shallower than
other points in the ocean. The data set has rich features suitable for verifying the validity of
the proposed prediction model.

METHODS

Stacking LSTM networks with multiple hidden layers to build a deep architecture can
gradually build a higher level of sequence data representation and improve the
performance of the model (Zeyer et al., 2017; LeCun, Bengio ¢» Hinton, 2015). The deep
LSTM architecture is a network of stacked LSTM hidden layers, where the output of one
LSTM hidden layer serves as the input for subsequent LSTM hidden layers. This section
adopts a DBULSTM model, which is a deep architecture of stacked multi-layer BLSTM
and LSTM network, to achieve long-term and short-term prediction of SST. In the
DBULSTM model, BLSTM is taken as the first layer of the network, and SST information is
input into BLSTM to obtain time forward and backward correlation from time series and
learn more characteristic information. At the same time, to further obtain forward and
backward dependencies, multi-layer BLSTM networks can be stacked to improve the
predictive performance of the model. When predicting future SST values, DBULSTM
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architecture adopts LSTM layer capturing forward dependence as the last layer of the
model. LSTM layer uses the time series characteristic information output by the upper
BLSTM network to perform forward iteration calculation in time order, and finally
generates the predicted SST values in the future time period.

The specific structure of the deep architecture of stacked multi-layer BLSTM and one-
way LSTM networks proposed in this section is shown in Fig. 3. Each DBULSTM model
contains the BLSTM network as the first layer of the model and the LSTM network as the
last layer of the model. In order to make full use of the input SST time series data and learn
more comprehensive characteristic information, one or multiple BLSTM layers can be
stacked in the middle of the DBULSTM model. DBULSTM model takes time series data as
input and captures the forward and backward correlation dependencies in the series, which
can predict SST values of one time step in the future and multiple future time steps based
on historical data. Therefore, DBULSTM retains information from the future and uses a
combination of two hidden states to save past and future information at any point in time.
In the structure of DBULSTM, the LSTM layer is before the output layer, which is a kind of
gated recurrent neural networks. It has a good performance on sequence-based tasks with
long-term dependencies, which can handle the gradient exploding in traditional RNNs.
The LSTM cell has three gates namely input gate, forget gate, and output gate, that control
the information flow through the neural network (Ge et al.,, 2019). The formulas of the
three gates and cell input state are as follows:

iy = 0(Wix, + Uihy_y + b)), L)
fio = 0(Wpxy + Urhi—y + by), 2)
0y = 6(Wox; + Uohy—1 + b,), 3)
C: = tanh (Wex; + Uch;_ + be) @
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where i;, f;, 0;, C; represent the input gate, the forget gate, the output gate and the cell input
state respectively, W;, Wy, W, and W are the weight matrices transforming input x; to the
three gates and cell input state, U;, Uy, U, and Uc are the weight matrices transforming
previous cell output state h;_; to the three gates and cell input state, b;, by, b, and b are the
bais vectors of the three gates and cell input state. 6 denotes the gate activation function
and tanh denotes the hyperbolic tangent function. The cell output state and the hidden
layer are calculated as Eqs.(5) and (6):

C[ = i[ * Ct +ﬁ * Ct—l (5)
ht = O¢ * tanh (Ct) (6)

In time series prediction, the prediction performance of the model can be improved by
integrating different models, proving the advantages of the hybrid model prediction
mechanism (Messias et al., 2016). Adaboost is a powerful integrated learning method,
which is used for low-bias prediction tasks and is not easy to be over-fitted in the training
process, and has good generalization performance (Bartlett et al., 1998). Moreover, both
DBULSTM model and Adaboost model have low bias errors. Therefore, In order to obtain
a prediction model with lower deviation and variance, DBULSTM model and Adaboost
average strategy are integrated in this article to predict SST in the short and medium term
to improve the accuracy and stability of prediction (Perrone, 1993).

The architecture of DBULSTM-Adaboost integration model proposed in this article is
shown in Fig. 4. Firstly, the SST time series data are divided into data sample sets through
the continuous movement of time window, and the data set is used as the input of
DBULSTM model and Adaboost model to train the two models respectively. Then, the
predicted results generated by DBULSTM model and Adaboost model are averaged and
then used as the latest element of the next long SST time series to update the series, which
is used to predict the next SST value. The error between the predicted value and the real
value is used to update the weight of multiple weak learning devices. Multiple step size
prediction tasks can be realized by repeating the above steps.

EXPERIMENTS AND DISCUSSION

Experiment setup

In this article, we will propose the DBULSTM-Adaboost integration model and compare it
with four different models, including linear support vector regression model (SVR), LSTM
model, GRU model and BLSTM model. All experiments in this section are performed in
the Ubuntu20.04 server environment. The proposed DBULSTM-Adaboost integration
model is implemented using Tensorflowl.14 (GPU version). Other baseline models such
as the LSTM model, BLSTM model, DBULSTM model, Adaboost model and SVR model
are implemented by Statsmodels 0.12.2 library and SciKit-learn 0.24.1 library respectively.
We took 80% of the data as training samples, and the remaining 20% as test samples. The
number of hidden units in LSTM is 20, and the initial learning rate is 0.001. Adam was
used as the optimizer of the training model. In order to prove the prediction performance
of the DBULSTM-Adaboost integrated model proposed in this study, root mean square
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error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE)
are adopted in this section to measure the prediction performance of the STAGCN model
and other baseline models for SEA surface temperature, which are defined as follows:

1 < X
RMSE = ?Z (e — 3, (7)
t=1
1 T
t=1
T 1 J— .
MAPE — 100% Yo (9)
T i=1 Yi

where, y; and y; respectively represent the real sea surface temperature value and the
predicted sea surface temperature value at the first moment, and T is the number of time
samples. In the prediction results of SST by the model, the lower the RMSE and MAE
values are, the higher the fitting degree between the predicted value and the real value is,
the lower the prediction error of the model is, and the better the prediction performance is.
Before inputting the SST time series into the DBULSTM model and Adaboost model for
training, we removed the seasonal features and normalized the input series. The seasonal
component of time series data sets is a recurring cycle, which may obscure the prediction
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results and affect the prediction model. From sea surface temperature time series in the
process of removing the seasonal component called seasonal adjustment, the process can
make the relationship between the input and output sequence more clearly, to explore the
trend of time series and periodic, and compared with the predict directly using the primary
data has a higher accuracy, and thus improve the performance of the model prediction.
First, SST data with seasonal components removed were used as inputs to DBULSTM and
Adaboost models to train models for prediction. Second, seasonal characteristics are added
to the forecast results to obtain the final forecast. At the same time, in order to accelerate
the convergence of the model, the deseasonal time series at each position are normalized to
make the data more centralized and improve the prediction accuracy of the model.

At present, the methods to remove seasonal components from time series have been
very mature. There are two main methods: one is to use the difference characteristics, the
other is to model the seasonal characteristics. In this section, the latter is adopted to
directly model the seasonal components in the SST time series, and then remove the
seasonal components from the original time series. In the time series of SEA surface
temperature, the seasonal component is a polynomial curve with fixed period and
amplitude, so the curve fitting can be used to approximate the seasonal component. First, a
new time series is constructed by taking the original time series as independent variable
(day as unit). The fitting is then performed by calling the Polyfit () function in the NUMPY
package, which uses X-axis values (time index), Y-axis values (sea surface temperature
observations) and the order of the polynomial to fit the new time series, where the order of
the polynomial controls the complexity of the fitting curve by the number of control items,
The model form obtained is shown in Eq. (10):

y = i aix’ (10)
i=0

where, 7 is the polynomial order of the fitting curve, a; represents the fitting coefficient of
each time variable in the polynomial, and y is the polynomial curve of the fitting seasonal
component finally obtained. In this section, the order value of the polynomial is set to 6 to
model the seasonal components in the historical and future time series, obtain the seasonal
factor change curve in the time series, remove the seasonal components from the series
data, make the relationship between the input SST time series and the predicted results
more clear, and improve the accuracy of prediction.

In this section, the diseasonal results of the ocean surface temperature time series of E1
in the East China Sea study location site and S1 in the South China Sea study location site
are shown in Figs. 5 and 6. As can be seen from the Figs. 5 and 6, the SST time series has
obvious seasonality, and the change range of SST value after removing seasonality is
smaller, which is conducive to capture the change relationship between sequence value and
predicted value and accelerate the model convergence.

Before the time series of sea surface temperature with no seasonal components are input
into model training, they are normalized to the range [0-1]. Specifically, each time series is
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curve, (B) time series of SST with the removal of seasonal components.
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divided by the maximum value in the series for normalization processing, as shown in
Eq. (11):

o Xdess
Xnorm =

(11)

xmax

where x,,,,m represents the result of normalization, x4 is the time series of removing
seasonal components, and X, represents the maximum value in the time series. The
normalized preprocessing of the input data can accelerate the convergence of the model
and improve the efficiency of the training model.

Experiment results and discussion
In order to prove the prediction ability of the DBULSTM-Adaboost integration model
proposed in this article, first of all, this section visualized the prediction performance of the
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Figure 6 Visualized results of SST de-seasonalization at S1 in the South China Sea region. (A) Original SST time series and seasonal SST change

curve, (B) time series of SST with the removal of seasonal components.
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DBULSTM-Adaboost integration model, four baseline models, DBULSTM model and
Adaboost model under different prediction lengths. The predicted root mean square error
(RMSE) and mean absolute error (MAE) were analyzed. Secondly, the improvement
degree of prediction performance of DBULSTM-Adaboost integrated model, DBULSTM
model and Adaboost model under different prediction lengths is analyzed. Thirdly, the
prediction results of DBULSTM model, multi-layer BLSTM model and multi-layer LSTM
model are analyzed. Finally, in order to better illustrate the prediction performance of
DBULSTM-Adaboost integrated model, the prediction results of position point E1 on the
East China Sea dataset and position point S1 on the South China Sea dataset are visualized
in Figs. 7-10.

Figures 7 and 9 show the variation curves of RMSE of prediction error of DBULSTM-
Adaboost integration model and other baseline models at different prediction lengths at
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Figure 7 The RMSE changes for each model on the dataset of the East China Sea. (A) The RMSE
changes of point E1 in the East China Sea. (B) The RMSE changes of point E2 in the East China Sea.
(C) The RMSE changes of point E3 in the East China Sea. (D) The RMSE changes of point E4 in the East
China Sea. (E) The RMSE changes of point E5 in the East China Sea. (F) The RMSE changes of point E6

in the East China Sea.
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Figure 8 The MAE changes for each model on the dataset of the East China Sea. (A) The MAE
changes of point E1 in the East China Sea. (B) The MAE changes of point E2 in the East China Sea.
(C) The MAE changes of point E3 in the East China Sea. (D) The MAE changes of point E4 in the East
China Sea. (E) The MAE changes of point E5 in the East China Sea. (F) The MAE of point E6 in the East
China Sea. Full-size K&l DOT: 10.7717/peerj-cs.1095/fig-8
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Figure 9 The RMSE changes for each model on the dataset of the South China Sea. (A) The RMSE
changes of point S1 in the South China Sea. (B) The RMSE changes of point S2 in the South China Sea.
(C) The RMSE changes of point S3 in the South China Sea. (D) The RMSE changes of point S4 in the
South China Sea. (E) The RMSE changes of point S5 in the South China Sea. (F) The RMSE changes of
point S6 in the South China Sea. Full-size K&] DOT: 10.7717/peerj-cs.1095/fig-9
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Figure 10 The MAE changes for each model on the dataset of the South China Sea. (A) The MAE
changes of point S1 in the South China Sea. (B) The MAE changes of point S2 in the South China Sea.
(C) The MAE changes of point S3 in the South China Sea. (D) The MAE changes of point $4 in the South
China Sea. (E) The MAE changes of point S5 in the South China Sea. (F) The MAE changes of point S6 in
the South China Sea. Full-size k&l DOTI: 10.7717/peerj-cs.1095/fig-10
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each location of the East China Sea and South China Sea datasets, respectively. The
variation curves of MAE of corresponding datasets are shown in Figs. 8 and 10. As shown
in the figures, the prediction errors of all models gradually increase with the increase of the
prediction length. For different prediction levels, the proposed DBULSTM-Adaboost
model, LSTM model, BLSTM model, Adaboost integrated model and DBULSTM model
all have better prediction performance than SVR model, which may be because SVR model
is difficult to capture the time correlation in time series. As can be seen from the figure,
DBULSTM-Adaboost model’s prediction error changes are almost at the lowest level
compared with other baseline models on the two data sets, indicating that for different
location points and at different prediction levels, The prediction performance of
DBULSTM-Adaboost integration model is better than SVR model, LSTM model, BLSTM
model, Adaboost integration model and DBULSTM model. The prediction performance of
DBULSTM model at different prediction lengths is not always better than that of other
baseline models, and the prediction error of Adaboost integrated model is not lower than
that of other baseline models at all position points. At all position points, at different
prediction levels, The prediction effect of DBULSTM model and Adaboost model is not
fixed all the time, so the integration of DBULSTM model and Adaboost model can
improve the accuracy of SST prediction. Although the prediction effect of DBULSTM-
Adaboost model is not much improved compared with DBULSTM, it is better than other
baseline models, and has certain advantages in the accuracy and stability of prediction at
different prediction levels. Figures 8 and 10 show MAE variation curves of the predicted
results under different predicted lengths at the locations of the east China Sea and South
China Sea datasets respectively, and their variation trends are similar to RMSE variation on
the corresponding datasets.

In this article, error RMSE of DBULSTM-Adaboost model, Adaboost model and
DBULSTM model are compared at six locations in the East China Sea. The results are
shown in Table 3, in which D-Adaboost represents DBULSTM-Adaboost model. The
lowest RMSE of the prediction error at each location point at different prediction levels is
shown in bold. As can be seen from the table, DBULSTM-Adaboost model achieves the
lowest prediction error and the best prediction effect at all position points except for
the prediction results of E2 and E3 in the future 1 day. For example, at position point
El1, the RMSE value of DBULSTM-Adaboost model decreases by about 0.04 and 0.05
respectively relative to the Adaboost model for the prediction of the next 1 and 7 days.
The RMSE value of DBULSTM-Adaboost model decreased by about 0.02 and 0.01,
respectively.

In order to explore the prediction performance of Multiply LSTM (M_LSTM) and
stacked BLSTM (Multiply BLSTM, M_BLSTM), DBULSTM model, M_LSTM model and
M_BLSTM model are used to predict the SST of the next day at E1 in the East China Sea.
The results of RMSE, MAE and MAPE of the prediction errors of the three models under
different network layers are shown in Table 4. M = 0 indicates that the DBULSTM model
contains one layer of BLSTM and one layer of LSTM. As can be seen from the table, the
prediction errors of almost all models gradually increase with the increase of network
depth, except for the LSTM model, when M = 4, the error tends to decline. With the
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Table 3 The RMSE of DBULSTM-Adaboost model compare with DBULSTM and Adaboost.

Time Model El E2 E3 E4 E5 E6

1 day Adaboost 0.4553 0.3733 0.3845 0.4021 0.3681 0.3124
DBULSTM 0.4551 0.3533 0.3782 0.4126 0.3677 0.3141
D-Adaboost 0.4353 0.3518 0.3625 0.3773 0.3623 0.3003

3 days Adaboost 0.6684 0.5027 0.5727 0.5548 0.5495 0.4673
DBULSTM 0.6144 0.4956 0.5567 0.5501 0.5198 0.4305
D-Adaboost 0.6020 0.4978 0.5364 0.5398 0.5079 0.4251

7 days Adaboost 0.8629 0.6346 0.7713 0.6947 0.6808 0.6344
DBULSTM 0.8081 0.6078 0.7264 0.6772 0.6437 0.5619
D-Adaboost 0.7998 0.5917 0.7027 0.6676 0.6371 0.5502

10 days Adaboost 0.9596 0.6900 0.8413 0.7704 0.7579 0.6751
DBULSTM 0.8784 0.6508 0.7945 0.7419 0.6919 0.6116
D-Adaboost 0.8662 0.6456 0.7810 0.7388 0.6724 0.6011

14 days Adaboost 1.0460 0.7129 0.9106 0.8063 0.8313 0.7023
DBULSTM 0.9595 0.6952 0.8434 0.7847 0.7451 0.6622
D-Adaboost 0.9448 0.6835 0.8197 0.7757 0.7324 0.6539

Table 4 SST prediction errors of DBULSTM model and LSTM-based model at different network
depths. Here DBULSTM refers to 1 layer BLSTM + M layer BLSTM + 1 layer LSTM.

Model Metrics The layer of model
M=0 M=1 M=2 M=3 M=4
M_LSTM RMSE N/A 0.4447 0.4665 0.4902 0.4593
MAE N/A 0.3025 0.3288 0.3635 0.3211
MAPE N/A 1.6982% 1.8458% 2.2406% 1.8026%
M_BLSTM RMSE N/A 0.4439 0.4598 0.4615 0.4840
MAE N/A 0.3034 0.3249 0.3267 0.3474
MAPE N/A 1.7033% 1.8240% 1.8341% 1.9503%
DBULSTM RMSE 0.4241 0.4255 0.4271 0.4258 0.4330
MAE 0.2899 0.2952 0.2982 0.2932 0.3067
MAPE 1.6274% 1.6572% 1.6741% 1.6460% 1.7218%

increase of network layers, DBULSTM model has better prediction results than M_LSTM
model and M_BLSTM model, although the prediction errors RMSE and MAE values
gradually increase. For example, compared with M_LSTM model, when M = 1, 2, 3, 4, the
prediction error RMSE of DBULSTM model decreases by about 0.02, 0.04, 0.064, 0.026
respectively. Compared with M_BLSTM model, when M = 1, 2, 3, 4, the prediction error
RMSE of DBULSTM model decreases by about 0.018, 0.032, 0.0357, 0.026, respectively.
Compared with other baseline models, DBULSTM model reduces the prediction error and

improves the accuracy of SST prediction, and has certain advantages of prediction

performance. At the same time, when DBULSTM model has no intermediate layer, the
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Figure 11 Prediction results of DBULSTM-Adaboost model when the prediction length is 1 day.
(A) All forecast results, (B) Forecast results for first 90 days.
Full-size K&] DOT: 10.7717/peerj-cs.1095/fig-11
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Figure 12 Prediction results of DBULSTM-Adaboost model when the prediction length is 3 day.
(A) All forecast results, (B) Forecast results for first 90 days.
Full-size K] DOTI: 10.7717/peerj-cs.1095/fig-12

lowest prediction error is achieved, and RMSE, MAE and MAPE reach the minimum value
of 0.4241, 0.2899 and 1.6274% respectively. It can also be seen from Table 4 that when
the number of layers increases from 1 to 3, the prediction error of BLSTM model is lower
than that of LSTM model, indicating that the USE of BLSTM model can capture the
dependency before and after and improve the accuracy of prediction. For BLSTM model
and LSTM model, when the number of intermediate layers is 1, RMSE achieves the lowest
value of 0.4447 and 0.4439 respectively, indicating that single-layer BLSTM and LSTM
model can capture features well.

In order to better illustrate the prediction performance of DBULSTM-Adaboost model,
we select location point E3 in the East China Sea data set to visually display the prediction
results of the model on the test set. Figures 11-15 respectively show all the predicted results
of The DBULSTM-Adaboost model for the next 1, 3, 7, 10 and 14 days and the predicted
change curves for consecutive 90 days at this location. The prediction results of
DBULSTM-Adaboost model show that the model can obtain good prediction results
under different prediction lengths, and the predicted value fits the real value well. And the
deviation of prediction is low. Although the prediction of the model at the maximum value
is biased and the prediction performance decreases with the increase of the prediction
length, this does not affect the accuracy and stability of the model prediction. DBULSTM-
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Figure 13 Prediction results of DBULSTM-Adaboost model when the prediction length is 7 day.
(A) All forecast results, (B) Forecast results for first 90 days.
Full-size K&l DOT: 10.7717/peerj-cs.1095/fig-13
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Figure 14 Prediction results of DBULSTM-Adaboost model when the prediction length is 10 day.
(A) All forecast results, (B) Forecast results for first 90 days.
Full-size K&l DOT: 10.7717/peerj-cs.1095/fig-14
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Figure 15 Prediction results of DBULSTM-Adaboost model when the prediction length is 14 day.
(A) All forecast results, (B) Forecast results for first 90 days.
Full-size &) DOT: 10.7717/peerj-cs.1095/fig-15

Adaboost model integrates DBULSTM and Adaboost, and constructs DBULSTM model
by stacking deep BLSTM and LSTM. BLSTM obtains forward and backward dependence
in time series, and LSTM as the last layer of model captures more characteristic

information from SST series. Meanwhile, DBULSTM model is integrated with Adaboost to
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reduce the prediction variance and deviation value, improve the prediction performance,
and realize the short and medium term prediction of single point SST.

CONCLUSION

In this article, a DBULSTM-Adaboost model based on ensemble learning is proposed to
realize the short and medium term prediction of ocean surface temperature at a single
point scale. In the DBULSTM-Adaboost model, stacked BLSTM and unidirectional LSTM
are used to build the DBULSTM model to capture the forward and backward dependence
of the SST time series, and make full use of the features in the time series to improve the
performance of prediction. The proposed model performs better than the commonly used
prediction model at present. Meanwhile, DBULSTM model and Adaboost strong ensemble
learning model are integrated with an average strategy to obtain a prediction model with
low deviation and low variance, which can achieve accurate prediction of SST at single
point scale. In the experiments, DBULSTM-Adaboost model is used to predict the short
and medium term SST based on two real data sets of the East China Sea and South China
Sea. The results show that DBULSTM-Adaboost model is stable and accurate.
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