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ABSTRACT

The traditional synthesis problem is usually solved by constructing a system

that fulfills given specifications. The system is constantly interacting with the
environment and is opposed to the environment. The problem can be further
regarded as solving a two-player game (the system and its environment). Meanwhile,
stochastic games are often used to model reactive processes. With the development of
the intelligent industry, these theories are extensively used in robot patrolling,
intelligent logistics, and intelligent transportation. However, it is still challenging to
find a practically feasible synthesis algorithm and generate the optimal system
according to the existing research. Thus, it is desirable to design an incentive
mechanism to motivate the system to fulfill given specifications. This work studies
the learning-based approach for strategy synthesis of reward asynchronous
probabilistic games against linear temporal logic (LTL) specifications in a
probabilistic environment. An asynchronous reward mechanism is proposed to
motivate players to gain maximized rewards by their positions and choose actions.
Based on this mechanism, the techniques of the learning theory can be applied to
transform the synthesis problem into the problem of computing the expected
rewards. Then, it is proven that the reinforcement learning algorithm provides the
optimal strategies that maximize the expected cumulative reward of the satisfaction
of an LTL specification asymptotically. Finally, our techniques are implemented, and
their effectiveness is illustrated by two case studies of robot patrolling and
autonomous driving.

Subjects Data Mining and Machine Learning, Optimization Theory and Computation, Robotics,
Theory and Formal Methods, Software Engineering

Keywords Strategy synthesis, Reward mechanism, Reinforcement learning, Linear temporal logic,
Expected cumulative reward

INTRODUCTION

Reaction system synthesis is a technique that automatically explores how a system satisfies
a specific specification (task) (Bloem et al., 2012). In recent years, with the rapid
development of the intelligent industry, it has been widely used in robot patrolling,
intelligent logistics, and intelligent transportation. However, it is still difficult to find a
practically feasible synthesis algorithm and generate the optimal system. The construction
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of a reactive system usually needs to produce outputs for inputs to fulfill the requirement
that is typically described by a Linear Temporal Logic (LTL) formula. Constructing a
correct reactive system needs to generate outputs for the inputs to fulfill some given
specifications (Buchi ¢ Landweber, 1990). This construction process can be graphically
modeled as a two-player game between the system (outputs) and the environment (inputs)
(Rabin, 1972). The goal of the game is to synthesize strategies for the player to satisfy a
given LTL specification. The system win indicates that a given specification is satisfied.
These games can be solved algorithmically, i.e., one can determine which player wins the
game and produce a winning strategy; the winner is guaranteed to have a strategy that is
memoryless or only requires a finite memory.

Even though the synthesis of LTL specifications has been extensively studied, there are
still some challenges. This is mainly because the system cannot respond in time or chooses
the wrong behavior when interacting with the complex, changeable, and uncertain
environment. In this case, with the further study of the system synthesis problem, the
probability becomes the mainstream method to model and analyze reactive systems. Not
only that, but probability theory has wider applications in the field of control (Ren, Zhang
& Zhang, 2019; Zhang & Wang, 2021; Liu, Zhang ¢» Yue, 2021). Recently, probabilistic
synthesis is proposed and extensively studied, e.g., (Filar ¢ Vrieze, 2012; Church, 1963;
Shapley, 1953; Chatterjee, Henzinger ¢ Jobstmann, 2008; Kwiatkowska ¢ Parker, 2013;
Neyman, Sorin & Sorin, 2003; Nilim & El Ghaoui, 2005; Lustig, Nain & Vardi, 2011; Driger
et al., 2014). With the widespread attention to probabilistic synthesis, there is a growing
interest in the problem of expected reward in the probabilistic environment in recent
years. In a probabilistic environment, the value of a strategy for the system is the maximal
reward of a play induced by this strategy, and the goal of the system is to maximize
this value.

This study focuses on the synthesis problem of reactive systems and transforms it into
the problem of probabilistic games with both LTL winning conditions and a reward
mechanism. First, a learning-based approach is designed to motivate the system to satisfy
the winning condition and generate strategies. In our work, uncertainty is considered both
in the environment properties and in the system behaviors. Meanwhile, the reward
properties are considered in our model. Based on this, this study establishes a probabilistic
model with an asynchronous reward mechanism, which is referred to as reward
asynchronous probabilistic game (RAPG). Then, based on the reinforcement learning
method, algorithmic incentive systems are developed to win the game and generate
corresponding strategies. To formulate synthesizing strategies for each player to maximize
the expected cumulative rewards for satisfying the LTL objectives, this study first encodes
reachability properties to obtain some sets of states that satisfy the specific requirement,
then shrinks the state space, and constructs an asynchronous reward mechanism for
players according to the winning condition. Finally, the asynchronous reward mechanism
is combined with reinforcement learning to learn strategies that satisfy the given
specifications.

To the best of our knowledge, there is no existing work on the strategy synthesis of
RAPGs based on reinforcement learning. This study focuses on calculating the expected

Zhao and Liu (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1094 2/20


http://dx.doi.org/10.7717/peerj-cs.1094
https://peerj.com/computer-science/

PeerJ Computer Science

cumulative reward for a play satisfying the winning condition under each state while
maximizing the expected rewards against an adversarial probabilistic environment. The
contributions of this article are summarized as follows:

e An asynchronous reward mechanism is designed to motivate the system to satisfy
specific requirements, and a novel probabilistic model is proposed;

e Reachability properties are analyzed and encoded, which tremendously shrink the state
space of the game;

o A learning-based approach is proposed to compute the maximum expected cumulative
reward satisfying LTL specifications and generate corresponding strategies.

The rest of this article is organized as follows. In “Related work”, an overview of the
related work is given. The background definitions and notations are provided in
“Preliminaries”. “Synthesis problem through reward mechanism” introduces the definition
of RAPGs, the synchronous reward mechanism, and the formalization of the research
problem. The learning-based synthesis algorithm is introduced in “Synthesis algorithm
based on reinforcement learning”. The applicability of our algorithm is verified by
using two examples in “Case study”. Finally, “Summary and future work” concludes this
article and discusses future research work.

RELATED WORK

Reactive system synthesis under an uncertain environment is widely used in computer
science, engineering, and economics, e.g., autonomous driving and robot rescue operations
(Sutton ¢ Barto, 2018). Reactive systems have inherent complexity due to continuous
interactions with the external environment. Meanwhile, the uncertainty of the
environment brings a great challenge to system synthesis. The existing works on reactive
synthesis problems mainly focus on environmental uncertainty, and the solution is to
reduce the computational complexity of the synthesis algorithm (or optimize the synthesis
algorithm) (Bloem et al., 2012; Buchi & Landweber, 1990; Harding, Ryan & Schobbens,
2005) and to repair unrealized specifications (Hunt ¢ Johnson, 2000; Kénighofer, Hofferek
& Bloem, 2013; Kuvent, Maoz & Ringert, 2017; Maoz, Ringert & Shalom, 2019). In general,
a requirement is defined as a contract about the assumption (input) on the environment
behaviors and the guarantee (output) of the behavior of the system in a reactive system.
That is, given the assumption (input) of the behavior of the environment, the system
behavior is always guaranteed (output) to satisfy the specified specifications (Zhao et al,
2022). Unrealizable specifications can be understood as if the environment satisfies all
assumptions while forcing the system behavior to violate some guarantees. The efficient
synthesis algorithm and the method of repairing the unrealizable specifications do not
directly analyze the influence of uncertainty on system synthesis. Different from these two
methods, our work focuses on motivating systems to satisfy a given requirement by
using the asynchronous reward mechanism.

As for probabilistic synthesis, most systems are modeled as reachability games, includes
21-player games (Nilim ¢& El Ghaoui, 2005; Svorenovi & Kwiatkowska, 2016), concurrent
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games (Neyman, Sorin & Sorin, 2003; De, Henzinger & Kupferman, 2007), etc. Nilim &
El Ghaoui (2005) proposed to model the complex system as a 21-player game. In general,
the state space of a 21-player game involves a class of player states and a set of
probabilistic states. Kwiatkowska, Norman & Parker (2019) introduces turn-based
probabilistic timed multi-player games. Current games are also often used to model
systems (Hasanbeig et al., 2019; Kwiatkowska et al., 2021). The characteristic of this game
is that a state transition is performed through two actions taken by the player separately
but independently. The games considered in this article differ from both 23-player
games and concurrent games. In addition, Almagor, Kupferman & Velner (2016) proposed
mean-payoff Markov Decision Processes (MDPs) with a parity winning condition to find a
strategy that minimizes the expected cost of a play against a probabilistic environment.
Our work considers modeling a reactive system as a RAPG. In each round of the RAPG,
state transitions are determined alternately by two players who choose their actions and
transitions. Meanwhile, both players will obtain corresponding rewards by choosing
actions and transitions. Probabilistic reachability is an important property of APGs, which
help to deeply study the calculation of the winning probability of the system. Another
important property of PAPG that will be concerned in our work is the expected
reachability. It allows using rewards and costs to model, e.g., rewards for robots completing
tasks, and safety drive for autonomous driving cars. Considering the reward property, this
work is interested in calculating the cumulative rewards, i.e., the sum of the rewards
obtained when the system runs. Based on the calculation of the reward achieved on all runs
of the system, the expected cumulative rewards can be obtained. Thus, the value of a
strategy for the system is the maximal cumulative reward of a play induced by this strategy,
and the goal of the game is to maximize this value by motivating the system to win.
Reinforcement learning (RL) designs algorithms to learn the optimal strategy which
maximizes/minimizes the expected reward through interactions with the complex
environment (Sutton & Barto, 2018). Typically, MDPs play a critical role in RL because
of their unique ability to describe the time-independent state transition property.
Generally, there are two types of RL algorithms: model-free algorithms and model-based
algorithms (Filar & Vrieze, 2012; Hasanbeig et al., 2019; Lavaei et al., 2020; Huh ¢ Yang,
2020; Fu & Topcu, 2014; Brazdil et al., 2014; Puterman, 2014). Hasanbeig et al. (2019)
presents an approach to design optimal control strategies for Markov decision processes
with unknown behavior by the model-free RL algorithm. This approach generates traces
that satisfy specific LTL specifications with the maximized probability and returns the
maximum expected reward. Many RL algorithms like Q-learning can be regarded as
model-free algorithms. By updating the values of each state-action pair, these algorithms
can directly learn the action-value function. Furthermore, the safe operation problem of
the system can be solved by a model-free safety specification algorithm (Huh ¢ Yang,
2020). The method is to learn the maximum probability of safe operations by combining
probabilistic reachability with a safe RL algorithm. Model-based reinforcement learning
algorithms are also often used to design strategies, such as in Fu ¢» Topcu (2014),
Brazdil et al. (2014), to synthesize strategies that maximize the satisfaction probability
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for Markov decision processes (MDPs). Most of these studies model the environment as an
MDP and an extended MDP. Brdzdil et al. (2014) proposed the expected total reward for
discrete-time Markov chains (DTMCs) by solving a set of equation systems and for MDPs
by solving a linear program (Filar ¢» Vrieze, 2012). In our work, formal methods are
combined with learning-based methods to explore the reward properties of probabilistic
synthesis. In particular, for APGs, this work focuses on RL algorithms to compute the
expected cumulative reward of the system winning. Precisely, the RL method is used to
learn the strategy to motivate the system to win and compute the expected cumulative
reward for each player.

PRELIMINARIES

This section briefly introduces the definitions used in our article, including the
specification language, games, and a modal u-calculus over asynchronous probabilistic
games. LTL is taken as the desired specification language, and LTL specifications are first
introduced.

LTL

LTL has been increasingly popular as a tool to describe specific requirements when
synthesizing strategies for reactive systems.

Syntax. Given a finite and non-empty set ¥~ of atomic propositions, the arbitrary
proposition in 7" is denoted as p. Given a position, Boolean variables have a unique truth
value as True or False. Note that temporal operators usually have two conventional
notations, either X, G, F, U or O, O, ¢, %. In this article, the former is followed.

An LTL formula  is defined inductively according to the following grammar:

= True|=Y|, Vi, | Xy, Uy,

where the Boolean constants True and False can be denoted by formulas “T” and “L”,
respectively; - and V are the logic connectives negation and disjunction; X and U are the
temporal operators next and until. If  is a LTL formula, = is also a LTL formula. In
addition, logic connectives conjunction (A), implication (=), and equivalence (<) can be
defined as y; Ay = (= Vo) Yy = Yy = - Vg, and Yy < Y, = () = )
A, < Yrp), respectively. Additional temporal operators such as eventually (F) and
always (G) are derived as Fy = TUy and Gy = —F—.

Semantics. Given a finite set of Boolean variables #”, an infinite sequence = = mym; - - -
€ (27)” is defined as a computation. Denote the LTL formula that ¥ holds at position
i > 0ofmasm,i = , which is the satisfaction relation. The semantics of LTL formulas are
formally defined as follows:

o n,i=pifandonlyifp e m;

m,i =~ if and only if &, i Y

m,i =Y, Vi, ifand only if 7,i |= Y, or 0,i = ),
miEXyifandonlyif m,i+1F ¢
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o 1,i =, Uy, if and only if there exists k > i such that n,k |= ¥, and for all i<j < k,
TC?j ): wl

Intuitively, Xy means that i holds (or is true) in the next position (or the next “step”) in
the computation; ¥/, Uy, means that s, holds until iy, becomes True. The computation n
satisfies ¥ if 7, 0 |= \, which is denoted as 7 = . If ¥ satisfies 7 in every position of the
computation, it means that 7 satisfies Ay; if i will be satisfied at least once in the future,
then the computation = satisfies Fis. Besides, this article defines 7, i= GFy if i will be true
infinitely times in the computation, and =, il= FGy if i will eventually be continuously
true start from some position in the computation. Meanwhile, GFys is usually used to
denote the goal of systems or environments that need to be satisfied.

Asynchronous probabilistic games

The interaction between the system and the environment is transformed into an
asynchronous probabilistic game, which helps to analyze the uncertainty when the system
interacts with the environment. Now, the definitions of the asynchronous probabilistic
games are introduced below.

Definition 1. An Asynchronous Probabilistic Game (APG) is defined as a tuple
G = (V",Au,V,P., Ps, L), where V" is a finite set of atomic propositions, and V" is the set of
states on the game arena. Let V. =V, U Vs and V, NV, = &, where V, and V; are the sets
of environment states and system states, respectively. P, : V, X Ay — Dist(V;) is a
transition function of the environment such that P(v,, a)(vs) is the probability to transit
from environment state v, to system state v; on taking action a, where Dist(Vy) is a discrete
probability distribution over V. P : Vi x Ay — Dist(V,) is a transition function of the
system such that P(vs, a)(v,) is the probability to transit from system state v, to environment
state vs on taking action a, where Dist(V,) is a discrete probability distribution over V,.
L:V — 2" is a labeling function, and L(v) is a set of atomic propositions that holds in v,
where v € V.

In a game, the steps are executed alternatively by the environment and the system.
Given an APG %, a finite (or an infinite) sequence © = vp, vy, - - - is the play (or path) of ¢
if for each i >= 0, v;; is a successor of v;. That is, if v; € V,, Pe(vi, a)(vi+1) > 0 for some
a € Ay and Py(v;,b)(viy1) =0 forall b € Ay, and if v; € Vi, Po(vi,a)(viy1) = 0 for all
a € Ay and Py(v;, b)(vi1) > 0 for some b € A,. Let vy be the initial state of 7 and II be the
set of all plays of G. For a state v € V, II" is the set of plays with v as the initial state.

Given a game G and a LTL formula 1, this work uses i to denote the winning condition
of the game ¥. Let m = vy, vy, - - - be a play, 7 is winning for the system under a given
winning condition ¥ if 7 is a finite play and the last state v, is the environment state in
which there is no action a € A, such that P,(v,, a)(vs) > 0, or 7 is an infinite play and 7
satisfies the winning condition ; otherwise, it is said that 7 is winning for the
environment.

For an APG G and a state ¢ of the set V, an action a € A, is in state c if there is a
state d € V such that P,(c,a)(d) = 1. This article denotes the set of actions in ¢ as A;(c).
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Assume that Next, and Next, are the sets of finite plays with the last state in V; and V.,
respectively.

For an APG ¥, a strategy for the system of 4 is a function f : Next, — A, and
f(vo...vy) € Act(v,) is the next action to choose by the system. Similarly, a strategy can
be defined for the environment. This article denotes the sets of the system strategies
and environment strategies of 4 as F; and F,, respectively. A strategy is memoryless if it
relies only on the current state of the play and is not related to the history of the play.
Formally, for any m; and 7, in Next, (or Next,) and any state in V; (or V,), we have
f(mv) = f(myv). In addition to memoryless strategies, there are also history-dependent
strategies and finite-memory strategies. In this article, it is sufficient to consider only
memoryless strategies (Kwiatkowska ¢» Parker, 2013).

Given a play m = vyv; ... v;... that follows a system (or environment) strategy f, let
each finite prefix T = vyv; ...v; € Next, (or Next,), and we have P(t,f(1))(vit1) > 0.
Let y be a state proposition and v be a state in V, this article denotes the probability that the
play’s initial states satisfies 1 and follow strategy fas Prs(v |= ).

For a game %, let T C V be a set of states that satisfy Boolean expression i (or a
state proposition in general), i.e., there is a state v € T such that i is true of v. This article
uses T to denote a set of states that satisfy v, if i/ is the winning condition. T is the set
of target states in game %, where any play starting from any state in T satisfies the winning
condition 1.

Next, this article defines the reachability probability property over the game %. Before
the definition is given, the reachability and fairness properties of T are explained. Given
an LTL formula Fy, it means that i/ holds in some state of the computation. The
reachability property of T is that some states in B occur in the computation of the game. An
LTL formula GFyy means that ¥ holds for infinite time in the computation. Then, the
fairness property of T is that some states in set T occur infinite times in the computation.

Definition 2. Given an APG 9, f is a strategy, \ is a winning condition, and T C V isa
set of states that satisfies \j. For a state v € 'V, this article uses v = FT to denote a play
that starts from v, satisfies \, and reaches some states in T. Meanwhile, this article uses
Pr(v |= FT) to denote the probability of this type of play. If the play also follows f, the
probability of the play follow f is denoted as Prg(vl= FT).

A variant of modal p-calculus over APGs
Most modal/temporal logic can be viewed as a sub-logic of u-Calculus, where a powerful
extension is modal u-Calculus. This logic is succinct in syntax, and formula variables
are often used in such logic. The semantics of a p-calculus formula is defined by the
Kripke structure, which designates the set of states that satisfy the formula (Kesten,
Piterman ¢ Pnueli, 2005). This article defines the variant of modal p-calculus over the
APGs structure:

Given an APG structure 4 : (7", Ay, V, P,, P, L). For every state v € V, the formulas p
and —p are atomic formulas of 4. Let Var = {M, N, ...} be a set of formula variables. The
syntax of u-calculus formulas is defined by the following grammar:
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Y= pl=pX Iy VL Y A YL @Y |y uX i vXiy

A formula  is described as the set of %-states in which / is true. This article uses [[y/]]5,
to denote such a set of states, indicating that the set satisfies i/ under ¢. Here, ¢ : Var — 27
is an assignment that assigns formula variables to sets of atomic propositions in V. The set
[[¥]]4(e) is inductively defined as follows:

o [[plly(e) ={ve Vlpe L)}
o [[7pll4(e) = V\[[pll4(e)
o [X]Jg(e) = e(X)
o [y Vlly(e) = [[¥i]lg(e) U [[Yally(e)
o [V Aslly(e) = [[n]ly(e) N [[Wally(e).
m e V,|Va e Ay(m), foralln € Vi :
(O = | "5 s =0 m e [t ]

m € Vi|3a € Ay(m),foralln €V, :
N { Py(m,a)(n) >0 = u € [[¥]),(e) }

A state m is included in [[@Y]]4(¢). If m is the environment state, it can choose any action
to reach a state in [[y/]],(¢); if m is the system state, it can choose an appropriate action to
move into [[]]4(e).

_ [meV,|3aeAy(m), forallne V;:
(01400 ={ " e S0 2 n < a(6) )

m € Vi|Va € Ay(m),foralln €V, :
. { Pi(m,a)(n) >0 = u € [[Y]l4(¢) }

A state m is included in [[@Y/]]5. If m is an environment state, it chooses an appropriate
action to move into [[y/]],(¢); if m is a system state, it can choose any action to reach a state

in [[i/]]4(e)-

o [[1X¥]),(e) = UyS; where Sy = @ and S;11 = (o]l (c[X/S)).
o (XY}, = S, where Sy = V and 801 = []], (£X/S.).

In addition, based on the syntax of the modal u-calculus formula, the following
formulas can be further derived:

o FoT = uZ.(®ZUT) is a set with the characteristic that if state v € V is a system state,
then all successors of v are in Fg T; if state v is an environment state, then there exists an
action such that a successor of v in FgT. Especially, if v is in T, it must be in FgT,
whether v is an environment state or a system state.

e GgT = vB.(®@B N T)is a set. If state v € V is an environment state and it is in set T, then
all successors of v are in Gg T; if state v is a system state, there exists an action such that a
successor state of v in GgT.
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o AG EFT = vB.[u.Y(®Y U T) N ®B] is aset. If v € AG EFT, any path from v can reach T
infinitely times, where ® is the AX operator of CTL, @ is the EX operator of CTL.

Based on the above p-calculus formulas, the analysis of the state space of the game is
presented in “Synthesis algorithm based on reinforcement learning”.

SYNTHESIS PROBLEM THROUGH REWARD MECHANISM

In this section, the synthesis problem is defined based on reinforcement learning that
stochastically approximates the value function of a probabilistic game. This article mainly
focuses on the expected cumulative rewards for the system winning. The interaction of the
system is first modeled with its environment as a reward asynchronous probabilistic game
(RAPG), and it is defined as follows.

First, given an APG

g = </%aACta VaPeaP57L>

and a linear temporal logic specification .

This article uses rewards as additional quantitative measures of the APG to stimulate the
system to win the game. Although some researchers use cost mechanisms to describe
minimization (e.g., energy consumption), reward mechanisms are commonly used to
suggest a property that describes maximization (e.g., profit) (Nilim ¢ EI Ghaoui, 2005). In
our work, the reward mechanism involves attaching a reward value to the positions and
actions available in each state to motivate the player to win, and the reward accumulates
over transitions. Formally, the rewards mechanism of an APG is defined as follows:

Definition 3. The reward mechanism for an APG G = (V" A4, V, P,, P, L) is
described as a specifying asynchronous reward structure, which is a tuple R = (Ry, Ryc)
composed of two reward functions. One is state reward function Ry : V — R that maps the
state v of 9 to non-negative reals, and other is an action reward function R, : V X Ay — R
that maps state-action pairs (v, a) of 4 to non-negative reals, where v € V,a € Ag.

The action reward in a synchronous reward mechanism is also called a transition
reward, impulse reward, or state-action reward. By definition, reward functions are
Markovian, and they typically map states, or states and actions, to a scalar reward value.

Based on an APG and the asynchronous reward mechanism over it, thus article
transforms the interaction of the system with its environment as a reward asynchronous
probabilistic game (RAPG), which is a seven-tuple as follows:

g - <A/7ACU V7P67P57L7R>'

In Zhao et al. (2022), the probabilistic reachability property is defined over APGs. This
article discusses the expected reward properties that are defined over the above model
RAPG. The model RAPG is an extension of APG and has all the properties of APG. Define
the cumulative reward property over RAPG as:

Definition 4. Let % be a RAPG and V be the state space over RAPG. For the winning
condition \y and a set T C V, all plays starting from any states in T satisfy . For an infinite
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path m = vy, vy, - - - of the game 9, the cumulative reward for synchronous reward structure
R along an infinite path © = vy, vy, va,- - is

R(n) = i [Rt(va) + Rac(Vay @n)]-

n=0

For an finite path 7, define

i=n—1

R(TE, FT) = Z [Rst(Vi) + Rac(Viv ai)]v

i=0

ifvig¢ TforO<i<mandv, €T,
R(m,FT) =0

if TEFT.

Note that R(7, FT) denotes the cumulative reward earned along an infinite path 7 until
some states in T are reached for the first time. Cumulative rewards property is usually used
to handle the sum of rewards accumulated from a position (or state) to a specific position
(or state). Meanwhile, many other reward-based properties can be defined over RAPGs,
such as discounted reward and expected long-run average reward. The characteristic of
discount rewards is that the reward gain in each step is the reward multiplied by a discount
factor A (in general 4 < 1), so the strategy with fewer steps is generally preferred. Different
from the discount reward, the expected long-run average reward considers the average
reward earned in each state or transition.

Definition 5. Given a RAPG 9, V is the set of state spaces over the game ¥ f is a strategy,
Y is a winning condition; T C 'V is a specific set, and any play m starting from a state in T
satisfies ; R = (Ry, Ryc) is a synchronous reward structure. This article denotes the
expected cumulative reward of a play that starts from v € V and satisfies y until reaching
some states in T as

ER(v= FT).

If the play follows f, this article uses ER;(vj= FT) to represent its expected cumulative
reward.
In addition, if Pr(v = FT) = 0, then

ER¢(vEE FT) = 0;

otherwise, if Pr(vl= FT) # 0, then:
if v € V., this article uses ER™"(vl= FT) = inf ER;(v[= FT) to denote the minimal
expected cumulative reward; feF

if v € V;, this article uses ER™(vl= FT) = inf ERs(vi= FT) to denote the maximal
feF

expected cumulative reward. F is a set of strategies for the system and environment over
RAPG 4.
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Algorithm 1: Computing the set of states v with ER(v = FB) = 0
1: Input: A RAPG ¥ with finite space V and a state set T C V
2:B=V
3: while ®BN V\T # B do
4B=@®BNV\T
5: endwhile
6: output: Go—T : {v|]v € V AER(v | FT) = 0}

This article is interested in computing either the maximum or (and) the minimum
value of the cumulative expected reward of a play. This problem is formally defined as
follows:

Definition 6. For a RAPG 9, V is the set of state spaces over the game 9; f is a strategy;
is a winning condition; T C V is a specific set, and any play © starting from a state in T
satisfies r; R = (Ry, Ry) a synchronous reward structure. To stimulate the system to win, a
strategy f that maximizes (or minimizes) the expected cumulative reward ER(v |= FB) of the
system (or environment) and satisfies \ should be synthesized.

SYNTHESIS ALGORITHM BASED ON REINFORCEMENT
LEARNING

This section discusses the problem of finding the learning-based synthesis algorithm based
on the RAPG %. To compute the expected cumulative reward, this article first analyzes and
discusses how to divide the state space of the RAPG %. Then, a highly efficient incremental
probabilistic synthesis algorithm based on reinforcement learning is proposed.

Qualitative reachability
Consider a RAPG %, the winning condition V, and a set of states T C V, where all plays
starting from any states in T satisfies . This article first uses p-calculus formulas to obtain
a state set Gg—T, in which all plays starting from any states of the do not satisfy /.
Specifically, for v € Gg—T, (a) there is at least one successor of v not in T if v is an
environment state; (b) the successors of v are all not in T'if v is a system state. If v € Gg—T,
and then Pr(v = FT) = 0. Especially, the expected cumulative reward of all plays
starting from the state in set Gg—T is 0. That is, if v € Gg—T, then ER(v = FT) = 0. The set
Ge—T can be computed by using Algorithm 1. By analyzing the state space, computing
abstractions of the whole state space can be effectively avoided.

To compute the expected cumulative reward, this article does not need to consider the
sure-reachability play starting from the state v (v € V) because it also needs some rewards
to reach T, unless v € T.

Synthesis through reinforcement learning

The goal of synthesis is to incentivize the system to satisfy the LTL winning condition
through a reward mechanism. This goal can be achieved by computing the maximum
expected cumulative reward for each state. Meanwhile, some standard techniques in the
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reinforcement learning literature can be adopted to find the satisfying strategies. Below, the
calculation method is introduced in detail:

Theorem 1. Consider an RAPG 9, the state space V = Vg U Vg over 9, the winning
condition \J, and a set of states T that satisfies \, i.e., all plays that start with the state in T as
the initial state satisfies \y, and an asynchronous reward structure R = (Ry, R,.), where
T C V. Let x* denote the maximizing value of the expected cumulative reward under
strategy f in state v, where k > 0 is the expected cumulative reward parameter. For the
convenience and simplicity of expressing ER;(v |= FT), the definition x:

xk .= ER;(v |= FT)

is given. To compute the expected cumulative reward, there is no need to consider the state in
B, and define x° = 0 for all v € V. This simplifies the definition of the value x* for each state:
ifv e Vi, then

k __ / k—1y.
x, = Ry(v) + Zgﬁf(Rm(V’ a) + Z Ps(v,a)(V) - x571);

Vev,
ifv eV, then

X =Ry(v) + gglz;‘nt(Ruc(m a) + Z P.(v,a)(v) - x571).

VeV

Algorithm 2 below is a learning-based algorithm that computes the expected cumulative
reward for each state and extracts strategies. The algorithm has good scalability.

CASE STUDY

In this section, two case studies are presented to illustrate our synthesis method. One is the
problem of robot patrolling in a certain area, and the other is the problem of safety
reachability of unmanned cars.

Robot patrolling
As shown in Fig. 1, the robot performs the task of patrol in an area, and this area is divided
into four regions. The robot patrol route starts at region 1 and goes through region 2 and
then region 3 to region 4. In this scenario, if it encounters a person in region 2 and region 3,
the robot will stay in that region with the person. Meanwhile, if it encounters an unknown
hazardous item, the robot will pick it up and take it to region 4. Furthermore, it is assumed
that a hazardous item and people do not appear at the same time. If a hazardous item
appears first, then people will not appear in the process of delivering a hazardous item.
Even if a second hazard item appears, the robot sends the first hazard item to region 4
before processing the next task.

The game graph corresponding to Fig. 1 is illustrated in Fig. 2. Consider an RAPG
G =(V",A4,V,0,, 0 L, R), where V, = {vg, 2, v4, vs} is the set of environment states,
Vs = {v1, 3, vs5, 7} is the set of system states, Ay = {4, b, ¢, d, e} is the set of actions, and
R = (Ry, Ry.) is the synchronous reward structure. At the environment state, the
environment can choose to put items and appear people to affect robot patrol. If the item is
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Algorithm 2: Learning-based algorithm for RAPG ¥

—

O 0 NI U W N

10
11

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

e V:idl=0
:fork=1,2,---
(ifve Tu Geg—T

=0

14

: else

Wwe VAT
:if v € Vg then
%) = Ra(v) + max(Ree(v, @) + Ly, Po(v,a)(v) - x

: endif
: else

if v € V, then

end if

if k _ k-1

if max,ev|xy — x5 < 0
break

else

endif

endfor

: input: An RAPG ¥ with finite space V, a state set T C V, and Gg—T

k—1.
v

XK = Ry (v) + ;gm(Ruc(v, a)) + X pey, Pe(v,a)(v) - 257

output: the expected cumulative reward x* for all v € V, optimal strategies f.

-

N\

$

\\

/

Figure 1 Working area division of the robot.

Full-size K&l DOT: 10.7717/peerj-cs.1094/fig-1

the hazard item, the robot will bring it to region 4. These two actions are denoted as a and

b, respectively. At this time, the system can choose to pick up or stay, and these two actions

are denoted as ¢ and d, respectively. In this case, the robot identify the item as a hazard item

and picks it up, which is considered the same action.
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Figure 2 The environment and the system are depicted as circles and squares, respectively. The set
T = {v;}. AP = {stay, arr} is the set of atomic propositions.
Full-size K&l DOT: 10.7717/peerj-cs.1094/fig-2

The game proceeds as follows: Starting from the initial state vy, the robot patrols
normally and at region 1. When the environment chooses action g, the probability that a
hazard item appears is 0.8, and the probability that a hazard item appear does not appear is
0.2. When the environment chooses action b, the probability that a person appears is 0.7,
and the probability that no person appears is 0.3. When the robot (the system) selects
action ¢, the probability of picking up the hazard item is 0.5, and the probability of not
picking up the hazard item is 0.5. When the robot (the system) selects action d, the
probability of staying in the region is 0.8, and the probability of leaving the region is 0.2. If
the robot patrols normally, it is considered that the robot chooses action e, and the
probability of normal patrol is 1. Figure 2 shows the specific game of the environment and
the system, where v, is the stay state with the tag stay, v; is the state when the robot takes
the hazard item to region 4, and v; is the target arrival state with the tag arr. So, for the
winning condition i and set T = {v;}, all plays starting from a state in T satisfies i/, and
Ge—T = {v}. Consider the RAPG from Fig. 2, the asynchronous reward structure R
assigns R(vy) = R(v1) = R(v3) = R(v4) = R(vs) = R(vs) = 1, R(v2) = R(v7) =0,
R(vg,a) = R(vy,b) = R(vy,d) = R(v4,a) = R(vs,c) = R(vg,a) = 1, and R(v3,e) = 0.

According to Algorithm 2, the expected cumulative reward is computed to reach T.
Below, the value of x* is presented for each state:

k=0:x) =0,x) =0,x) =0,x) =0,x) =0,x) =0,x) =0,x) =0

k=1:x

k=2:x; =3.7,x) =24,x; =0,x, =3,x, =2.4,x; =4,x; =2.4,x; =0

_ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _
=2,x, =2,x, =0,x, =1x, =2,x, =2,x, =2,x, =0

k=8:x5 =4.80,x5 =2.50,x5 =0,x5 =3.50,x5 =2.50,x5 =4.93,x5 =2.98,x5 =0
k=9:x; =4.80,x, =2.50,x; =0,x; =3.50,x) =2.50,x; =4.94,x) =2.99,x;, =0
k=10:x, =4.80,x,” =2.50,x, = 0,x,” = 3.50, x,” = 2.50, x, = 4.94,x,” = 2.99,x," = 0
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Figure 3 A partitioned road environment, where an unmanned car runs autonomously without
colliding with any of the pedestrians and other cars.  Full-size Kl DOI: 10.7717/peerj-cs.1094/fig-3

According to this result, the expected cumulative reward for each state to reach T can be
obtained. For example, ER(vol= FT') = 4.80, i.e., in the state vy, the expected cumulative
reward of the robot (the system) to take the hazard item to region 4 is at least 4.80.
Meanwhile, the environment always selects action b, which adopts the strategy to force the
system with the minimum expected cumulative reward.

Safety of autonomous driving
Consider the reward asynchronous probabilistic game % depicted in Fig. 3, it can be
regarded as a simplified version of the unmanned car. The game models an unmanned car
driving on an urban road and gives a route to navigate. There are three intersections A, B,
C in a road. When navigating the route, the car must autonomously and quickly react to
dangers. Here, two dangers are considered: a pedestrian and a traffic jam. To avoid a traffic
jam, the car changes the lane or honks. To avoid a pedestrian, the car brakes or honks. It is
assumed that if the car goes through the first two intersections, it is safe to go through an
intersection C.

The game graph corresponding to Fig. 3 is shown in Fig. 4. Consider an RAPG
G = (V",Ay,V,Pe, P, L, R), where V, = {vg, 2, v4, Vs, Vs } is a set of the environment
states, Vs = {v1,v3,vs, v} is a set of the system states, Ay = {a,b,c,d,e, f} is an action
set, and R = (Ry, R,.) is a synchronous reward structure. At the environment state, the
environment can choose to appear a traffic jam and a pedestrian to prevent the car
from reaching the intersection C safely. These two actions are denoted as a and b,
respectively. Assume that the road is normal, and the environment has taken action e. At
this time, the system can choose to brake, honk or change lane, these three actions are
denoted as ¢, d, and f, respectively. Assume that the car is running normally, and the
system takes action g. The process of the game is as follows. Starting from the state vy, the
car is running normally and at intersections A. If the environment takes action a, the
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b/0.2/2
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Figure 4 The environment and the system are depicted as circles and squares, respectively. The sum
of the migration probabilities is equal to 1. AP = {succ, acc} is the set of atomic propositions.
Full-size K&l DOT: 10.7717/peerj-cs.1094/fig-4

probability of a traffic jam is 0.7, and the probability of not causing a traffic jam is 0.3. If the
environment chooses action b, the probability that a pedestrian appears is 0.8, and the
probability that no pedestrian appears is 0.2. If the car (the system) takes action ¢, the
probability of avoiding a traffic jam is 0.95, and the probability of not avoiding a traffic jam
is 0.05. If the car (the system) takes action f, the probability of avoiding a traffic jam is 0.8,
and the probability of not avoiding a traffic jam is 0.2. If the car (the system) takes action d,
the probability of avoiding pedestrians is 0.8, and the probability of not avoiding
pedestrians is 0.2. When the road is normal, the probability of normal driving of the car is
1. At this time, it is assumed that the system takes action gand reaches the state determined
by the environment with a probability of 0.5. Also, it is assumed that if the car safely reach
intersection A and B, it can safely reach intersection C. The following is the specific game
diagram of the environment and the system, where v,, vg is the accident state with the tag
acc, and v; is the state when the intersection C is reached safely. So, the set T = {v;}
satisfies the winning condition ¥ and Gg—T = {v,, vs} by Algorithm 1.

For the RAPG in Fig. 4, the asynchronous reward structure R assigns
R(vg) = R(v1) = R(v3) = R(va) = R(vs) = R(vs) = 1, R(v2) = R(v7) = R(vg) = 0,
R(vg,a) =1, R(vy, b) =2, R(v1,¢) = R(vy,f) = R(v3,g) = R(vs,a) = R(vs,d) =1,
R(vg, ) = 0. According to Algorithm 2, the expected cumulative reward to reach T can be
computed. Below, the partial values of x* for each state are presented:

k=0:x) =0,x) =0,x) =0,x) =0,x) =0,x) =0,x =0,x) =0,x3 =0
k=1:x, =2, x, =2, x, =0, x5, =2, x5 =2, x;, =2, x =2, x;, =0, x; =0

k=2:x, =4,x, =3.9,x; =0,x; =3.5,x, =2.4,x; =4,x; =2.4,x; =0,x, =0
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k=13:x)2=6.10,x,>=5.45,x,> =0,x)’ =4.32,x,> =3.64,x,” =2.8,x,> = 1,x,° =0,x,> =0
k=14:x)1=6.10,x,* =5.45,x, =0, x)! =4.32, x,* =3.64,x, =2.8, x,* = 1,x,*=0,x* =0
k=15:x,>=6.10,x,°=5.45,x,°=0,x,” =4.32,x,” =3.64,x,”=2.8,x,° =1,%,°=0,x)° =0

According to this result, the expected cumulative reward to reach the set T can be
obtained. For example, ER(vo|= FT) = 6.10, i.e., in the state vy, the expected cumulative
reward of the car (the system) to safely go through an intersection C is at least 6.10.
Meanwhile, in this state, a strategy that enables the car to reach the set T can be derived,
i.e., the environment takes action b.

In addition, during the experiment, it is found that the smaller the convergence
threshold 0, the larger the expected cumulative parameter k, and the more accurate the
experimental results x*.

SUMMARY AND FUTURE WORK

This article studies reactive system synthesis problems and proposes a probabilistic model
called reward asynchronous probabilistic games (RAPGs) for computing rewards in
dynamic environments. Our model is motivated by players to choose actions through a
reward mechanism, where the process generates rewards whose values depend on the state
rewards and action rewards. The RAPGs are proposed with the LTL winning condition,
which is a subclass of asynchronous probabilistic games. Meanwhile, the RAPGs can
integrally describe the probabilistic behavior of the system and the environment. Besides,
the synthesis algorithm is presented to compute the expected cumulative rewards. In
addition, symbolic synthesis algorithms are provided for RAPGs to compute the
maximum expected cumulative reward to satisfy the winning condition and synthesize the
corresponding strategies. Our algorithm is formulated as a value iteration based on
reinforcement learning.

Our proposed algorithm works as follows. First, the reachability properties are encoded
by p-calculus formulas. According to the reachability properties, a set of states is obtained
in which all plays starting from any state do not satisfy the winning condition. It is shown
that the expected cumulative reward of any play that starts from any state of the set is 0.
The method is clear, simple, and convenient. More importantly, it shrinks the state space
of the algorithm that computes the expected cumulative reward. Then, an asynchronous
reward mechanism is defined based on the winning condition of the RAPGs to incentive
system to win. Based on this algorithmic reward construction procedure, a reinforcement
learning algorithm is introduced to synthesize the optimal strategies that obtain the
maximum expected cumulative reward for the system to win.

One interesting topic for further study is synthesizing strategies for mean-payoft
rewards under the GR(1) winning condition. Another is to improve the scalability of the
synthesis techniques to handle large and complex models. Meanwhile, we will extend the
pattern of specifications and develop some tools to support automatic probabilistic
synthesis.
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