
Submitted 17 June 2022
Accepted 18 August 2022
Published 20 September 2022

Corresponding author
Yongping Dan, 6100@zut.edu.cn,
420076822@qq.com

Academic editor
Qichun Zhang

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.1093

Copyright
2022 Dan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

S-Swin Transformer: simplified Swin
Transformer model for offline handwritten
Chinese character recognition
Yongping Dan, Zongnan Zhu, Weishou Jin and Zhuo Li
School of Electronic Information, Zhongyuan University of Technology, Zhengzhou, Henan, China

ABSTRACT
The Transformer shows good prospects in computer vision. However, the Swin
Transformer model has the disadvantage of a large number of parameters and high
computational effort. To effectively solve these problems of themodel, a simplified Swin
Transformer (S-Swin Transformer) model was proposed in this article for handwritten
Chinese character recognition. The model simplifies the initial four hierarchical stages
into three hierarchical stages. In addition, the new model increases the size of the
window in the window attention; the number of patches in the window is larger; and
the perceptual field of the window is increased. As the network model deepens, the size
of patches becomes larger, and the perceived range of each patch increases. Meanwhile,
the purpose of shifting the window’s attention is to enhance the information interaction
between the window and the window. Experimental results show that the verification
accuracy improves slightly as the window becomes larger. The best validation accuracy
of the simplified Swin Transformer model on the dataset reached 95.70%. The number
of parameters is only 8.69 million, and FLOPs are 2.90G, which greatly reduces the
number of parameters and computation of the model and proves the correctness and
validity of the proposed model.

Subjects Artificial Intelligence, Computer Vision, Natural Language and Speech, Neural
Networks
Keywords Simplified Swin Transformer, Handwritten Chinese character recognition, Window
attention, Shifting the window’s attention

INTRODUCTION
Chinese characters have a long history as the most widely used script in China and
even globally. Currently, handwritten Chinese character recognition has been studied by
researchers for more than 50 years (Dai, Liu & Xiao, 2007). Chinese characters have the
characteristics of a large number of categories (refer to the GB2312-80 standard; there
are 6763 categories of commonly used Chinese characters), many similar glyphs, and a
diversity of writing styles, which makes the recognition of handwritten Chinese characters
one of the most challenging tasks in the field of pattern recognition.

Chinese character recognition includes both types of printed Chinese character
recognition and handwritten Chinese character recognition (HCCR). Handwritten Chinese
character recognition can be subdivided into offline HCCR and online HCCR according
to different data collection methods. Online handwritten Chinese character recognition
mainly refers to the recognition of Chinese characters written on the electronic screen.
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During the recognition process, the timing information of Chinese writing and the relative
position information of strokes are recorded. The offline handwritten Chinese character
recognition object is the offline handwritten Chinese character image collected by the
scanner or camera. These Chinese character images are affected by distortion, imaging
equipment limitations, and other reasons, and there are few effective features that can
be used. At the same time, the recognition of offline handwritten Chinese characters is
more difficult due to the complex structure of Chinese characters and the irregularities
in the writing process. The recognition of offline handwritten Chinese characters has
great limitations. Therefore, research in this field still has very important significance and
application value.

In online HCCR, the trajectory of the pen tip movement while writing on a dedicated
digitizer or personal digital assistant is recorded and analyzed in real-time. This trajectory
information is automatically converted into linguistic information to be expressed by
the recognition (Liu, Jaeger & Nakagawa, 2004). Today, online HCCR technology is very
mature and has been widely used in pen input devices, writing pads, computer-aided
education, smartphones, and other fields. In offline HCCR, the text in character images
is automatically converted into alphabetic codes and classified into different categories.
Offline HCCR has essential applications in accessible reading for people with disabilities,
automatic document entry, mail sorting (Liu, Koga & Fujisawa, 2004), signature checking,
banknote processing, and document recognition. Due to its high practicality, the study of
offline HCCR has received a lot of attention, and many methods have been proposed to
improve the recognition accuracy. However, offline HCCR has specific difficulties. The
recognition accuracy still needs to be improved, and the technology still needs to be more
perfect.

The traditional offline HCCR system mainly includes three steps: data preprocessing,
feature extraction, and classification recognition (Jin, Zhong & Yang, 2016). The
conventional recognition methods are mature enough and have reached their accuracy
limit, and an innovative approach is needed to break this limit. The emergence of deep
learning provides new ways to break this limit and provides researchers with new ideas.
Therefore, many meaningful theories and algorithms have been proposed by scholars to
solve this problem. Some existing networkmodels, such as Convolutional Neural Networks
(CNNs) (Cun et al., 1990), Deep Belief Networks (DBN) (Hinton & Salakhutdinov, 2006),
and Deep Recurrent Neural Networks (DRNN) (Gers & Schmidhuber, 2001), consider the
basic structural features of Chinese characters. And these approaches are practical in offline
HCCR tasks.

The Transformer (Vaswani et al., 2017), a novel neural network, was first applied
to natural language processing (NLP) tasks, such as machine translation and English
constituency analysis tasks, and achieved significant improvements in results. In the field
of computer vision, Transformer-based models mainly use the key module self-attention
mechanism to extract intrinsic features and show great potential in artificial intelligence
applications, such as high-resolution image synthesis (Dalmaz, Yurt & Ukur, 2021), object
detection (Carion et al., 2020), classification (Yuan et al., 2021), segmentation (Zheng
et al., 2021), image processing (Lin et al., 2021), and re-identification (Luo et al., 2020).
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Furthermore, in vision applications, CNNs have previously been considered the
fundamental component, but now the transformer shows that it will be a potential
replacement for CNNs. At present, lightweight convolutional neural networks are more
common (Dong et al., 2022). There are a few lightweight models based on Transformer,
and most of them are complex models with a large number of parameters. In the near
future, everyone expects Transformer to have the same status as CNN in the computer
field. Lightweight neural models are bound to become a research trend and drive their
deployment on mobile devices, such as Raspberry Pi, FPGA, and human–computer
interaction robots (Yang, Chew & Liu, 2021).

The rest of this article is structured as follows. The Related Works section briefly reviews
the work related to the Transformer model and HCCR. The Methods section introduces
the internal structure and working principles of the method in detail. The Experimental
and Results sections clearly describe the experimental procedure and experimental results.
The Conclusions section concludes the article and represents the direction of future work.

The main contributions of our work are as follows:
• This article proposes a simplified Swin Transformer (S-Swin Transformer) model for

handwritten Chinese character recognition. This model simplifies the relatively complex
model structure by removing some encoder layers. Experiments show that this method
can effectively reduce the number of parameters and calculation of the model, and the
recognition accuracy is also satisfactory.
• The S-Swin Transformer model increases the size of the window in the window

attention, changing the window size from the original 7×7 to 14×14. With the deepening
of the network model, the patch keeps getting bigger. The perceptual range of each patch
increases and contains more information. In addition, the experimental results show that
the validation accuracy is slightly improved when the window is increased to 14×14.

RELATED WORKS
Offline HCCR
Offline HCCR has been considered a complex and challenging task for academics owing
to its wide range of character categories, diverse writing styles, and complex text structure.
However, with the rapid development of technology and the economy, deep learning
models (Lecun, Bengio & Hinton, 2015) have slowly entered the public perspective. Through
the continuous efforts of researchers in research and innovation, deep learning models are
widely used in the field of computer vision with great success and far-reaching impact.

At present, handwritten Chinese character recognition methods are starting to make the
transition from using convolutional neural networks (CNNs) instead of traditional Chinese
character recognition methods (Lecun & Bottou, 1998). Deep learning-based approaches
are becoming increasingly popular in handwritten Chinese character recognition. In the
literature (Liu et al., 2013), the authors mention that the best-performing methods in
handwritten Chinese character recognition are currently based on deep neural network
models. Among them, the multi-column deep learning network (MCDNN) is considered
to be the first convolutional neural network (CNN) model to be successfully applied in
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HCCR (Cirean & Schmidhuber, 2013). Themulti-column deep learning network consists of
multiple CNNs, and the final recognition accuracy is comparable to human performance.
In the offline HCCR competition held by ICDAR in 2013, Fujitsu’s team achieved 94.77%
recognition accuracy using a CNN-basedmodel and won first place in the competition (Yin
et al., 2013). A CNN-based framework for handwritten character recognition was proposed
by Li et al. (2015), who used an appropriate sample generation, training scheme, and CNN
network structurewith a recognition error rate of only 3.21%on theCASIA dataset. In 2016,
Zhang et al. combined the traditional normalized collaborative directional decomposition
feature map (direct map) with a deep convolutional neural network (convert), which
achieved higher recognition accuracy for both online and offline HCCR (Zhang, Bengio
& Liu, 2016). A network that is well balanced in terms of speed, scale, and performance
was proposed by Li et al. (2018). Their cascaded single CNN model classifies character
images on the CPU in 6.93 ms, with a recognition accuracy of 97.11% and only 3 M of
storage space required. An offline handwritten Chinese character recognition method
based on a deep convolutional generative adversarial network (DCGAN) and improved
GoogleNet was proposed by Li, Song & Zhang (2018), which is capable of repairing and
recognizing obscured characters. The proposed method was evaluated on the extended
CASIA-HWDB1.1. The experimental results show that the method can obtain a higher
repair rate and recognition accuracy thanmostmethods. Awriting style adversarial network
(WSAN) structure was proposed by Liu et al. (2019). This network contains three parts:
a feature extractor, a character classifier, and a writer classifier. The authors use a feature
extractor to learn a deep representation of the original image, and then jointly optimize
the network by minimizing the loss of the character classifier and maximizing the loss of
the writer classifier. The experimental results on CASIA-HWDB1.1 prove that the writing
style adversarial network (WSAN) promotes the HCCR results.

Transformer
Inspired by the significant success of Transformer architectures in the NLP domain (Devlin
et al., 2018), researchers have recently applied transformers to computer vision(CV) tasks.
With the development in recent years, various Transformer variants have been proposed
by researchers, which are also known as X-Transformer models. These methods have made
good progress in their applications to multiple tasks.

The first convolution-independent Vision Transformer (ViT) model was proposed
by Dosovitskiy et al. (2020). This method directly uses the sequence of embedded image
blocks as the input to a standard converter, and experiments demonstrate that this model
can perform the image classification task excellently. The teacher-student strategy for
Transformer was introduced by Touvron et al. (2020). It relies on a distillation token to
ensure that the student learns from the teacher through attention. This approach achieved
85.2 % accuracy on the ImageNet-1K dataset. To generate stronger image features, the
two-branch transformer was proposed by Chen, Fan & Panda (2021). The model processes
large and small patch tokens of two independent branches with different computational
complexity, and then fuses these tokens purely through multi-attention. Ultimately,
this method has a substantial 2% accuracy advantage over the recent DeiT (Touvron et al.,
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2020) on the ImageNet1K dataset. A new structure for the convolutional vision transformer
(CVT) was proposed by Wu et al. (2021). The authors demonstrated that this structure
combines the advantages of converters with those of CNNs in image recognition tasks,
and the authors validated CVT by conducting extensive experiments. The results showed
that the method achieved better performance with fewer parameters and fewer FLOPs on
the ImageNet-1k dataset. A simple and effective re-attention(re-attention) method was
introduced by Zhou et al. (2021). The authors made minor modifications to the existing
ViT model and improved the Top-1 classification accuracy by 1.6% on the ImageNet
dataset when training a deep ViT model using 32 transformer blocks.

METHODS
A simplified Swin Transformer (S-Swin Transformer) model for handwritten Chinese
character recognition is proposed in this article. The model simplifies and compresses the
Swin Transformer generic framework (Liu et al., 2021). The complete S-Swin Transformer
model architecture is shown in Fig. 1 (except for Stage 4). First, compared with the Swin
Transformer structure, the S-Swin Transformer model proposed in this article has only
three ‘‘Stages’’ and one fewer ’’Stage 4’’. This model can effectively reduce the number of
parameters of the model. Then, we also set the attention window of the proposed model
to 14×14. The purpose is to enable more information exchange between patches in the
window. Finally, it is proved experimentally that the proposed new model can not only
effectively reduce the number of parameters of the model but also reduce the FLOPs, and
the experimental accuracy achieves the expected results.

S-Swin Transformer model
As shown in Fig. 1. First, input any 3-channel (RGB) image x ∈ H ×W ×C , where H,
W, and C represent the height, width, and number of channels of the image, respectively.
The images were sliced into non-overlapping image blocks by the patch partition module.
Each non-overlapping image block was regarded as a token. Then these tokens are fed into
‘‘Stage 1’’. ‘‘Stage 1’’ contains a linear embedding layer and an S-Swin Transformer block
layer. The standard size 224×224 image is sliced into H/4×W /4 small image blocks of
4×4 pixels. Each image block has a feature dimension of 48. The image blocks are mapped
to C dimensions after a linear embedding layer. Also, unlike in the standard Transformer,
the model uses an attention module based on the shift window, and no other structural
layers have changed. The S-Swin Transformer block structure is shown in Fig. 2. The
S-Swin Transformer block structure of each stage is composed of two successive connected
Transformer encoders. The difference is that the first one contains a coremodule windowed
multi-head self-attention (W-MSA) and a multilayer perceptron (MLP). The second one
is composed of the core module shifting window multi-head self-attention (SW-MSA)
and MLP. Finally, residual connections are used after each module. Moreover, LayerNorm
(LN) layers are applied before each W-MSA, SW-MSA, and MLP module.

‘‘Stage 2’’ consists of a patch merging layer and an S-Swin Transformer Block layer.
With the deepening of the network model, the patch merging layer merges four adjacent
4×4 image blocks, then the patch pixels are adjusted to 8×8 in ‘‘Stage2’’, and each 8×8
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Figure 1 Complete S-Swin Transformer model architecture (except for the Stage 4 part).
Full-size DOI: 10.7717/peerjcs.1093/fig-1

patch is considered as a token. The image has a total of H/8×W /8 tokens, and the output
dimension is mapped to 2C. The patch merging layer and the S-Swin Transformer Block
layer form ‘‘Stage 3’’. Like the composition structure of ‘‘Stage 2’’, the patch merging layer
merges four adjacent 8×8 image blocks, and then the patch pixels are resized to 16×16
in ‘‘Stage 3’’. Each H/16×W /16 patch is regarded as a token; the picture has a total of
H/16×W /16 tokens, and the output dimension is mapped to 4C. In addition, the Swin
Transformer Block layer has been doubled compared to ‘‘Stage 2’’. Finally, the patch size
change in the model is shown in Fig. 3.

Window of attention
The multi-head attention module in the standard Transformer architecture processes
images with global self-attention, where the correlation between a token and all other
tokens is calculated, which directly causes the model to be computationally intensive. The
S-Swin Transformer model proposes window attention and shifting window attention,
which are used consecutively together, as shown in Fig. 2. The role of the attention
window is to calculate the self-attention for the patches contained in the window species
in the set window size. If the window is set to N ×N , it means that there are N ×N
patches in the window. N is set at 14 in the S-Swin Transformer model. Compared to
computing the attention relationship among all patches, window attention greatly reduces
the computational effort. However, the window attention module lacks the information
interaction betweenwindows, whichwill lead to the poormodeling ability of themodel. The
purpose of shifting window attention is to address the lack of interrelationships between
a window and patches within other windows. It allows more patches to be connected
through self-attention calculations, enhancing the modeling capability of the model. The
continuous S-Swin Transformer block layer is calculated as follows.

ẑi=W−MSA(LN(zi−1))+zi−1 (1)
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zi=MLP(LN(ẑi))+ ẑi (2)

ẑi+1= SW−MSA(LN(zi))+zi (3)

zi+1=MLP(LN(ẑi+1))+ ẑi+1 (4)

Multi-head self-attention mechanism
The multi-head attention structure is the most central component of the S-Swin
Transformer model, which consists of four layers: a linear layer, a self-attention layer,
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Figure 3 The patch size change in the model.
Full-size DOI: 10.7717/peerjcs.1093/fig-3

a multiple-attention-head splicing layer, and a linear layer. The detailed structure is shown
in Fig. 4. In window attention, attention weights are obtained by calculating the dot product
of query (Q), key (K), and value (V). Firstly, the input sequence vector is multiplied with
three learnable vector matrices (Wq, Wk, Wv) to obtain Q, K, and V. Q is multiplied by the
transpose dot product of all K and then divided by the square root of the K dimensions and
fed to the Softmax function. Finally, the output value of the Softmax function is multiplied
by V to obtain the attention weights. The calculation procedure is shown in Eq. (5). In
addition, the softmax function is also known as the normalized exponential function. The
output value of the function ranges from [0, 1] and adds up to 1. The specific procedure is
shown in Eq. (6).

Attention(Q,K ,V )= Softmax(
QKT
√
d

)V (5)

Softmax(zl)=
ezl∑C
c=1ezc

(6)

The number of heads h is different for each stage in the model. In stages 1, 2, and 3, h is
set to 3, 6, and 12, respectively. The attention value of each head is calculated, and finally,
they are spliced together. The detailed representation is shown in Eqs. (7) and (8).

headj=Attention(QW q
j ,KW k

j ,VW v
j ) (7)

MultiHead(Q,K ,V )=Concat(head1,···,headh)WO (8)

EXPERIMENTAL AND RESULTS
Dataset
The famous offline handwritten Chinese character public dataset CASIA-HWDB1.1 (Liu
et al., 2011) contains 3755 categories. Each of these characters is written by 300 authors,
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Table 1 Dataset characteristics.

Dataset Classification Total images Training ratio

T-HWDB1.1 300 104105 80%

and each image is represented as an 8-bit grayscale image. The total number of images
in the HWDB1.1 dataset is huge, nearly 900,000. However, according to the previous
experience of researchers, the size of the data has both advantages and disadvantages. Using
more training data can lead to higher recognition accuracy. On the contrary, too much
training data can affect the training efficiency of the model. The more training data is
used, the higher recognition accuracy can be obtained. Conversely, the training efficiency
of the model is also reduced due to a large amount of training data. Most importantly,
due to the limitations of the laboratory equipment, 300 categories were randomly selected
from CASIA-HWDB1.1 to compose the final dataset used for the experiment. This dataset
is named T-HWDB1.1. The dataset has a total of 104,105 images. T-HWDB1.1 is also
randomly divided into an 80% training set and a 20% validation set.The specific dataset
characteristics are shown in Table 1. Additionally, Fig. 5 represents sample examples of
individual categories in the dataset. And Fig. 6 represents the diversity of writing, where
each column represents that the same character is written by different people.

Dan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1093 9/17

https://peerj.com
https://doi.org/10.7717/peerjcs.1093/fig-4
http://dx.doi.org/10.7717/peerj-cs.1093


Figure 5 Sample examples of individual categories in the dataset.
Full-size DOI: 10.7717/peerjcs.1093/fig-5

Figure 6 Each column represents the same character written by different people.
Full-size DOI: 10.7717/peerjcs.1093/fig-6
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Table 2 Parameter settings.

Description Value

Input 224×224
Learning rate 0.0001
Batch size 8
Dropout 0.1
Epochs 150

Table 3 AlexNet and VGG16 parameter settings.

Models Parameters
Learning rate Batch size Dropout Epochs

AlexNet (Krizhevsky, Sutskever & Hinton, 2012) 0.001 8 0.1 200
VGG16 (Simonyan & Zisserman, 2014) 0.001 8 0.1 200

Experimental settings
First, for a fair and efficient comparison experiment, the hyperparameters of all models in
the experiment are set to constant values. The detailed experimental setup parameters are
shown in Table 2. During the training and validation process, all input images are resized
to 224×224. The batch size is set to 8, and the number of training iterations is 150. The
learning rate is set to 0.0001, and the window size is set to 7 or 14. Dropout regularization is
also used during training, and the dropout parameter is set to 0.1. The purpose of Dropout
is to effectively avoid overfitting problems during training and to increase the generalization
ability of the model. Then, this article uses PyTorch to implement the network algorithm
flow. All of the experiments are conducted on a computer with a 3.00 GHz Intel (R) Core
(TM) i7-9700 processor, 2×8 GB of RAM, and a GeForce RTX 2060 graphics card with
6GB of video memory.

The model S-Swin Transformer proposed in the article and the AlexNet (Krizhevsky,
Sutskever & Hinton, 2012) and VGG16 (Simonyan & Zisserman, 2014) networks were
compared experimentally on the same dataset T-HWDB1.1. The detailed parameter settings
of the AlexNet and VGG16 networks are shown in Table 3. AlexNet is an 8-layer deep
network with five convolutional layers and three fully connected layers. The advantage
of the convolutional layer is that it extracts effective features with a small number of
parameters. Alexnet uses max pooling to avoid the blurring effect of average pooling.
The VGG16 network consists of 13 convolutional layers and three fully connected layers.
All convolutional layers use 3 ∗ 3 convolution kernels. The role of convolutional layers
and pooling layers is to extract image features. The final fully connected layer is mainly
responsible for completing the recognition and classification.

Experimental results
Detailed experimental results are shown in Table 4, presenting the model shifting attention
window size, verification accuracy, number of parameters, and FLOPs, respectively. From
the experimental results, both AlexNet andVGG16 achieve the highest recognition accuracy
of 95.10% on T-HWDB1.1. When compared to the best verification accuracy of the S-Swin
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Table 4 Experimental results (Validation Accuracy, Number of Parameters, FLOPs).

Model Window_size Accuracy (%) Parameter (M) FLOPs (G)

AlexNet (Krizhevsky, Sutskever & Hinton, 2012) 95.10 15.19 0.30
VGG16 (Simonyan & Zisserman, 2014) 95.10 135.48 15.40
Swin transformer 7×7 95.10 27.70 4.30
S-Swin transformer 7×7 95.40 8.69 2.90
Swin transformer 14×14 95.40 27.70 4.30
S-Swin transformer 14×14 95.70 8.69 2.90

Transformer (window of 14×14), the accuracy is 0.60% lower. The parameters of AlexNet
and VGG16 are 6.50 million and 126.79 million more than those of the model proposed
in this article, respectively. In addition, their FLOPs are 0.30G and 15.40G, respectively.
Furthermore, when the Swin Transformer model is used and the shift attention window
size is set to 7× 7, the final result of the experiment achieves a validation accuracy of
95.10%. At this time, the parameters are 27.70 million. The FLOPs are 4.30G. Using the
simplified S-Swin Transformer model proposed in this article, experiments are conducted
on the dataset with 150 iterations when setting the shift attention window size to 7×7.
The final experimental validation accuracy reaches 95.40%, the number of parameters
is significantly reduced to only 8.69 million, and the FLOPs are only 2.90G. Compared
with the Swin Transformer model with an attention window size of 7×7, the verification
accuracy increases by 0.30%, the parameter sizes decrease by 19 million, and the FLOPs
decrease by 1.40G. In addition, the training results achieve 95.40% validation accuracy
when the attention window size of the Swin Transformer model is set to 14×14. When
compared to a window size of 7×7 validation accuracy increases by 0.30% while parameter
size and FLOPs remain constant.

With 8.69 million and 2.90G of parametric quantities and FLOPs, respectively, the final
validation accuracy reaches 95.70% when the S-Swin Transformer model window size is
changed to 14times14. Compared with the S-Swin Transformer model with the attention
window set to 7× 7, the number of parameters and the size of FLOPs were the same,
while the verification accuracy increases by 0.30%. Meanwhile, compared with the Swin
Transformer model with the attention window set to 14×14, the number of parameters is
reduced by 19 million, and the FLOPs are reduced by 1.40G.

Finally, the results of the entire verification process are recorded and implemented
by the visualization tool tensorboard. The curves of validation accuracy and iteration
number of the proposed S-Swin Transformer model with a 14×14 window on the dataset
T-HWDB1.1 are shown in Fig. 7. The vertical and horizontal axes represent the validation
accuracy and the number of experimental iterations, respectively. When the experiment is
iterated 300 times, the verification accuracy reaches 95.70%. In addition, the change curve
of the loss function with the number of iterations during the verification process is shown
in Fig. 8. When the number of iterations is set to 300, the loss function value is minimized.
The most important thing is that after a certain number of experimental iterations, the
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Figure 7 The validation accuracy and iteration number curves.
Full-size DOI: 10.7717/peerjcs.1093/fig-7

Figure 8 The change curve of the loss function with the number of iterations in the verification process.
Full-size DOI: 10.7717/peerjcs.1093/fig-8

verification accuracy will not increase with the increase in the number of iterations but will
remain near optimal.

CONCLUSIONS
A simplified Swin Transformer (S-Swin Transformer) model for handwritten Chinese
character recognition is proposed in this article. In addition, this article also explores
the effect of window size on validation accuracy by varying the size of the moving
attention window of the proposed S-Swin Transformer model. Several sets of comparison
experiments were conducted on the dataset T-HWDB1.1. According to the experimental
results, the simplified Swin Transformer model (with a window size of 14×14) performed
best on the dataset, with an accuracy of 95.70%. The method not only ensures the
recognition classification accuracy but also dramatically reduces the number of parameters
and FLOPs, with only 8.69 million parameters and 2.90G FLOPs, solving the problem that
the model requires a large amount of computation. Moreover, the experimental results
after changing the window size of the S-Swin Transformer model showed that the window
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size led to a weak change in the validation accuracy. When the shifting attention window
is set to 14×14, the validation accuracy is 0.30% higher than when the attention window
is set to 7×7. In conclusion, the experimental results verified the correctness and validity
of the proposed method.

In future research, knowledge distillation will be introduced in the model to make the
model parameters and computation less complex, allowing the model to be more easily
ported to embedded devices. With the continuous development of society, transformer-
based models will have broader application prospects, such as defect recognition (Zhao et
al., 2021; Hu et al., 2021) and weakly supervised target detection (Sun et al., 2018).
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