
Submitted 10 June 2022
Accepted 18 August 2022
Published 26 September 2022

Corresponding author
Kazım Kılıç, kazim.kilic@yobu.edu.tr

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1092

Copyright
2022 Atacak et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Android malware detection using
hybrid ANFIS architecture with low
computational cost convolutional layers
İsmail Atacak, Kazım Kılıç and İbrahim Alper Doğru
IoTLab, Department of Computer Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

ABSTRACT
Background. Android is themost widely used operating system all over the world. Due
to its open nature, the Android operating system has become the target of malicious
coders. Ensuring privacy and security is of great importance to Android users.
Methods. In this study, a hybrid architecture is proposed for the detection of Android
malware from the permission information of applications. The proposed architecture
combines the feature extraction power of the convolutional neural network (CNN)
architecture and the decision making capability of fuzzy logic. Our method extracts
features from permission information with a small number of filters and convolutional
layers, and also makes the feature size suitable for ANFIS input. In addition, it allows
the permission information to affect the classification without being neglected. In the
study, malware was obtained from two different sources and two different data sets
were created. In the first dataset, Drebin was used for malware applications, and in
the second dataset, CICMalDroid 2020 dataset was used for malware applications. For
benign applications, the Google Play Store environment was used.
Results. With the proposedmethod, 92% accuracy in the first data set and 92% F-score
value in the weighted average was achieved. In the second data set, an accuracy of 94.6%
and an F-score of 94.6% on the weighted average were achieved. The results obtained in
the study show that the proposed method outperforms both classical machine learning
algorithms and fuzzy logic-based studies.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Mobile and Ubiquitous
Computing, Security and Privacy
Keywords Malware detection, Mobile security, Convolutional neural network, Fuzzy logic,
Permission

INTRODUCTION
Today, mobile devices have become indispensable in our daily life. We used to benefit from
devices, which were used to communicate with each other, however, now they are used in
all our transactions thanks to the high capacity and speed features provided by technology
(Bhat & Dutta, 2021). Applications developed for mobile devices not only make our work
easier, but also allow us to save time. According to the 2022 report of We are Social Digital,
67% of the world’s population uses mobile devices and the number of users is increasing
day by day. Among this rate, 97% of users use smartphones. According to researchers,
seven out of 10 mobile users use the Android operating system (We are Social, 2022).

How to cite this article Atacak İ, Kılıç K, Doğru İA. 2022. Android malware detection using hybrid ANFIS architecture with low compu-
tational cost convolutional layers. PeerJ Comput. Sci. 8:e1092 http://doi.org/10.7717/peerj-cs.1092

https://peerj.com/computer-science
mailto:kazim.kilic@yobu.edu.tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1092
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1092

Android is a Linux-based and open source operating system developed by Google (Doğru
& Kiraz, 2018). The free and functional structure of the Android operating system plays
an active role in the preferences of users (Kumar et al., 2020; Guerra-Manzanares, Bahsi &
Nõmm, 2021). The Android operating system has become the target of malware developers
due to its market share and open source code. Mobile malware developers aim to generate
revenue through unethical or even illegal means. For this purpose, they can steal sensitive
information such as identity information, location, and contact list. Additionally, they
may install adware that sends SMS and forces users to view the web page for which a link
is sent (Bala et al., 2021). Applications to the Android operating system can be installed
from the Google Play Store or third-party environments (Kim et al., 2018). In particular,
applications installed from third-party media pose a threat to users’ privacy and security.
This creates a security problem for Android operating system users. Therefore, there is a
need for fast and reliable computer-aided detection systems that enable applications to be
analyzed as good or bad before they are loaded.

Static analysis and dynamic analysis methods are used to identify malware (Feng et
al., 2018). Static analysis is an analysis method that is performed without installing the
application on the device. Dynamic analysis, on the other hand, is a type of analysis that
examines the behavior of the application after it is installed (Liu et al., 2020).

When the application is downloaded to the Android system, the user is asked to accept
the permission requests necessary for the application to work. Mobile users often ignore
and accept these permission requests without knowing the risks involved. This leaves users
vulnerable to malicious attackers. The application’s permission requests are contained in
the manifest.xml file. Applications that require excessive permissions tend to be malicious
(Arif et al., 2021). In the literature, many studies have been done for permission-based
malware detection. Especially machine learning-based systems have produced successful
results in detecting permission-based malware (Mat et al., 2021; Şahın, Akleylek & Kiliç,
2022; Arslan, Doğru & Barişçi, 2019; Şahin et al., 2021).

In studies using machine learning techniques, the features of benign and malicious
applications are needed in order to be able to detect or classify. Correct extraction of these
features directly affects classification success. Detection of malware using deep learning
methods, which is a sub-branch of machine learning, is among the popular research topics.
Deep learning-based detection systems can detect malware with high accuracy (Arslan,
2021; Xiao et al., 2019). Convolutional neural networks (CNNs), which have been widely
used in image analysis in recent years, have also achieved tremendous results on images
of malware (Lachtar, Ibdah & Bacha, 2020; Kong et al., 2022; Yadav et al., 2022). However,
despite the success of deep learning architectures, these architectures are disadvantageous
due to the need for more resources, high memory consumption and the number of
parameters. While the number of classical machine learning and deep learning-based
studies for android malware detection has been quite high in the studies carried out so
far, fuzzy logic-based studies are limited (Arif et al., 2021; Altaher, 2017; Afifi et al., 2016;
Altaher & Barukab, 2017; Abdulla & Altaher, 2015). Contrary to deep learning, fuzzy logic
approaches need few inputs and have the ability to make successful decisions with few
inputs. For this reason, permission-based features are generally used in the studies and

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

the number of inputs is reduced by the feature selection process. This has caused the
researchers to ignore many permissions that the application requests.

The purpose of this study is to detect malicious android applications quickly and with
high accuracy using permission information. In this direction, a hybrid detection system
that combines the feature extraction and dimension reduction power of the convolution
layers in the CNN architecture and the decisionmaking capability of fuzzy logic is proposed.
The proposed system reduces the number of inputs for classification by applying feature
extraction with only two convolution layers, two pooling layers and five connected layer
neurons to all permission information obtained through static analysis. In the last stage, it
uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to classify applications
based on features.

The contributions of the study can be summarized as follows:
• Contrary to other fuzzy logic-based studies (Altaher, 2017; Altaher & Barukab, 2017;

Abdulla & Altaher, 2015), permission features are not neglected and all permissions are
used.
• The feature extraction power of the convolution layers in the CNN architecture is

combined with the decision-making capability of the ANFIS architecture.
• The proposed model achieves better results than similar studies based on fuzzy logic.
• The proposed model has high accuracy and few parameters.
• No similar model has been found in the studies carried out so far.
• In the study, the classification results and the estimated values for each membership

function of the proposed model are given separately.
• The results obtained in the study were compared with similar studies. At the same

time, the dataset used in the study was classified with classical machine learning techniques
and the results were given comparatively.

The remainder of the article is structured as follows. In ‘‘Literature review’’, static and
dynamic analysis methods are explained and a summary of past studies based on machine
learning is presented. In ‘‘Material &Method’’, the details of the proposedmethod, data set,
preprocessing, feature extraction process, classification model and evaluation metrics are
explained. In ‘‘Results and Discussion’’, hyperparameters used in the study, classification
results and comparisons with different algorithm results are given. At the same time, the
study is evaluated and comparisons with similar studies in the literature are presented in
tables. In ‘‘Conclusion’’, the results of the study and recommendations for future studies
are given.

LITERATURE REVIEW
Mobile malware detection has become one of the popular research topics in recent years.
In particular, satisfactory results have been obtained in this area with machine learning
and deep learning-based studies (Yuan, Lu & Xue, 2016; Feng et al., 2018; Arshad et al.,
2018; Tang et al., 2022; Sasidharan & Thomas, 2021; Zhang et al., 2021).There are two types
of approaches, static analysis and dynamic analysis, to detect malware (Feng et al., 2018).
In both methods, features belonging to the application are obtained, which enable us to

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

determine whether the applications are malicious or benign. In this section, the types of
analysis used for mobile malware detection, as well as the techniques that include machine
learning and its sub-branches, and malware detection studies are examined.

Static analysis
Static analysis is an approach based on analyzing the apk file of android applications before
installing them on the device. The advantages of the static analysis method are that it is fast
and prevents malicious applications from infecting smart devices. On the other hand, this
method is limited in dealing with code scrambling techniques and polymorphic malware
(Alzaylaee, Yerima & Sezer, 2020). In this analysis method, there are various features such
as permissions, Java codes, intentions, network addresses, and texts in the apk file (Feizollah
et al., 2015). Researchers are trying to detect android malware by using one of these features
(Yang et al., 2021; Cai et al., 2021) or a combination of them (Li et al., 2019;Wang, Zhao &
Wang, 2019).

AppPerm Analyzer (Doğru & Önder, 2020) was presented by Doğru and Önder. This
tool creates binary and triple permission groups from apps. It then calculates the risk score
and the total risk score based on the use of these permissions and permission groups in
malicious and good practices.

BERT (Devlin & Chank, 2022) is open source natural language processing software
developed and supported by Google researchers. BERT is an acronym for ‘‘Bidirectional
Encoder Representations from Transformers’’. This model can learn the words in the text
and the relationships of the sub-words and process the text as a whole. The BERT model
can extract text properties of applications and can be used for malware classification (Kale
et al., 2022).

Dynamic analysis
Dynamic analysis is an analysis approach in which features are obtained by examining the
behavior of applicationswhen they are run in virtual environments or real devices (Liu et al.,
2020). In this approach, researchers generally use system calls (Guerra-Manzanares, Nõmm
& Bahsi, 2019; Hou et al., 2016) and network traffic (Lashkari et al., 2017; Arora, Garg &
Peddoju, 2014) features. CPU and RAM usage information, running processes, battery
statistics, API function calls and other runtime features are also used in the dynamic
analysis approach. Dynamic analysis approach is advantageous against polyformic software
with encryption techniques. However, the necessity of running the application in a virtual
environment or a real device is difficult and takes time (Feizollah et al., 2015).

Machine learning based studies
Using machine learning techniques, good results have been obtained in malware detection,
as in many areas. Some studies in this area are discussed below:

Arslan et al. obtained permission-based features of 6,500 malicious and 900 good
applications and classified them with different machine learning algorithms. In the study
giving the comparative performance of machine learning algorithms, they achieved 91.95%
accuracy with the KNN algorithm (Arslan, Doğru & Barişçi, 2019).

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

Mat et al. proposed a method for malware detection that classifies permission-based
features with Naive Bayes. They extracted permission-based features of 10,000 applications
they obtained from AndroZoo and Drebin. The feature selection process was performed
by applying the information gain and chi-square methods to the features they obtained. At
the end of the study, they achieved 91.1% accuracy with the Naive Bayes method (Mat et
al., 2021).

Şahin et al. proposed a linear regression model-based method for detecting malicious
applications from permission information. They tested the method they presented on four
different datasets and also improved the classification performance by using the ensemble
learning method. They obtained 95.6% accuracy with AMD (Wei et al., 2017) data set,
91.87% with Lopez’s (Urcuqui-López & Cadavid, 2016) data set, 82.94% with M0Droid
(Damshenas et al., 2015) data set, and 96.69% with Arslan’s (Arslan, 2021) data set with the
proposed method in the study (Şahın, Akleylek & Kiliç, 2022).

Deep learning algorithms, a sub-branch of machine learning, have achieved very good
performance results in malware detection. In Arslan’s study called AndroAnalyzer for
malware detection, permission-based features were obtained from the original dataset
consisting of 7,662 applications and classified with deep neural networks (DNN) (Arslan,
2021). Using this method, 98.16% accuracy was achieved. Xiao et al. trained two different
Long-Short Term Memory (LSTM) networks on system call indexes and performed a
similarity-based classification process. They obtained 93.7% accuracy with this method
(Xiao et al., 2019).

CNN is themost popular deep learning algorithm. The first part of the CNN architecture
consists of the feature extractor convolution and pooling layers, and the second part consists
of the deep neural network. CNNs have achieved tremendous results in image analysis
in recent years (Adegun & Viriri, 2020). Many studies have been carried out on android
malware detection by taking advantage of the power of CNNs.

Yadav et al. trained and tested 5,986 images with the EfficientNet-B4 CNN architecture,
containing the image representations of the dex extension files of android applications. As
a result of the test, 95.7% accuracy was obtained (Yadav et al., 2022). Yen and Sun analyzed
the APK file of 1,440 good and bad applications and converted these features into images
using the word weighting method TF-IDF. They classified the images they obtained using
CNN and reached 92% accuracy (Yen & Sun, 2019). Table S1 summarizes the machine
learning-based studies for Android malware detection.

Fuzzy logic based studies
For fuzzy logic-based malware detection, researchers generally use the ANFIS model. For
the training of the ANFIS model, methods based on reducing permission-based features
are presented.

Arif et al. proposed a mobile malware detection system based on risk assessment using
fuzzy analytical hierarchy process (AHP). They extracted permission-based features from
10,000 malicious applications they obtained from the Drebin and AndroZoo datasets. Out
of 274 extracted features, 20 features were selected using the Information Gain method. In

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092#supp-3
http://dx.doi.org/10.7717/peerj-cs.1092

the last stage, they divided them into four different risk levels with Fuzzy AHP and reached
an accuracy of 90.54% (Arif et al., 2021).

Altaher proposed an evolving hybrid neurofuzzy classifier (EHNFC) for cloakedmalware
detection. This classifier can change its structure by learning fuzzy rules according to new
malware it sees. In order to train and test the proposedmodel in the study, 250 samples from
the GNOME project dataset and 50 permission-based features were extracted from 250
samples downloaded from the Google Play Store. The feature selection process was carried
out by applying the information gain method to the extracted features. The proposed
approach produced 90% accuracy as a result of the study (Altaher, 2017).

Afifi et al. presented a hybrid approach combining ANFIS model and Particle Swarm
Optimization (PSO) for the detection of mobile malware in their study using the dynamic
analysis method. Network traffic movements were captured by running 1000 malicious
and 20 good applications for 30 min. They obtained 0.4113 RMSE and 0.7721 R2 values
with the proposed method in the study carried out on the network traffic movements in
which the feature selection process was performed (Afifi et al., 2016).

Altaher & Barukab (2017) proposed an adaptive neuro-fuzzy inference system (FCM-
ANFIS) model with fuzzy c-means clustering for Android malware classification. The
researchers, who focused on permission-based features in their study and obtained 24
features with the information gain method, reached 91% accuracy.

Abdulla & Altaher (2015) used permission-based features of 200 applications for mobile
malware detection. They selected 24 features by applying the information gain method to
the datasets with 50 permission-based features. To train these 24 features with the ANFIS
model, they divided them into three groups and converted them into one byte format.
They used KNN-based fuzzy clustering method together with ANFIS in their model. In
the final stage, they trained the proposed model with a data set with three features and one
output. As a result of the test, they obtained 75% accuracy. Table S2 presents a summary
of fuzzy logic-based studies for Android malware detection.

MATERIAL & METHOD
In this section, the data set used in the study, the pre-processes performed, the details of
the proposed model and the metrics used to evaluate the model are explained.

Dataset
Two different datasets were used for the study. The malicious application examples
in the first dataset were taken from the open-source Drebin (Arp et al., 2014) dataset.
The Drebin dataset contains a total of 5,560 malware from 179 malware families. The
malicious application examples in the second dataset were taken from the open source
CICMalDroid 2020 (Mahdavifar et al., 2020) dataset. The CICMalDroid dataset contains
17,341 applications in five different categories. Examples of benign applications were
downloaded from the APKPure web page, which also includes popular applications on the
Google Play Store.

All downloaded applications were tested with the VirusTotal (VT Team, 2020)
application, as benign samples do not go through the detailed security process while

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092#supp-4
http://dx.doi.org/10.7717/peerj-cs.1092

Table 1 Number of samples and sources used in the study.

Class Number of
samples

Source

Malware 250 DrebinFirst
dataset Benign 250 Google Play Store

Malware 250 CICMalDroidSecond
dataset Benign 250 Google Play Store

uploading to the Google Play Store. As a result of the VirusTotal scan, 158 applications
that were considered malicious by at least one antivirus program for all applications
were removed from the dataset. There were problems in accessing the source code or
manifest.xml file of some applications, both malicious and benign. These applications were
determined and removed from the data set before the feature extraction phase. From the
remaining applications in both classes, 250 malicious and 250 benign applications were
taken to be used in the study.

The number of samples and the source of the applications used in the study are given in
Table 1.

Proposed method
In this study, a hybridmethod that combines the convolution layers in theCNNarchitecture
and the ANFIS model is proposed to detect Android malware. In the proposed method,
the apk files of the applications are first resolved by reverse engineering. After this process,
the manifest.xml file in the apk file is accessed. Permission information of applications is
obtained from this file and these information vectors are labeled according to the class
of the application. The process of extracting feature is performed using convolution and
pooling on the permission information of the applications. The extracted features are
sent to the fully connected layer consisting of five neurons. At the last stage, five features
obtained from neurons for each application are given as input to the ANFIS model and the
prediction is performed. The structure of the proposed model is shown in Fig. 1.

APK decompile
APK, short for Android Package Kit, is a file format used to distribute and install Android
applications. An APK file can be considered a package that contains all the necessary items
to install on your device. In APK files, there are files and folders containing many data such
as source codes of the application, libraries, permission information. The application’s
cookies and permissions are in the manifest.xml file, and the compiled java classes are in
the classes.dex file. Resources.arsc holds compiled resources used by the application, such
as strings. META-INF contains the signature file and a list of sources in the archive. The
lib file contains native books that run on a particular architecture of the device. For feature
extraction from the application, the APK file, which is the archive, must be decomposed
by reverse engineering. In this way, access to the relevant folders can be achieved. The jadx
module was used for this process. Jadx compiles .class and .jar files, but can also generate
Java source code from Android Dex and Apk.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

Figure 1 Architecture of the proposed method.
Full-size DOI: 10.7717/peerjcs.1092/fig-1

Feature extraction and selection
Themanifest.xml file in the apk file, which is resolved for feature extraction, is accessed. This
xml file contains the permission information requested by the application. For permission
information, a list consisting of 325 permission information is used in the first stage. First
of all, these permissions are accessed in the application and if there are other permissions
requested by the relevant application, the permission list is updated accordingly. The same
process is applied for the next application and continues in this way for all samples. A csv
file consisting of the permission information of the applications is created by giving a value
of 1 if an application requests the relevant permission and 0 if it does not.

Convolutional layer
After obtaining the permission information of all applications, feature extraction is
performed using convolution layers. The convolution operation is performed using filters

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 8/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-1
http://dx.doi.org/10.7717/peerj-cs.1092

Table 2 The feature extractor layers of the proposed model.

Layer Number of
Kernels

Size of Kernel/
number of neuron

Stride Hyperparameters Activation

Conv2d_1 3 7× 1 1 RandomUniform
Min:0–Max:1

ReLU

Maxpooling2d_1 2× 1 1
Conv2d_2 1 5× 1 1 RandomUniform

Min:0–Max:1
ReLU

Maxpooling2d_2 2× 1 2
Flatten – – – –
Dense 5 – RandomUniform

Min:0–Max:1
ReLU

called kernels. The values in the cells of the kernel represent the weight matrix. The kernels
are hovered over the input information according to the determined step amount. At each
step, each weight in the kernel is multiplied by the corresponding input values. The output
value is obtained by summing the new product values obtained up to the kernel size and
it is written to the output matrix. The convolution process is shown in Fig. S1 (Peltarion,
2022a). For the proposed model, two convolution and two pooling layers are used in the
feature extraction stage. While the filter size of the first convolution layer is 7× 1, the filter
size used in the second convolution layer is 5× 1. The number of steps is entered as one in
both layers. The weight values on the kernel were randomly determined in the range of 0-1
using the RandonUniform function in the Keras library. The Rectified Linear Unit (ReLU)
was used for the activation of the information coming out of the convolution layers.

Pooling layer
The pooling layer allows reducing the size of the output of the convolution layer. This layer
is used to reduce the amount of parameters and computation in the network. It provides a
smaller size representation of a sample in the network without losing its distinctive features.

In this layer, as in the convolution layer, navigation is made with the number of steps
determined on the input information matrix by using a kernel. However, the kernel used
in this layer does not have numerical values and is empty. The kernel records the input
values it is on in the matrix and obtains subsets from these input values. In the last step,
the one with the highest value from each subset is selected and printed in the relevant area
of the output matrix. Maximum pooling and average pooling methods are commonly used
in the pooling layer. Maximum pooling was used in this study. The maximum pooling
operations are shown in Fig. S2 (Peltarion, 2022b). The kernel size was determined as 2 ×
1 and the number of steps was determined as 2.

The information obtained in the last step of the convolution and pooling layers is
converted to one-dimensional vector. One-dimensional vectors are used as inputs to the
classification network; flatten layer is used for this process.

The layers and parameter values used in the feature extraction process from the
permission information of the proposed model are given in Table 2.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092#supp-6
http://dx.doi.org/10.7717/peerj-cs.1092#supp-7
http://dx.doi.org/10.7717/peerj-cs.1092

Figure 2 ANFIS architecture.
Full-size DOI: 10.7717/peerjcs.1092/fig-2

ANFIS
In the study, an adaptive network-based fuzzy inference system (ANFIS) model was used
to classify the features obtained.

ANFIS is a model based on the Takagi-Sugeno fuzzy inference system that combines
fuzzy logic and artificial neural networks developed in 1993 (Jang, 1993). This model, which
combines the learning ability of artificial neural networks with the decision-making power
of fuzzy logic, uses hybrid learning for the optimization of the network. Hybrid learning is
a learning approach that consists of back propagation and least squares methods.

Takagi-Sugeno uses the if-then inference rule. The if part of the rule is called the premise,
and the then part is called the conclusion. The Takagi-Sugeno rule is defined as follows:

IF x1 is A1 & x2 is A2& xn is An THEN y = f (x1,x2,....xn). (1)

x1,x2 and xn given in the formula: indicate the input variables. A1,A2 and An are fuzzy
sets obtained by applying a membership function, which defines how each entry point
is mapped to a membership value between 0 and 1. The choice of membership function
depends on the problem. If y is a constant, Takagi-Sugeno is said to be a zero-order Sugeno
type, and if y is a first-order polynomial, it is said to be a first-order fuzzy type:

y = k0+k1x1+k2x2++knxn. (2)

As shown in Fig. 2, ANFIS architecture consists of 5 layers. Each layer contains a certain
number of neurons and performs certain tasks.

Layer 1: It is the fuzzification layer and calculates the fuzzy membership degrees of the
inputs.

o1i =µAi(x). (3)

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 10/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-2
http://dx.doi.org/10.7717/peerj-cs.1092

Layer 2: It is the rule layer. Each neuron in this layer represents a Takagi-Sugeno fuzzy
rule. The nodes multiply the information from the previous layer and produce the output
value. The output of each node gives the firing strength for each rule.

o2i =wi=µAi(x)xµBi(x), i= 1,2. (4)

Layer3: It is the normalization layer. The neurons in this layer obtain the normalized firing
strength by dividing the firing strength of each rule by the sum of all rules.

o3i =w ı=
wi

w1+w2
, i= 1,2. (5)

Layer 4: It is the defuzzification layer. All defuzzification nodes in this layer calculate the
output value obtained from the inference of the rules.

o4i =w ıfi=w ı(pix+qiy+ ri), i= 1,2. (6)

Layer 5: It is the output layer. It obtains the output value by summing all the signals from
the previous layer.

o5i =
∑

i
w ıfi=

∑
iwifi∑
iwi

, i= 1,2. (7)

Evaluation metrics
The confusion matrix is widely used to determine the performance of the models in the
classification task. In binary classification tasks, the confusion matrix consisting of a 2 ×
2 matrix shows the actual values of the images and the values predicted by the classifier.
TP indicates correctly predicted positive results, FP indicates incorrectly predicted positive
results, TN indicates correctly predicted negative results, and FN indicates incorrectly
predicted negative results. In this study, Accuracy, AUC score, Precision, Recall, and
F-score metrics were calculated using the parameters obtained from the confusion matrix
and presented in the Results section. In addition, Mean Absolute Error(MAE), Mean
Square Error(MSE), Root Mean Square Error (RMSE) and R2 metrics were calculated and
compared with existing studies to measure the distance between the value predicted by the
classification model and the true value. The explanations and formulas of the calculated
metrics are given in Table S3.

ROC Curve and AUC Score: The ROC curve is a graph showing the performance of the
classification model. There is a false positive rate (FPR) on the horizontal axis of the graph
and a true positive rate (TPR) on the vertical axis (Adegun & Viriri, 2020). The area under
the ROC curve shows the area under curve (AUC) score. The AUC score shows how well
the classification model can distinguish between positive and negative samples. As the area
increases, the discrimination ability increases.

RESULTS AND DISCUSSION
In this study, two different datasets were used to detect Android malware through a hybrid
model based on CNN network and ANFIS. The applications in the first dataset were taken
from Drebin, and the applications in the second dataset were taken from the CICMalDroid

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092#supp-5
http://dx.doi.org/10.7717/peerj-cs.1092

Figure 3 The results of the proposed model for different membership functions.
Full-size DOI: 10.7717/peerjcs.1092/fig-3

2020 dataset. Good apps were obtained from Google Play Store. Permission information
was obtained from the manifest.xml file of the applications, and features were extracted
using two convolution and two pooling layers in this information. ReLU is used for
activation in convolution layers. With the obtained features, the ANFIS model was trained
and predictions were made on the test set. In the study 85% of the data sets was reserved
for training and 15% for testing. ReLU is used for activation in convolution layers. The
predictions obtained from the ANFIS model for the classification problem are set to class
0 if y < 0.5, and class 1 if y >= 0.5.

First dataset results
Under this title, the results obtained on the first data set are presented. The estimation
values obtained in the study are shown in Fig. 3 for each membership function used. Using
the proposed method, 0.7265 R2, 0.2614 RMSE, 0.0683 MSE and 0.1576 MAE values
were reached in the ANFIS model. The most successful prediction values were obtained
with the TRIMF membership function. The most unsuccessful results belong to the PIMF
membership function. The GBELL function showed close estimation values to the TRIMF
function. The estimation values of TRAPMF, PSIGMF andDSIGMFmembership functions
are very close to each other.
The classification results obtained with the method proposed in the study and the results
obtained with the classical machine learning algorithms are given in Table 3. The ANFIS
model was trained and tested with the top five features selected from the permission
features. TRIMF was used for the membership function.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 12/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-3
http://dx.doi.org/10.7717/peerj-cs.1092

Table 3 Classification results. Bold text shows the best results.

Model Accuracy Precision Recall F -Score AUC

LDA 0.89 0.8933 0.8933 0.8933 0.8928
SVM 0.86 0.8776 0.8667 0.8665 0.8714
Gaussian Naive Bayes 0.59 0.6903 0.5867 0.4955 0.5589
ExtraTreesClassifier 0.89 0.8933 0.8933 0.8933 0,8928
Decision Tree 0.89 0.8941 0.8933 0.8931 0.8910
KNN 0.85 0.8677 0.8533 0.8530 0.8589
Xgboost 0.92 0.9200 0.9200 0.9200 0.9196
ANFIS 0,90 0,9098 0,9067 0,9068 0.9071
Proposed Method 0.92 0.9215 0.9200 0.9201 0.9196

Table 4 Classification report of the proposed method.

Precision Recall F -Score

0 0.8919 0.9429 0.9167
1 0.9474 0.9000 0.9231
Macro avg. 0.9196 0.9214 0.9199

Proposed
Method

Weighted avg. 0.9215 0.9200 0.9201

In experiments with classical machine learning algorithms, 89% accuracy was achieved
with LDA and Decision Tree. The F-score of the LDA algorithm was 89.28%, and the F-
score of the Decision Tree algorithm was 88.10%. While 85% accuracy was obtained with
the KNN algorithm, the F-score value was 85.3%. With the SVM algorithm, 86% accuracy
and 86.65% F-score were obtained. The precision value of the SVM algorithm draws
attention with 87.7%. The ExtraTreesClassifier, Decision Tree, and XGboost classifiers
achieved better results than others. ExtraTreesClassifier reached 89% accuracy, Decision
Tree 89% accuracy, and Xgboost algorithm 92% accuracy. Among the classical machine
learning algorithms, the Gaussian naive Bayes algorithm gave the most unsuccessful
result with 59% accuracy. The ANFIS model, which was tested with the five best-valued
permissions features selected, achieved 90% accuracy and 90.68% F-score. The proposed
model achieved 92% accuracy, 92.15% precision, 92% recall, and 92.01% F-score. The
classification report of the proposed method is given in Table 4.

Using the proposed model on the first data set, 89.1% precision, 94.2% recall and 91.6%
F-score were obtained in the benign class. In the malware class, 94.7% precision, 90%
recall and 92.31% F-score were obtained. The data set used in the study is balanced in
terms of benign and malware samples. 91.99% F-score was found on the macro average,
and 92% F-score on the weighted average. The results show that the proposed model can
discriminate between benign and malware samples at the same rate.

The ROC curve showing the true positive rate and false positive rate of the proposed
method is shown in Fig. 4. The AUC score of the model with strong discrimination ability
was found to be 92%.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

Figure 4 ROC Curve of proposed method.
Full-size DOI: 10.7717/peerjcs.1092/fig-4

Second dataset results
Under this title, the results obtained on the second dataset are presented. The estimation
values obtained in the study are shown in Fig. 5. for each membership function used. Using
the proposed method, 0.6325 R2, 0.3030 RMSE, 0.0918 MSE and 0.1991 MAE values were
reached in the ANFIS model. The most successful estimation values on the second dataset
were obtained with the TRIMFmembership function. Themost unsuccessful results belong
to the PIMFmembership function, as in the first dataset. The GBELL function showed close
estimation values to the TRIMF function. The estimation values of TRAPMF membership
function are lower than PSIGMF and DSIGMF membership functions. PSIGMF and
DSIGMF estimated the same values in this dataset.
The classification results obtained with the method proposed in the study and the results

obtained with the classical machine learning algorithms are given in Table 5. The ANFIS
model was trained and tested with the top five features selected from the permission
features. TRIMF was used for the membership function.

The performance of classical machine learning algorithms in the second dataset is
low compared to the first dataset. LDA algorithm gave the lowest classification value
with 77.3% accuracy. The F-score value of this algorithm is 77.3%. The accuracy of the
SVM algorithm has increased compared to the first dataset. While the accuracy value and
F-score value of the SVM algorithm was 89.3%, the AUC score was 90%. Gaussian naive
Bayes algorithm obtained the lowest results on the first dataset. In the second dataset,
the accuracy value is 84% and the F-score value is 83.8%. While the XGboost algorithm
showed the best performance among the machine learning algorithms in the first dataset, it
showed a lower performance in the second dataset. The accuracy and F-score values of the
Xgboost algorithm are the same as the Gaussian naive Bayes algorithm. The performance

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 14/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-4
http://dx.doi.org/10.7717/peerj-cs.1092

Figure 5 The results of the proposed model for different membership functions.
Full-size DOI: 10.7717/peerjcs.1092/fig-5

Table 5 Classification results. Bold text shows the best results.

Model Accuracy Precision Recall F -Score AUC

LDA 0.7733 0.7739 0.7733 0.7735 0. 7732
SVM 0.8933 0.9132 0.8933 0.8929 0.9
Gaussian Naive Bayes 0.84 0.8681 0.8400 0.8386 0.8482
ExtraTreesClassifier 0.8533 0.8538 0.8533 0.8534 0,8535
Decision Tree 0.8267 0.8279 0.8267 0.8259 0. 8232
KNN 0.8667 0.8857 0.8667 0.8661 0.8732
Xgboost 0.8400 0. 8404 0. 8400 0.8396 0.8375
ANFIS 0,9333 0,9409 0,9333 0,9326 0.9431
Proposed Method 0.9467 0.9478 0.9467 0.9466 0.9487

of ExtraTreesClassifier and Decision Tree algorithms decreased in the second dataset.
While the accuracy and F-score values of the ExtraTreesClassifier algorithm are 85.3%, the
accuracy and F-score values of the Decision Tree algorithm are 82.6%. The performance
of the KNN algorithm increased in the second dataset, and the accuracy value increased to
86%. The performance of the classical ANFIS model and the proposed model increased on
the second dataset. The ANFIS model achieved an accuracy of 93% and an AUC score of
94.3%. The proposed model achieved 94.6% accuracy and 94.8% AUC score on the second
dataset. The precision value of the proposed model is 94.7%, the recall value is 94.6% and
the F-score value is 94.6%. The classification report of the proposed method is given in
Table 6.

Using the proposed model on the second dataset, 92.6% precision, 97.4% recall and
95% F-score were obtained in the benign class. In the malware class, 97% precision, 91%

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 15/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-5
http://dx.doi.org/10.7717/peerj-cs.1092

Table 6 Classification report of the proposed method.

Precision Recall F -Score

0 0.9268 0.9744 0.9500
1 0.9706 0.9167 0.9429
Macro avg. 0.9487 0.9455 0.9464

Proposed
Method

Weighted avg. 0.9478 0.9467 0.9466

Figure 6 ROC Curve of proposed method.
Full-size DOI: 10.7717/peerjcs.1092/fig-6

recall and 94.2% F-score were obtained. Macro average was 94.6% F-score, while weighted
average 94.6% F-score was found. The results show that the proposed model in the second
dataset, as in the first dataset, can distinguish benign and malware samples at the same rate.

The ROC curve showing the true positive rate and false positive rate of the proposed
method is shown in Fig. 6. The AUC score of the model with strong discrimination ability
was found to be 94.87%.

The number of fuzzy logic-based studies for Android malware detection is not enough.
ANFIS model is used in most of the studies using fuzzy logic. Since the ANFIS model is
rule-based, too many features cause a high number of rules. This causes excessive memory
consumption. For this reason, researchers use permission information in ANFIS-based
studies and perform the process of choosing the features with the best value. Choosing an
attribute from permission information causes hundreds of permission information to be
ignored and not taken into consideration. In the model proposed in this study, feature
extraction was carried out using convolution and pooling layers from all of the permission
information. In this way, the permission information of the applications is not ignored.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 16/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1092/fig-6
http://dx.doi.org/10.7717/peerj-cs.1092

Table 7 Fuzzy logic based studies.

Author Feature
extraction

Feature
selection

Classification
model

Classification
result

Juliza Muhamad Arif Permission İnformation Gain Fuzzy AHP %90.54 Acc
Altaher Permission İnformation Gain EHNFC %90 Acc
Afifi et al. Network traffic ClassifierSubsetEval ANFIS+ PSO RMSE 0.4113
Altaher & Barukap Permission İnformation Gain FCM-ANFIS %91 Acc
Abdulla & Altaher Permission İnformation Gain k-ANFIS %75 Acc
Proposed Method
(First dataset)

Using Convolution layers
from permission information

– ANFIS %92 Acc

Proposed Method
(Second dataset)

Using Convolution layers
from permission information

– ANFIS %94.66 Acc

Table 7 shows androidmalware detection studies using fuzzy logic. Detailed information
about these studies is given in Section 2.

Looking at Table 7, the EHNFC model using the ANFIS model achieved 90% accuracy,
the k-ANFIS model 75%, and the FCM-ANFIS model 91% accuracy. Afifi et al. used
ANFIS and PSO algorithm together to reach 0.4113 RMSE in their study in which they
performed dynamic analysis. Arif used Fuzzy AHP for malware detection and achieved
90.54% accuracy. It is seen that these studies, which are carried out using fuzzy logic, have
achieved good results in malware detection. The results we obtained with the model we
proposed in our study were better than those of other studies. When the values obtained
as a result of our study are compared with fuzzy logic-based studies, it has been seen that
better results are obtained.

In recent years, good results have been obtained with classical machine learning and
deep learning-based studies in Android malware detection. In particular, studies using
deep learning provide over 95% accuracy. However, these studies include a high number
of parameters and have limitations in terms of memory usage.

Table 8 shows android malware detection studies using deep learning and classical
machine learning techniques. Detailed information on these studies is given in Section 2.

Looking at Table 8, it is seen that deep learning-based studies have achieved good results.
Our proposed model, using only two convolution and pooling layers and four cores in
total, reached the same value as the work of Yen & Sun (2019), with a low number of
parameters. The values we obtained in the second data set are more successful than the
work of Yen & Sun (2019). With the CNN (Efficient B4)-based study by Yadav et al. (2022)
close values were obtained. The architecture used by Yadav et al. (2022) contains 5,330,571
parameters. In our study, there are 687 parameters in the convolution layers and 243 rules
in the ANFIS architecture. The proposed model achieved 92% accuracy in the first dataset
and 94.6% accuracy in the second dataset. These results are better than the KNN-based
study by Arslan, Doğru & Barişçi (2019). At the same time, it obtained better results than
the Bayesian classifier-based study of Mat et al. (2021). Arslan (2021) achieved 98.16%
accuracy in his DNN-based study. However, the number of parameters in the model with
4 hidden layers and 300 neurons in each layer is seen as 376,502.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

Table 8 Machine learning based studies.

Author Classification
model

Classification
result

Arslan (2021) DNN %98.16
Yadav et al. (2022) CNN(Efficient-B4) %95.7
Yen & Sun (2019) CNN %92
Şahin et al. (2021) Lineer Regression %95,6
Xiao et al. (2019) LSTM %93.7
Mat et al. (2021) Naive Bayes %91,1
Arslan, Doğru & Barişçi (2019) KNN %91,95
Proposed Method
(First dataset)

ANFIS %92

Proposed Method
(Second dataset)

ANFIS %94,66

The model proposed in the study has achieved more successful results than fuzzy logic
and classical machine learning-based studies, and close results with deep learning-based
studies. The advantage of the method we offer is that the permission information of
the applications is evaluated without ignoring it. At the same time, our model has low
parameter count.

CONCLUSION
The Android operating system is open source and free, and its high usage rate compared to
other operating systems has made it the target of malicious attackers. Since virus programs
are insufficient to ensure the security and privacy of mobile device users using Android,
rapid and highly accurate artificial intelligence-based detection systems are needed.

In this study, a hybrid classification method based on CNN’s feature extractor layers
and ANFIS is presented for the detection of android malware applications. In the proposed
method, apk files are resolved by reverse engineering to reach the manifest.xml file. In this
file, the permission information of the applications is obtained and written to the csv file.
Convolution and pooling layers in the CNN architecture are used for feature extraction.
In the last stage, using the obtained features, predictions are made with the ANFIS model.

The malicious applications used in the study were taken from Drebin for the first
dataset and from the CICMalDroid dataset for the second dataset. Good applications were
collected from the Google Play Store environment. In order to verify the proposed system,
250 bad and 250 good applications in both datasets and 500 applications in total were used.
The classification accuracy and regression results obtained as a result of the experiments
were measured with different metrics. With the proposed model, 92% accuracy and 92%
F-Score value were achieved on the first dataset. On the second dataset, 94.6% accuracy
and 94.6% F-score were achieved. At the same time, the dataset used in the study was
tested with different classical machine learning algorithms and the results were given in a
comparison table. It has been seen that the proposed model shows better results in decision
making than classical machine learning techniques. Deep learning architectures give good

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092

results in malware detection but have limitations due to high parameter count andmemory
consumption. In the study, comparison tables are given with similar studies based on deep
learning. The results obtained showed that similar values were obtained with deep learning
methods.

In the present study, malware studies made with the ANFIS model in the literature were
examined and compared with the proposed method. In similar ANFIS-based studies, the
permission information of the applications was generally used. With the feature selection
methods, the columns with the best score of the permission information were selected. In
the proposed method, feature extraction is performed with convolution and pooling layers
by using all of the permission information of the applications. When the classification
results of the proposed model are compared with similar studies, it has been seen that the
accuracy and F-score value are higher than the others.

In future studies, more efficient results can be obtained by combining the information
obtained by static analysis of malicious applications with the information obtained as a
result of dynamic analysis.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• İsmail Atacak conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Kazım Kılıç conceived and designed the experiments, performed the computation work,

authored or reviewed drafts of the article, and approved the final draft.
• İbrahim Alper Doğru conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1092#supplemental-information.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1092#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1092#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1092#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1092

REFERENCES
Abdulla S, Altaher A. 2015. Intelligent approach for android malware detec-

tion. KSII Transactions on Internet and Information Systems 9(8):2964–2983
DOI 10.3837/tiis.2015.08.012.

Adegun AA, Viriri S. 2020. FCN-based DenseNet framework for automated de-
tection and classification of skin lesions in dermoscopy images. IEEE Access
8:150377–150396 DOI 10.1109/ACCESS.2020.3016651.

Afifi F, Anuar NB, Shamshirband S, Choo KKR. 2016. DyHAP: dynamic hybrid
ANFIS-PSO approach for predicting mobile malware. PLOS ONE 11(9):e0162627
DOI 10.1371/journal.pone.0162627.

Altaher A. 2017. An improved Android malware detection scheme based on an evolving
hybrid neuro-fuzzy classifier (EHNFC) and permission-based features. Neural
Computing and Applications 28(12):4147–4157 DOI 10.1007/s00521-016-2708-7.

Altaher A, Barukab O. 2017. Android malware classification based on ANFIS with fuzzy
c-means clustering using significant application permissions. Turkish Journal of
Electrical Engineering & Computer Sciences 25(3):2232–2242
DOI 10.3906/elk-1602-107.

Alzaylaee MK, Yerima SY, Sezer S. 2020. DL-Droid: deep learning based an-
droid malware detection using real devices. Computers & Security 89:101663
DOI 10.1016/j.cose.2019.101663.

Arif JM, Ab RazakMF, Mat SRT, Awang S, Ismail NSN, Firdaus A. 2021. Android
mobile malware detection using fuzzy AHP. Journal of Information Security and
Applications 61:102929 DOI 10.1016/j.jisa.2021.102929.

Arora A, Garg S, Peddoju SK. 2014.Malware detection using network traffic analysis
in android based mobile devices. In: 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies. Piscataway: IEEE, 66–71.

Arp D, SpreitzenbarthM, Hubner M, Gascon H, Rieck K, Siemens CERT. 2014. Drebin:
effective and explainable detection of android malware in your pocket. In: Ndss.
23–26.

Arshad S, ShahMA,Wahid A, Mehmood A, Song H, Yu H. 2018. SAMADroid: a novel
3-level hybrid malware detection model for android operating system. IEEE Access
6:4321–4339 DOI 10.1109/ACCESS.2018.2792941.

Arslan RS. 2021. AndroAnalyzer: android malicious software detection based on deep
learning. PeerJ Computer Science 7:e533 DOI 10.7717/peerj-cs.533.

Arslan RS, Doğru İA, Barişçi N. 2019. Permission-based malware detection system
for android using machine learning techniques. International Journal of Software
Engineering and Knowledge Engineering 29(01):43–61
DOI 10.1142/S0218194019500037.

Bala N, Ahmar A, LiW, Tovar F, Battu A, Bambarkar P. 2021. DroidEnemy: battling
adversarial example attacks for Android malware detection. Digital Communications
and Networks DOI 10.1016/j.dcan.2021.11.001.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 20/23

https://peerj.com
http://dx.doi.org/10.3837/tiis.2015.08.012
http://dx.doi.org/10.1109/ACCESS.2020.3016651
http://dx.doi.org/10.1371/journal.pone.0162627
http://dx.doi.org/10.1007/s00521-016-2708-7
http://dx.doi.org/10.3906/elk-1602-107
http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1016/j.jisa.2021.102929
http://dx.doi.org/10.1109/ACCESS.2018.2792941
http://dx.doi.org/10.7717/peerj-cs.533
http://dx.doi.org/10.1142/S0218194019500037
http://dx.doi.org/10.1016/j.dcan.2021.11.001
http://dx.doi.org/10.7717/peerj-cs.1092

Bhat P, Dutta K. 2021. A multi-tiered feature selection model for android malware de-
tection based on Feature discrimination and Information Gain. Journal of King Saud
University-Computer and Information Sciences DOI 10.1016/j.jksuci.2021.11.004.

Cai M, Jiang Y, Gao C, Li H, YuanW. 2021. Learning features from enhanced func-
tion call graphs for Android malware detection. Neurocomputing 423:301–307
DOI 10.1016/j.neucom.2020.10.054.

Damshenas M, Dehghantanha A, Choo KKR, Mahmud R. 2015.M0droid: an android
behavioral-based malware detection model. Journal of Information Privacy and
Security 11(3):141–157 DOI 10.1080/15536548.2015.1073510.

Devlin J, ChankM. Open Sourcing BERT. Available at https://ai.googleblog.com/2018/11/
open-sourcing-bert-state-of-art-pre.html (accessed on 26 July 2022).

Doğru İA, Kiraz Ö. 2018.Web-based android malicious software detection and classifi-
cation system. Applied Sciences 8(9):1622 DOI 10.3390/app8091622.

Doğru İA, Önder M. 2020. AppPerm analyzer: malware detection system based on an-
droid permissions and permission groups. International Journal of Software Engineer-
ing and Knowledge Engineering 30(03):427–450 DOI 10.1142/S0218194020500175.

Feizollah A, Anuar NB, Salleh R,Wahab AWA. 2015. A review on feature selection in
mobile malware detection. Digital Investigation 13:22–37
DOI 10.1016/j.diin.2015.02.001.

Feng P, Ma J, Sun C, Xu X, Ma Y. 2018. A novel dynamic Android malware detection
system with ensemble learning. IEEE Access 6:30996–31011
DOI 10.1109/ACCESS.2018.2844349.

Guerra-Manzanares A, Bahsi H, Nõmm S. 2021. KronoDroid: time-based hybrid-
featured dataset for effective android malware detection and characterization.
Computers & Security 110:102399 DOI 10.1016/j.cose.2021.102399.

Guerra-Manzanares A, Nõmm S, Bahsi H. 2019. Time-frame analysis of system calls
behavior in machine learning-based mobile malware detection. In: 2019 International
Conference on Cyber Security for Emerging Technologies (CSET). Piscataway: IEEE,
1–8.

Hou S, Saas A, Chen L, Ye Y. 2016. Deep4maldroid: a deep learning framework for
android malware detection based on linux kernel system call graphs. In: 2016
IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW).
Piscataway: IEEE, 104–111.

Jang JS. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions
on Systems, Man, and Cybernetics 23(3):665–685 DOI 10.1109/21.256541.

Kale AS, Pandya V, Di Troia F, StampM. 2022.Malware classification with Word2Vec,
HMM2Vec, BERT, and ELMo. Journal of Computer Virology and Hacking Techniques
1–16 DOI 10.1007/s11416-022-00424-3.

Kim T, Kang B, RhoM, Sezer S, Im EG. 2018. A multimodal deep learning method for
android malware detection using various features. IEEE Transactions on Information
Forensics and Security 14(3):773–788.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 21/23

https://peerj.com
http://dx.doi.org/10.1016/j.jksuci.2021.11.004
http://dx.doi.org/10.1016/j.neucom.2020.10.054
http://dx.doi.org/10.1080/15536548.2015.1073510
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
http://dx.doi.org/10.3390/app8091622
http://dx.doi.org/10.1142/S0218194020500175
http://dx.doi.org/10.1016/j.diin.2015.02.001
http://dx.doi.org/10.1109/ACCESS.2018.2844349
http://dx.doi.org/10.1016/j.cose.2021.102399
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1007/s11416-022-00424-3
http://dx.doi.org/10.7717/peerj-cs.1092

Kong K, Zhang Z, Yang ZY, Zhang Z. 2022. FCSCNN: feature centralized Siamese
CNN-based android malware identification. Computers & Security 112:102514
DOI 10.1016/j.cose.2021.102514.

Kumar A, Agarwal V, Kumar Shandilya S, Shalaginov A, Upadhyay S, Yadav B. 2020.
PACER: platform for android malware classification, performance evaluation and
threat reporting. Future Internet 12(4):66 DOI 10.3390/fi12040066.

Lachtar N, Ibdah D, Bacha A. 2020. Toward mobile malware detection through convolu-
tional neural networks. IEEE Embedded Systems Letters 13(3):134–137.

Lashkari AH, Kadir AFA, Gonzalez H, Mbah KF, Ghorbani AA. 2017. Towards a
network-based framework for android malware detection and characterization. In:
2017 15th Annual conference on privacy, security and trust (PST). Piscataway: IEEE,
233–23309.

Li H, Zhou S, YuanW, Li J, Leung H. 2019. Adversarial-example attacks toward android
malware detection system. IEEE Systems Journal 14(1):653–656.

Liu K, Xu S, Xu G, ZhangM, Sun D, Liu H. 2020. A review of android malware de-
tection approaches based on machine learning. IEEE Access 8:124579–124607
DOI 10.1109/ACCESS.2020.3006143.

Mahdavifar S, Kadir AFA, Fatemi R, Alhadidi D, Ghorbani AA. 2020. Dynamic android
malware category classification using semi-supervised deep learning. In: 2020
IEEE Intl Conf on Dependable, Autonomic and Secure Computing Congress (DASC).
Piscataway: IEEE, 515–522.

Mat SRT, Ab RazakMF, Kahar MNM, Arif JM, Firdaus A. 2021. A Bayesian probability
model for Android malware detection. ICT Express 8(3):424–431.

Peltarion. Available at https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/blocks/1d-convolution (accessed on 03 May 2022).

Peltarion. Available at https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/blocks/max-pooling-block-1d (accessed on 03 May 2022).

Şahın DÖ, Akleylek S, Kiliç E. 2022. LinRegDroid: detection of android malware using
multiple linear regression models-based classifiers. IEEE Access 10:14246–14259
DOI 10.1109/ACCESS.2022.3146363.

Şahin DÖ, Kural OE, Akleylek S, Kılıç E. 2021. A novel permission-based Android
malware detection system using feature selection based on linear regression. Neural
Computing and Applications 1–16 DOI 10.1007/s00521-021-05875-1.

Sasidharan SK, Thomas C. 2021. ProDroid—an android malware detection framework
based on profile hidden Markov model. Pervasive and Mobile Computing 72:101336
DOI 10.1016/j.pmcj.2021.101336.

Tang J, Li R, Jiang Y, Gu X, Li Y. 2022. Android malware obfuscation variants detection
method based on multi-granularity opcode features. Future Generation Computer
Systems 129:141–151 DOI 10.1016/j.future.2021.11.005.

Urcuqui-López C, Cadavid AN. 2016. Framework for malware analysis in Android.
Sistemas y Telemática 14(37):45–56 DOI 10.18046/syt.v14i37.2241.

VT Team. 2020. Virus analysis—VirusTotal. (accessed on 02 November 2020).

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 22/23

https://peerj.com
http://dx.doi.org/10.1016/j.cose.2021.102514
http://dx.doi.org/10.3390/fi12040066
http://dx.doi.org/10.1109/ACCESS.2020.3006143
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/1d-convolution
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/1d-convolution
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/max-pooling-block-1d
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/max-pooling-block-1d
http://dx.doi.org/10.1109/ACCESS.2022.3146363
http://dx.doi.org/10.1007/s00521-021-05875-1
http://dx.doi.org/10.1016/j.pmcj.2021.101336
http://dx.doi.org/10.1016/j.future.2021.11.005
http://dx.doi.org/10.18046/syt.v14i37.2241
http://dx.doi.org/10.7717/peerj-cs.1092

WangW, ZhaoM,Wang J. 2019. Effective android malware detection with a hy-
brid model based on deep autoencoder and convolutional neural network.
Journal of Ambient Intelligence and Humanized Computing 10(8):3035–3043
DOI 10.1007/s12652-018-0803-6.

We are Social. Available at https://wearesocial.com/uk/blog/2022/01/digital-2022-another-
year-of-bumper-growth-2/ (accessed on 26 January 2022).

Wei F, Li Y, Roy S, Ou X, ZhouW. 2017. Deep ground truth analysis of current android
malware. In: International conference on detection of intrusions and malware, and
vulnerability assessment. Cham: Springer, 252–276.

Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. 2019. Android malware detection
based on system call sequences and LSTM.Multimedia Tools and Applications
78(4):3979–3999 DOI 10.1007/s11042-017-5104-0.

Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. 2022. EfficientNet convolu-
tional neural networks-based android malware detection. Computers & Security
115:102622 DOI 10.1016/j.cose.2022.102622.

Yang Y, Du X, Yang Z, Liu X. 2021. Android malware detection based on structural
features of the function call graph. Electronics 10(2):186
DOI 10.3390/electronics10020186.

Yen YS, Sun HM. 2019. An Android mutation malware detection based on deep
learning using visualization of importance from codes.Microelectronics Reliability
93:109–114 DOI 10.1016/j.microrel.2019.01.007.

Yuan Z, Lu Y, Xue Y. 2016. Droiddetector: android malware characterization and
detection using deep learning. Tsinghua Science and Technology 21(1):114–123
DOI 10.1109/TST.2016.7399288.

Zhang N, Tan YA, Yang C, Li Y. 2021. Deep learning feature exploration for android
malware detection. Applied Soft Computing 102:107069
DOI 10.1016/j.asoc.2020.107069.

Atacak et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1092 23/23

https://peerj.com
http://dx.doi.org/10.1007/s12652-018-0803-6
https://wearesocial.com/uk/blog/2022/01/digital-2022-another-year-of-bumper-growth-2/
https://wearesocial.com/uk/blog/2022/01/digital-2022-another-year-of-bumper-growth-2/
http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1016/j.cose.2022.102622
http://dx.doi.org/10.3390/electronics10020186
http://dx.doi.org/10.1016/j.microrel.2019.01.007
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1016/j.asoc.2020.107069
http://dx.doi.org/10.7717/peerj-cs.1092

