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ABSTRACT
Hajj (pilgrimage) is a unique social and religious event in which many Muslims
worldwide come to perform Hajj. More than two million people travel to Makkah,
Saudi Arabia annually to perform various Hajj rituals for four to five days. However,
given the recent outbreak of the coronavirus (COVID-19) and its variants, Hajj in the
last 2 years 2020–2021 has been different because pilgrims were limited down to a
few thousand to control and prevent the spread of COVID-19. This study employs a
deep learning approach to investigate the impressions of pilgrims and others from
within and outside the Makkah community during the 1442 AH Hajj season.
Approximately 4,300 Hajj-related posts and interactions were collected from social
media channels, such as Twitter and YouTube, during the Hajj season Dhul-Hijjah
1–13, 1442 (July 11–23, 2021). Convolutional neural networks (CNNs) and long
short-term memory (LSTM) deep learning methods were utilized to investigate
people’s impressions from the collected data. The CNN-LSTM approach showed
superior performance results compared with other widely used classification models
in terms of F-score and accuracy. Findings revealed significantly positive sentiment
rates for tweets collected from Mina and Arafa holy sites, with ratios exceeding 4 out
of 5. Furthermore, the sentiment analysis (SA) rates for tweets about Hajj and
pilgrims varied during the days of Hajj. Some were classified as positive tweets, such
as describing joy at receiving the days of Hajj, and some were negative tweets, such as
expressing the impression about the hot weather and the level of satisfaction for some
services. Moreover, the SA of comments on several YouTube videos revealed positive
classified comments, including praise and supplications, and negative classified
comments, such as expressing regret that the Hajj was limited to a small number of
pilgrims.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Sentiment
Analysis
Keywords Hajj rituals, Sentiment analysis, Convolutional Neural Networks (CNN), Long short
term memory, Deep learning

INTRODUCTION
In late 2019, the world witnessed the spread of the coronavirus (COVID-19), which
infected many industries and companies globally, including the social, health, economic,
and educational sectors (Shambour & Abu-Hashem, 2021; Singh, Jakhar & Pandey, 2021).
The epidemic forced many countries to implement restrictions to combat the transmission
of infection and put preventive measures to push the public into social distancing, which in
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turn had a substantial influence on many aspects and activities of life that people are
familiar with (Mittal, Mittal & Aggarwal, 2021).

Among those aspects is the practice of numerous Islamic religious rites, such as mosque
prayers, Hajj and Umrah rituals, and Eid (Islamic festival) (Alam et al., 2021). Despite the
COVID-19 outbreak, the Saudi government was keen to continue Hajj rituals in the
Islamic lunar calendar 1441–1442 (AH), 2020–2021 (AD) but limited the number of
pilgrims from within the country and ordering strict health controls (Jokhdar et al., 2021).
The reduction of pilgrims greatly impacted the Islamic society, particularly the Makkah
society, because people in Makkah used to provide pilgrims with housing, accommodation,
and transportation. This study attempts to utilize convolutional neural networks (CNN)
and long short-term memory (LSTM) deep learning approach to reveal the perceptions,
feelings, and thoughts of pilgrims and individuals from inside and outside Makkah, in
which various limitations were enforced during the Hajj season 1442 AH because of the
spread of COVID-19.

One of the techniques used to learn about people’s feelings was to use social media,
where individuals can share their thoughts, opinions, and feelings about events and
activities that occur in their communities and throughout the world (Janjua et al., 2021;
Shambour & Gutub, 2022). Recently, studies have shown a growing interest in knowing the
feelings of users of different social media platforms through machine learning (ML) and
lexicon-based algorithms that analyze and categorize what users think across social media
platforms, such as Facebook, Twitter, and YouTube. The analysis of such data helps in
understanding the thoughts of individuals and society in response to specific events and
predicting future trends, such as those related to the COVID-19 pandemic (Mittal, Mittal
& Aggarwal, 2021), tourism (Chaabani, Toujani & Akaichi, 2018), disasters (Zaki et al.,
2018), and economy (Urlam, 2021). Despite many publications describing several subjects
related to tracking and sentiment analytics in the literature, the Arabic literature on
sentiment analysis (SA) topics has been comparatively weak compared with that in English
(Abu Farha & Magdy, 2021).

In the present study, two of the most popular social media networks, Twitter and
YouTube (Statista, 2022), were used to collect more than 11,000 tweets and comments
in Arabic on topics strongly related to Hajj events from July 11 to 23, 2021 (1–13
Dhul-Hijjah, the 12th month of the Islamic calendar). CNN-LSTM methods were applied
to the acquired data because of their effectiveness in finding good results in SA in Arabic
compared with other methods in the literature (Abu Farha & Magdy, 2021). The results
were extracted and debated in light of the impressions of pilgrims and individuals from
inside and outside the Makkah community. The SA results were linked to the events
accompanying the Hajj days.

The rest of the article is organized as follows: “Related literature” presents some relevant
studies in the literature. “Methodology” and “Evaluation of the CNN-LSTM model”
present the research methodology and an evaluation of the CNN-LSTM model,
respectively. “Results and discussion” provides the results and discussions. Finally,
“Conclusion and future work” gives the conclusion and future work.

Shambour (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1087 2/20

http://dx.doi.org/10.7717/peerj-cs.1087
https://peerj.com/computer-science/


RELATED LITERATURE
Many users express their feelings and perceptions regarding a variety of issues and themes
that they encounter in their everyday lives on social media platforms (Bataineh &
Shambour, 2019), which are the most prevalent and commonly used by members of
societies with various demographic features. Many businesses and agencies of various
organizations have conducted social media user sentiment analyses to improve services or
develop future strategies and policies (Singh, Jakhar & Pandey, 2021). The following sub-
sections present the applications of CNN-LSTM deep learning approach and studies that
looked at the usage of social media in general and in relation to Hajj in particular.

Applications of the CNN-LSTM deep learning approach
Bekkar et al. (2021) applied a CNN-LSTM deep learning approach to predict air pollution
in Beijing. The authors used a dataset of air pollution and air quality concentrations with
13 variables from 12 sites. CNN was used to extract the spatial and internal characteristics
of distinct variables. LSTM was utilized to extract the time features and stable prediction
results. Results show the superiority of the proposed model compared with other deep
learning approaches in the literature. Ombabi, Ouarda & Alimi (2020) employed the
CNN-LSTM model for Arabic SA. One-layer CNN architecture was used to extract local
features, whereas two-layer LSTM architecture was used to maintain long-term
dependencies. Three benchmark datasets were used to validate the proposed method,
including large-scale Arabic book reviews (LABR), Arabic sentiment tweets dataset
(ASTD), and Arabic sentiment analysis Twitter dataset (ASATD). Authors have reported
good performance results for the proposed approach compared with other deep learning
approaches, including CNN and neural words embedding, TF-IDF with SVM classifier,
and FastText with SVC and Logistic Regression classifiers.

Gill et al. (2022) and Vasumathi (2021) proposed other deep learning applications
for fruit image classification. They used various classification models, including CNN,
RNN, LSTM, SVM, and fuzzy inference systems, to classify fruit. They reported that the
CNN-LSTM model performed better than other classification methods. CNN was used
for feature extraction. LSTM was utilized to determine the class based on extracted
features.

Umer et al. (2020) proposed an automated news detection method using the
CNN-LSTMmodel. The principal component analysis extracted features from the dataset.
Then, using CNN, more beneficial features were extracted, and only those with high
relevance values, as determined by the max-pooling layer, were sent to the LSTM layer for
sequence modeling. Authors reported that their approach outperformed state-of-the-art
approaches, including BERT (Devlin et al., 2019), XLNet (Yang et al., 2019), and RoBERTa
(Liu et al., 2019), in terms of accuracy. Numerous studies have used the CNN-LSTM
technique to solve various problems in a variety of domains, including wind speed forecast
(Chen et al., 2021), facial expression recognition (Hung & Tien, 2021), emotion detection
(Abdullah, Hadzikadicy & Shaikhz, 2019), hate speech detection (Duwairi, Hayajneh &
Quwaider, 2021), and spam detection (Ghourabi, Mahmood & Alzubi, 2020).
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Sentiment analysis and its applications
Bollen, Mao & Zeng (2011) proposed a mechanism for investigating stock market
expectations based on daily Twitter updates of the general mood. The proposed method
assessed the user’s feelings and moods, which were then used for further time series
analysis to visualize the state of the stock market. Pang, Lee & Vaithyanathan (2002)
investigated how well several ML classifiers performed in movie reviews. They employed
several unigram- and bigram-based feature extractors. In training data, polarity signals
were also employed as star ratings.

Furthermore, Alayba et al. (2017) presented an Arabic dataset for public opinion on
health services based on Twitter. The authors used various SA techniques, including naive
Bayes (NB), CNNs, and support vector machine (SVM), to test the presented dataset.
Baker et al. (2020) and Ilyas & Alowibdi (2018) developed methods for detecting diseases
based on ML algorithms. The authors collected tweets from Arab countries using several
topics related to the disease. The collected tweets were then categorized, filtered, and
analyzed. According to the authors, the proposed methods performed well in tracking the
spread of some infectious diseases in the region.

Bati (2015) and Elgamal (2016) highlighted the potential of using big data techniques to
collect, analyze, and visualize data of Twitter users in Hajj. Feelings and impressions about
the services were provided. The results were then used to support decision-making in
creating actions to expand and improve the services provided. The authors discussed a
framework for collecting Hajj-related tweets and the tools for analyzing them in general
steps but did not practically apply them in their studies.

Zahrani, Khaldi & Qahtani (2015) collected almost five million Arabic and English
tweets during the 2016 Hajj season. They classified the tweets into three categories:
positive, neutral, and negative. The authors also categorized tweets into spatial and
temporal categories based on Hajj-related terms. The analysis revealed a wide range of
sentiments among tweeters in response to events during the Hajj. Although the authors
acquired many Hajj-related tweets, the study did not explain the classification method or
the steps of SA and its implementation.

Ottom & Nahar (2021) investigated the accuracy of many ML and lexical techniques in
identifying and analyzing 3,175 English tweets during the 2018 Hajj season. The authors
applied three ML approaches, namely, SVM, K-nearest neighbor, and NB. For the lexicon-
based approach, they used the text analyzer Blobanalyzer. The researchers noted that ML
approaches provided better results than the lexical approach in terms of accuracy but did
not delve into how the results related to the Hajj events.

Discussion
From the precedence that a limited number of studies have addressed the SA of social
media users during Hajj, the analysis and interpretation of users’ posts have weaknesses,
and the studies did not provide a clear mechanism for analyzing users’ feelings and linking
the results to various occurrences during Hajj days.

Furthermore, previous Hajj-related studies have not covered the mechanism for
assessing sentiments in Arabic, providing further impetus to focus on establishing a
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mechanism for analyzing and interpreting users’ feelings for one of the most human
gatherings in the world. Finally, this study examines the opinions of pilgrims and
individuals from inside and outside the Makkah community on a variety of topics relating
to Hajj, particularly in light of the expansion of the COVID-19 pandemic, which has
resulted in a decrease in the number of pilgrims and confines them to residents in
Saudi Arabia for 2020 and 2021.

METHODOLOGY
The research methodology comprises four stages. The first stage is to review the literature
on tracking and evaluating individuals’ impressions and sentiments in communities. The
second stage is data collecting, which involves using Twitter and YouTube to collect data
from pilgrims and individuals inside and outside the Makkah community. The third stage
is data analysis, in which appropriate analysis processes, such as data preparation, text
representation, feature extraction, and SA, are used. Finally, the results are presented and
discussed in the last stage. The following is an additional explanation for each stage.

Reviewing literature
A critical review of previous studies was carried out to reveal previous work done to
address and overcome similar problems and discover the research gap. The previous
section included an overview of the literature on tracking and evaluating users’ thoughts
and feelings on various subjects and applications.

Data collection
User posts on Twitter and YouTube platforms were collected from pilgrims and
individuals from inside and outside the Makkah community between 1 and 13 Dhul-
Hijjah 1442 AH, July 11 to 23, 2021. A Python-coded program was developed to collect
data via application program interfaces permitted by Twitter and YouTube.

A total of 2,996 tweets were collected containing keywords related to the Hajj and Eid
rituals, such as pilgrims: “ جاجحلا ,” Eid: “ ديعلا ,” and pilgrimage: “ جحلا .” Similarly, 1,293
comments were gathered from five videos relating to the Hajj ritual, which were
broadcasted on YouTube, including the Arafa sermon: “ ةفرعةبطخ ” and the covering of the
holy Kaaba: “ ةفرشملاةبعكلاةوسك ”

Data analysis
Data analysis involved five main stages, namely, data pre-processing, text representation,
feature extraction, sequence classification, and probability distribution, as shown in Fig. 1.

Step 1. Data Preprocessing
Data pre-processing, known as data normalization, is the basis of all SA methods

because it consists of a set of procedures aimed at transforming the raw data into a format
that can be efficiently processed. The following are the pre-processing steps (Abu Farha &
Magdy, 2019):

� Data cleaning: meaningless words and symbols are removed, including URLs, special
characters, numbers, duplicated posts, stop words, and diacritics.
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� Letter normalization: in this step, the different shapes of some Arabic letters are
identified and unified. For example, the letter {ى} is mapped to { ة{,}ي } is mapped to, {ه}
and { آ,أ,إ } are mapped to .{ا}

� Emoji replacement: emojis are detected and replaced by specific terms identifying
whether the emoji is positive or negative.

� Elongation Removal: repetitive characters and letters are removed, such as { ،اااااالاهاالا
ااااي } (Pang, Lee & Vaithyanathan, 2002).

� Remove duplicated posts: all posts are verified as non-recurring in the dataset.

Step 2. Text representation
The skip-gram model is employed in the creation of a new word embedding. The texts

are represented as a 2D matrixm� n, where m denotes the number of words and n is the
embedding dimension, which is set to 300 (Abu Farha & Magdy, 2019).

Step 3. Feature extraction and sequence classification
In this step, two deep learning models were combined, the CNN and LSTM models.

CNN was used as a feature extractor because it can learn additional features not stated by
the embeddings (Abu Farha & Magdy, 2021). Figure 1 provides a set of features extracted

Figure 1 Components of the applied system. Full-size DOI: 10.7717/peerj-cs.1087/fig-1
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by CNN. The LSTMmodel was used to discover the correlation between extracted features
that help express the meaning of aggregated posts. The main goal of combining these
models was to extract local features with the help of the convolution layer and use the
ordering of those features to learn about the word sequences with the help of the LSTM
model (Elzayady, Badran & Salama, 2020). However, CNN-LSTM has drawbacks in terms
of parameter selection and data dependency. Choosing the best parameters for deep-
learning models remains a significant challenge for researchers (Li, He & Zhang, 2020).

Step 4. Probability distribution
The Softmax function produces the probability distribution of sentiment classes as the

final stage in data processing (i.e., positive, neutral, and negative).

Results and Discussion
The results are presented in the form of easy-to-understand tables and graphs. The
discussed results reflect the impressions of pilgrims and individuals from within and
outside the Makkah community during the 1442 Hajj season, coinciding with the
COVID-19 pandemic.

EVALUATION OF THE CNN-LSTM MODEL
Benchmark datasets
Three of the most popular benchmark datasets were used to evaluate the performance of
classification models, including SemEval 2017 Task 4-A (Rosenthal, Farra & Nakov, 2017),
and ASTD (Nabil, Aly & Atiya, 2015), and Fake News Challenge (FNS) dataset (Pomerleau
& Rao, 2017). The characteristics of SemEval and ASTD datasets are listed in Table 1,
which includes the classification of four labels: positive, negative, neutral, and objective.
The objective label is given to posts that are categorized as facts rather than opinions. The
FNS dataset includes 75,385 tagged instances and 2,587 article bodies, which roughly
correspond to 300 headlines as given in Table 2. The classified headlines are labeled as
follows: 7.4% of respondents agreed that there is a relationship between an article’s

Table 1 Arabic benchmark datasets.

SemEval 2017
Task 4-A [42]

ASTD
[43]

Positive 2,479 799

Negative 3,492 1,684

Neutral 4,155 832

Objective – 6,691

Total 10,126 10,006

Table 2 Fake news dataset.

Headlines Tokens Instances Agree Disagree Discuss Unrelated

2,587 372 75,385 7.4% 2% 17.7% 72.8%
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headlines and article bodies; 2% disagreed; 17.7% indicated there is some similarity; and
72.8% argued that the headlines and article bodies are totally different.

Evaluation metrics
The baseline evaluation metrics used to compare the performance of ML approaches in
this article are precision, recall (also known as sensitivity), and F-score (Rosenthal, Farra &
Nakov, 2017; Baker et al., 2020;Ottom & Nahar, 2021). Noting that, the maximum possible
F-score is 1.0, which denotes excellent precision and recall, while the minimum possible F-
score is 0, which occurs when either precision or recall are zero. The applied metrics are as
follows:

Accuracy Accð Þ ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ

Precision Pð Þ ¼ TP
TP þ FPð Þ

Recall Rð Þ ¼ TP
TP þ FNð Þ

F1 ¼ 2 � R� Pð Þ
Rþ Pð Þ

F ¼ FC1
1 þ FC2

1

� �

2
;

where TP;TN; FP; and FN are true positive, true negative, false positive, and false negative,
respectively. Rc1;Rc2; and Rc3 denote the recall for positive, negative, and neutral classes,
respectively. F1 denotes the weighted average of precision and recall.

Evaluating ML models on SemEval, ASTD and FNS benchmark
datasets
The parameter settings used by ML models are given in Table 3. Table 4 illustrates the
performance results of several state-of-the-art ML models on the SemEval, ASTD, and
FNC datasets. Among the ML models applied on SA datasets are CNN-LSTM (Abu Farha
& Magdy, 2019), NileTMRG (Bollen, Mao & Zeng, 2011), Ar-SiTAKA (Jabreel & Moreno,
2017), ELiRF-UPV (González, Pla & Hurtado, 2017), CNN (Heikal, Torki & El-Makky,
2018), LSTM (Heikal, Torki & El-Makky, 2018), Ensemble (CNN/LSTM) (Heikal, Torki &
El-Makky, 2018), and Recursive Neural Tensor Networks (RNTN) (Baly et al., 2017). The
applied MLmodels applied on FND dataset are CNN-LSTM (Umer et al., 2020), RoBERTa
(Liu et al., 2019) and XLNet (Yang et al., 2019).

The CNN-LSTM model outperformed the competing ML models in all benchmark
datasets in terms of classification metrics, including F-score and accuracy. This
demonstrates how well CNN-LSTM recognizes and extracts semantic characteristics from
text. As a result, the CNN-LSTMmodel is utilized to conduct more research into pilgrims’
and other people’s perceptions by evaluating their Hajj-related posts on Twitter and
YouTube.
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RESULTS AND DISCUSSION
This section analyzes the impressions of pilgrims and individuals from the Makkah
community and beyond on many issues related to the Hajj season 1442 AH through the
analysis of posts from social media collected on 1–13 Dhul-Hijjah 1442 AH. A five-point
scale was used to express the average SA, with 1 as the lowest value (“significantly
dissatisfied/negative”) and 5 as the highest value (“significantly satisfied/positive”).

Analyzing tweets issued from Mina and Arafa Holy sites
All tweets posted from Mina and Arafa holy sites were collected on 8–12 Dhul-Hijjah
because the pilgrims must be present on these days (Shambour & Khan, 2022). Table 5
shows the satisfaction level of the tweeters, with high SA rates of 4.3 and 4.8 out of 5 from

Table 3 Parameter settings for ML models.

Arabic sentiment analysis methods Fake news detection methods

CNN-LSTM CNN LSTM Ensemble CNN-LSTM RoBERTa XLNet

LSTM cells 128 - 200 200 100 - -

Learning rate 0.0001 0.001 0.001 0.001 – 6e−4 4e−4

Dropout 0.2 0.5 0.5 0.5 0.2 0.1 0.1

No. of filters 300 200 – 200 64 – –

Filter size 3 [3,4,5] – [3,4,5] 5 – –

Pooling size 2 – – – 4 – –

Hidden units 128 30 30 30 100 768 1,024

Number of epochs – 10 10 10 50 50 –

Batch size – 50 50 50 32 8k 8,192

Number of layers – – – – – 12 24

Attention heads – – – – – 12 16

Table 4 Experimental results. The best results are in bold.

Datasets Classification model F Acc

SemEval CNN-LSTM 0.63 0.62

NileTMRG 0.61 0.581

Ar-SiTAKA 0.571 0.563

ELiRF-UPV 0.467 0.508

ASTD CNN-LSTM 0.72 0.66

CNN 0.641 0.643

LSTM 0.621 0.648

Ensemble (CNN/LSTM) 0.645 0.651

RNTN 0.536 0.585

FNC CNN-LSTM 0.978 0.978

RoBERTa 0.781 0.937

XLNet 0.760 0.921
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within the Mina and Arafa sites, respectively. Figure 2A shows tweets and SA rates during
Hajj days, revealing that while tweet rates fluctuate, the SA has high rates ranging from
3.9–4.8, demonstrating that the tweeters have positive moods and emotions. Furthermore,
the ninth day has the fewest recorded tweets (11.8%) because it is one of the most
important days of Hajj, where pilgrims are preoccupied with worship and supplication,
which explains the paucity of tweets gathered.

Figure 2B reveals a significant rate of positive tweets on all Hajj days, particularly on
Arafa Day (the ninth day), which represented approximately 92% of all tweets and
primarily consisted of pleasant supplications and Quranic verses. However, the rate of
positive tweets decreases after the ninth day, indicating that some events affected pilgrims’
sentiments during these days.

Analyzing tweets issued from Makkah, including the keyword “ جاجحلا ”

(Pilgrims)
The influence of neutrality on the SA rate was observed on 7–13 Dhul-Hijjah, which was
3.31 out of 5, as indicated in Table 6. The highest SA rate of 3.9 was recorded on the
9th day, indicating a good level of satisfaction, as shown in Fig. 3A. The lowest SA rate of
1.85 was reported on the 11th day, showing a lower level of satisfaction.

Table 5 SA of tweets issued from Mina and Arafa Holy sites.

Area No. of tweets (percentage) SA rate

Mina 213(45%) 4.3

Arafa 259(55%) 4.8

Figure 2 SA of tweets issued from Mina and Arafa Holy sites. (A) Tweets and SA rates. (B) Polarity classification of tweets.
Full-size DOI: 10.7717/peerj-cs.1087/fig-2
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Most negative tweets described the nostalgia of Makkah’s people to see their city as
crowded with pilgrims as it has been in the Hajj seasons before the COVID-19 pandemic,
complaints about the hot weather, and the level of satisfaction for some pilgrims with some
services provided, especially for food and transportation.

On the 13th day, the number of positive tweets increased, with the majority praising
God Almighty for the fulfillment of the Hajj rituals and the safe return of the pilgrims to
their homes. Figure 3B depicts the rate of positive, neutral, and negative tweets on 7–13
Dhul-Hijjah, indicating that positive classified tweets most appeared in the Hajj days,
followed by negative and neutral tweets.

Analyzing tweets issued from Makkah, including the keyword “ ديعلا ”

(Eid)
Table 7 displays the features of collected tweets from the Makkah community during
Islamic festival days (10–13 Dhul-Hijjah), revealing a high positive score of 4.28 out of 5
for tweets using the word “ ديعلا ”.

Figure 3 SA of tweets containing the word “ جاجحلا ” (Pilgrims). (A) Tweets and SA rates. (B) Polarity classification of tweets.
Full-size DOI: 10.7717/peerj-cs.1087/fig-3

Table 6 SA of tweets including the keyword " جاجحلا " (Pilgrims).

Area No. of tweets SA rate

Mecca 242 3.31

Table 7 SA of tweets including the keyword " ديعلا " (Festival).

Area No. of tweets SA rate

Mecca 518 4.28
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The results in Fig. 4A reveal an apparent happiness influence among tweeters, as
evaluated by high level of SA rates, particularly on the first festival day (10th day), when a
considerable rate of tweets (68.7%) have a high SA rating of 4.3. The majority of tweets
with a positive rating included congratulations and blessings on the occasion of Eid. In
contrast, the absence of the Eid celebration activities among Makkah’s people, due to their
business serving pilgrims, comprised the most negatively-rating tweets. Figure 4B indicates
that positive rated tweets outnumbered negative and neutral rated tweets on all festival
days, reaffirming that the festival’s days were filled with pleasant feelings and happiness.

Analyzing tweets issued from Makkah, including the keyword “ جحلا ”

(Pilgrimage)
As demonstrated in Table 8, 704 tweets were gathered from Makkah on 1–13 Dhul-Hijjah,
with an average SA of 3.87, indicating a degree closest to contentment and pleasure. The
average SA of the tweeters ranged from above neutral 3.4 to above satisfaction 4.5, as
indicated in Fig. 5A. The highest rate of SA was found on the first day of Dhul-Hijjah with
4.5, indicating that the people were quite happy. Furthermore, the results show a decrease
in SA rates for the first 5 days of the Hajj and then a progressive increase from the 6th to
the 10th day, with the average SA reaching a level exceeding satisfaction on the 10th day,
with an SA equal to 4.2. Following that, the SA rate started to decline because of some
negatively-rating tweets that reflected the level of pilgrims’ satisfaction for some services
they believed were less than their expectations. The SA score returned to an upward trend

Figure 4 SA of tweets containing the word “ ديعلا ” (Eid). (A) Tweets and SA rates. (B) Polarity classification of tweets.
Full-size DOI: 10.7717/peerj-cs.1087/fig-4

Table 8 SA of tweets including the keyword “ جحلا ” (Pilgrimage).

Area No. of tweets SA rate

Mecca 704 3.87
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in the last 2 days (the 12th and 13th); tweets included praise and appreciation to God
Almighty as the Hajj rites were performed this year, as well as congratulations and
blessings. Although the SA rate changed over the entire period, as shown in Fig. 5B, the
positive rated tweets exceeded the neutral and negatively rated tweets, supporting the
presence of favorable feelings among Makkah residents toward the Hajj.

Analyzing tweets issued from Makkah, including the keyword “ ةفرع ”

(Arafa)
Table 9 illustrates a high level of pleasant emotions and happiness of tweeters in Makkah,
with an SA rate of 4.86 for 1,061 collected tweets. Arafa day is the most significant day of
Hajj (the ninth day), which requires every pilgrim to be at the Arafa area as the Hajj rituals
cannot continue without it. Figure 6 shows that 94.5% of tweets were classified as positive
tweets, confirming the prior discussion of having a high amount of pleasant feelings, such
as positive supplications and optimistic phrases, whereas only 5.5% were labeled as neutral
and negative tweets.

Analyzing comments on YouTube video (Topic: “ ةفرعةبطخ ” – “Arafa’s
sermon”)
The Saudi Quran, Al Saudiya, and Al-Resalah channels posted a video of the sermon on
the day of Arafa on their YouTube channels, garnering 876 comments. Table 10 shows
information about the sermon of Arafa posted on the channels, including posted dates,
views, likes, dislikes, comments, and SA rates. Results reveal high levels of user satisfaction,
with user SA rates reaching 4.17, 4.45, and 4.71 out of 5 for the Saudi Quran, Saudiya, and
Al-Resalah channels, respectively, indicating high levels of pleasure with the sermon on
Arafa Day.

Figure 5 SA of tweets containing the word “ جحلا ” (Pilgrimage). (A) Tweets and SA rates. (B) Polarity classification of tweets.
Full-size DOI: 10.7717/peerj-cs.1087/fig-5
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Figure 7A illustrates the average number of daily comments for the three channels,
indicating that the majority of comments were made on the same day as the sermon
(9 Dhul-Hijjah) and that SA rates were also higher across all channels, as seen in Fig. 7B.
The results also show high pleasure for the 11th day of the Saudi Quran channel, with an
SA rate of 5.0. These findings demonstrate commentators’ delight, happiness, and
eagerness to witness the sermon on Arafa Day. However, as shown in Fig. 7B, the results
showed a decline in SA rates after the ninth day, particularly on the 12th day for Saudi
Quran and Al-Resalah channels with small percentages of comments 1.2% for each, and
3.0 and 2.7 SA rates, respectively.

Table 9 SA of tweets including the keyword “ ةفرع ” (Arafa).

Area No. of tweets SA rate

Arafa 1,061 4.86

Figure 6 Polarity classification of tweets containing the word “ ةفرع ” (Arafa).
Full-size DOI: 10.7717/peerj-cs.1087/fig-6

Table 10 YouTube video Information for the sermon of Arafa (“ ةفرعةبطخ ”).

Saudi Quran Al Saudiya Al-Resalah

Posted date 7/19/2021 7/19/2021 7/19/201

Views 117,371 117,270 139,443

Likes 1,774 2,529 3,658

Dislikes 39 82 127

Comments 172 212 492

SA rate 4.17 4.54 4.71
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Analyzing comments on YouTube video (Topic: “ ةفرشملاةبعكلاةوسك ” – “The
covering of the Holy Kaaba”)
A total of 417 comments were collected from the Saudi Quran and Al-Arabia channels on
YouTube about the video on changing the covering of the Kaaba, which was published on
8 Dhul-Hijjah. Table 11 shows the users’ interaction details and the SA rates. The results in
Table 11 reveal high levels of user satisfaction with the Saudi Quran channel’s video, with
an SA rate of 4.49, whereas the SA rate of the Al-Arabiya channel’s video was below the
level of satisfaction at 3.58.

Figure 8A illustrates the average number of daily comments for both channels, revealing
that the Saudi Quran and Al-Arabiya channels received the most comments on 9 Dhul-
Hijjah, with 46.9% and 56.4%, respectively. The SA rates for the comments recorded on the
eighth day were above the level of satisfaction for both channels, as shown in Fig. 8B, but
they decreased on the 9th day and continued to decline on the 10th day to a level below
satisfaction for both channels. Many types of prayers, praise, and supplications were

Figure 7 Analyze of YouTube comments on Arafa’s sermon videos. (A) Comments rate. (B) SA rates.
Full-size DOI: 10.7717/peerj-cs.1087/fig-7

Table 11 YouTube video Information for the covering of the Kaaba (“ ةفرشملاةبعكلاةوسك ”).

Saudi Quran Al-Arabiya

Posted date 7/18/2021 7/18/21

Views 52,623 302,664

Likes 1,405 3,307

Dislikes 20 155

Comments 130 287

SA rate 4.49 3.37
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included in comments with a positive rating, whereas other comments with a negative
rating expressed regret over Hajj being limited to a number of pilgrims.

CONCLUSION AND FUTURE WORK
This study aims to learn about pilgrims’ and others’ impressions from inside and outside
the Makkah community in the 1442 Hajj season using a CNN-LSTM deep learning model.
The CNN-LSTM model showed better accuracy results on three different benchmark
datasets compared to well-known classification models, including NileTMRG, Ar-
SiTAKA, ELiRF-UPV, CNN, LSTM, Ensemble (CNN/LSTM), RNTN, RoBERTa and
XLNet. More than 4,000 Hajj posts were collected from Twitter and YouTube on 1–12
Dhul-Hijjah 1442 AH. The acquired data were used to expose people’s thoughts and
impressions using CNN-LSTM model. The findings revealed several interesting results,
including highly positive feelings in tweets collected from Hajj sites and their pleasant
experience of being received by residents of Makkah during Hajj days. The negatively-
rating tweets reflected the wish of tweeters to host more pilgrims and described the
satisfaction level for some services provided to pilgrims. Finally, the SA of YouTube video
comments reflected a lot of happiness and optimism among the commenters and
eagerness to watch the sermon on Arafa Day.

Future research will look into the performance of other deep learning models, such as
ASAD (Hassan et al., 2021) and ArabBert (Antoun, Baly & Hajj, 2020), which were
recently presented, on the same dataset and additional benchmark datasets. Future
research will also comprehensively compare classification methods in recent literature
studies. It will also attempt to understand people’s perspectives on various concerns
affected by COVID-19, which has led to changes in many things people had been
accustomed to before the pandemic, including e-cooperation, e-education, e-commerce,
remote work, virtual work, and e-social networks.

Figure 8 Analyze of YouTube comments on covering of the Holy Kaaba videos. (A) Comments rate. (B) SA rates.
Full-size DOI: 10.7717/peerj-cs.1087/fig-8
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