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ABSTRACT9

High dimensional classification problems have gained increasing attention in machine learning, and

feature selection has become essential in executing machine learning algorithms. In general, most

feature selection methods compare the scores of several feature subsets and select the one that gives the

maximum score. There may be other selections of a lower number of features with a lower score, yet the

difference is negligible. This paper proposes and applies an extended version of such feature selection

methods, which selects a smaller feature subset with similar performance to the original subset under a

pre-defined threshold. It further validates the suggested extended version of the Principal Component

Loading Feature Selection (PCLFS-ext) results by simulating data for several practical scenarios with

different numbers of features and different imbalance rates on several classification methods. Our

simulated results show that the proposed method outperforms the original PCLFS and existing Recursive

Feature Elimination (RFE) by giving reasonable feature reduction on various data sets, which is important

in some applications.
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1 INTRODUCTION22

With the immense development of machine learning concepts and related topics, feature selection has23

become crucial as most real-world data sets suffer from many features. This problem is known as the24

curse of dimensionality (Bellman, 1957), and many sectors negatively experience this issue, including in25

the worlds of business, industry, and scientific research.26

Selecting fewer features, known as feature selection, provides several significant advantages. With27

feature selection, dimensionality reduction can decrease the size of the data without harming the overall28

performance of the analytical algorithm (Nisbet, 2012). The decrease of computational time while29

increasing the algorithm’s predictive power and interpretability are notable gains (Miche et al., 2007;30

Samb et al., 2012). Then again, a model with fewer features may be more interpretable and less costly,31

especially if there is a significant cost of measuring the features. Statistically, it is more convenient and32

attractive to estimate fewer parameters, and it will also reduce the negative impact of non-informative33

features. Further, it becomes increasingly challenging to reveal patterns in data with many features (Guo34

et al., 2002).35

The main three categories of feature selection techniques are filter, wrapper, and embedded methods.36

Filter methods measure the feature relevance to the dependent variable; hence, only features with37

meaningful relationships would be included in a classification model. They use statistical methods38

such as Pearson’s Correlation, Analysis of Variance (ANOVA), Linear discriminant analysis (LDA), and39

Chi-Squared statistics to select a subset of features. By training a model, wrapper methods measure the40

usefulness of a subset of features (Saeys et al., 2007). Forward Feature Selection, Backward Feature41

Elimination (Weisberg, 2005), and Recursive Feature Elimination (RFE) (Guyon et al., 2002) are typical42

examples of commonly used wrapper methods. The third category, embedded methods, optimize the43

objective function or performance of a learning algorithm or model and also use an intrinsic model-44

building metric during learning. L1 (LASSO) regularization (Tibshirani, 1996) and Elastic Net (Zou and45

Hastie, 2005) are commonly known embedded methods. Combining these three types of techniques to46
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produce ensemble feature selection is called the ensemble feature selection method, which combines47

multiple feature subsets to select an optimal subset of features. Hashemi et al. (2021) has proposed a48

multi-criteria decision-making (MCDM) approach, which is an ensemble of filter methods. This paper49

mainly considers the wrapper methods (Kohavi and John, 1997), which iteratively examine different50

subsets to improve accuracy on fewer features. RFE (Guyon et al., 2002) is one such commonly used51

technique. In standard RFE, a feature is eliminated if it is the least important to predicting, and features52

are ranked according to the model’s strength by considering the performance scoring method.53

Various approaches and extensions in the literature have been suggested to the existing feature54

selection mechanisms such as RFE. Samb et al. (2012) introduced an RFE-SVM-based feature selection55

approach by reusing previously removed features in RFE. They have used two local search tools, Bit-Flip56

(BF) and Attribute-Flip (AF), to improve the quality of the RFE. But this approach is specific to the57

SVM classification, where our suggested method can be applied to any classification method, which58

facilitates a feature ranking criterion with feature importance. An enhanced recursive feature elimination59

has been introduced by (Chen and Jeong, 2007) which is also an algorithm based on RFE and SVM.60

It also assesses a weak feature removed by the standard RFE based on the classification performance61

before and after removing that feature and reconsidering it in the feature subset. There are other proposed62

methods that use thresholds to identify the feature subset. A ROC-based feature selection metric for small63

samples and imbalanced data (FAST) is recommended by (Chen and Wasikowski, 2008). This method is64

based on the area under a ROC curve by discretizing the distribution. An extension of the FAST method,65

but another threshold-based feature selection (TBFS) technique is discussed by (Wang et al., 2010),66

where they produce 11 distinct versions of TBFS based on 11 different classifier performance metrics. A67

cluster-based feature selection, SVM-RCE, has been introduced by Yousef et al. (2007, 2021), which uses68

K-means to identify correlated gene clusters and SVM to identify the ranks of each cluster. Then, the69

recursive cluster elimination (RCE) method iteratively removes the clusters with the least performance70

accuracy.71

Usually, the two main objectives for feature selection are to select the smallest possible subset with a72

given discrimination capability and to find the subset of features with the minimum possible generalization73

error (Granitto et al., 2006). This paper examines different subsets of features to maintain accuracy on74

fewer features.75

We propose a method as an extended version of the suggested PCLFS (Principal Component Loading76

Feature Selection) method (Matharaarachchi et al., 2021; Matharaarachchi, 2021) explained in Section77

2. PCLFS, a wrapper-based feature selection technique, ranks features by the sum of absolute values of78

principal component loadings. After determining the order of the importance of each feature and obtaining79

accuracy measures for each subset, the remaining question in feature selection is how to determine the80

best number of features. PCLFS uses a conventional feature selection method, the sequential forward81

selection, to choose the optimal feature subset. It fits a model and captures the most informative feature82

subset, which is the subset that maximizes the F1-score using a sequential feature selection technique.83

By adding one or a small number of features per loop, PCLFS attempts to eliminate dependencies and84

collinearity in the model. The proposed method further identifies a local maximum with a practical85

implication. Several other optimization mechanisms also have been introduced in the literature to search86

for the optimal feature subset. Out of many such methods, Particle swarm optimization (PSO)-based87

feature selection (Kennedy and Eberhart, 1995; Shi and Eberhart, 1998), which is a kind of heuristic88

algorithm based on swarm intelligence, has gained significant attention. This algorithm finds the optimal89

solution through collaboration and information sharing between individual groups of features. In section90

4, we will also compare our results with some PSO-based methods.91

Prior research also compares the impact of class re-balancing techniques on the performance of binary92

prediction models for a different choice of data sets, classification techniques, and performance measures.93

Hence, in this paper, we focus on binary classification problems with only two possible outcomes. Class94

imbalance occurs when the number of instances in the small (minority) class is significantly smaller than95

that in the large (majority) class. It produces a significant negative influence on standard classification96

learning algorithms. The minority class is important in many practical situations; therefore, it requires an97

intense urgency to be identified (Sun et al., 2009). However, studies on class imbalance classification98

have gained more emphasis only in recent years (Kotsiantis et al., 2005) and many re-sampling methods99

have been introduced to eradicate this issue. This paper will mainly use Synthetic Minority Oversampling100

TEchnique (SMOTE) (Chawla et al., 2002) as a re-balancing technique to achieve higher accuracy in101
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applications.102

1.1 Problem statement103

Although we can already reduce the number of features using PCLFS according to a given selection104

scoring criteria, there is room to improve it further. We observed that the number of features of the chosen105

subset by PCLFS might not be the expected quantity if the desire is to have a smaller number of features.106

In particular, there are other selections of a lower number of features with negligibly lower model accuracy.107

Therefore, we consider the challenge of finding an optimal threshold to identify this minuscule difference.108

We also compare simulation and application results with existing PCLFS and RFE results.109

To illustrate this procedure with a contrived example we will consider a simulated data set with ten110

informative features out of 30. Figure 1 shows an ideal PCLFS curve; the curve leaps to an excellent111

accuracy when the ten informative features are captured, then slightly decreases F-score as the non-112

informative features are added into the model.113

Ideal Feature selection using PCLFS method

Figure 1. Dotted line indicates the actual number of informative features. The red point indicates the

PCLFS feature selection, which selects all the informative features in the data set.

But, example 1 in Figure 2 shows a plot of the F1-score of different sized subsets of a fixed data114

set, all chosen based on the PCFLS method described in Section 2. This figure shows that PCLFS (blue115

point) has selected 29 features, but the F1-score does not appear to be much improved after around ten116

features. Meanwhile, the proposed method (red point) suggests ten features as the smaller number of117

features with similar performance. According to Figure 3 (example 2), the proposed approach (red point)118

finds a comparable value to the informative features in the data set under the given threshold, while the119

original selection (in blue) is far away from the desired number of features to be selected.120

1.2 Goal121

Our primary focus in this paper is analyzing the behavior of the PCLFS method towards classification122

accuracy and suggesting an improved extension for selecting a smaller number of features with similar123

performance with the previous method. Hence, we introduce an algorithm with a threshold to achieve this124

objective. Besides choosing the minimal number of features, we suggest the appropriate feature subset by125

considering the informativeness of features. To cover most practical scenarios, we synthetically simulated126
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Example 1: Feature selection using proposed method

Figure 2. Dotted line indicates the actual number of informative features. The red point indicates the

PCLFS feature selection with number of selected features and the F1-score while the red point explains

the same for the proposed method.

Example 2: Feature selection using proposed method

Figure 3. Dotted line indicates the actual number of informative features. The red point indicates the

PCLFS feature selection with number of selected features and the F1-score while the red point explains

the same for the proposed method.
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data using the scikit-learn python library (Pedregosa et al., 2011) and compared the performance of127

the existing and the proposed method. These algorithms will be further examined on five benchmark128

continuous data sets with different numbers of objects, imbalance rates, and features to derive further129

conclusions. For the practical scenario, we also use a re-sampling technique, Synthetic Minority Over-130

sampling Technique (SMOTE) (Chawla et al., 2002) to determine the performance of the model on the131

imbalanced data set.132

The remainder of this paper is structured as follows. Section 2 describes the data preparation introduces133

the methods used in the study with the experimental design. Section 3 presents the results of the simulation134

studies, and the results in a real-world application are illustrated and interpreted in Section 4. Finally,135

section 5 of this paper is included with a discussion of its contributions and limitations.136

2 METHODS AND EXPERIMENTAL DESIGN137

RFE138

RFE can be fitted on any classification model with an inherent quantification of the importance of a139

feature. It removes the weakest features by a step count, where the step is the number of features removed140

at each iteration. This process repeats until the stipulated number of features is reached. Features are141

ranked according to the importance identified by the model. Then, to find the optimal number of features,142

cross-validation is used in each iteration and selects the subset giving the best scoring value as the desired143

feature subset.144

145

PCLFS146

Principal Component Loading Feature Selection uses the sum of absolute values of principal component147

loadings to order features and capture the most informative feature subset, which is the subset that obtains148

the maximum F1-score using a sequential feature selection technique (Matharaarachchi et al., 2021).149

This method can be fitted on any classification model as feature ordering is entirely independent of150

the classification method. The PC (principal components) loadings are the coefficients of the linear151

combination of the original variables constructed by the PCs. In this study, PCLFS orders features using152

the sum of the first two PC loadings’ absolute values, trains classification models on training data, and153

selects the optimal feature subset that obtains the maximum F1-score. Starting from the most informative154

feature, it adds features one by one according to the order defined by the sum of the first two PC loadings155

until all features are added. Hence the total number of subsets will equal the number of features in the156

data set. It does testing at each step (i.e., F1-score) and, in the end, obtains the feature subset which gives157

the maximum F1-score.158

159

inputs:160

Training samples: X0 = [X1,X2, . . . ,Xℓ]
T

161

Class labels: y = [y1,y2, . . . ,yℓ]
T

162

163

outputs:164

Feature ranked list: r = [r1,r2, . . . ,rn]165

Grid scores: g = [g1,g2, . . . ,gn]166

Number of selected features by PCLFS: npclfs167

168

Here, n is the number of features in the data set, and ℓ is the number of samples in the training set.169

Grid scores (g) are the F1-scores such that gi corresponds to the F1-score of the ith feature subset with the170

first i features of the PCLFS ordered feature list.171

PCLFS is a newly introduced feature selection method (Matharaarachchi et al., 2021). Therefore, we172

use RFE to compare results as RFE is one of the most commonly used wrapper feature selection methods.173

Suggested method174

In this paper, we propose a new algorithm based on PCLFS. The suggested method is an extension of the175

PCLFS method, and the results that come out of the PCLFS algorithm are fed into the new algorithm to176

get the desired output. The main difference between the new method and the original PCLFS is that the177

original PCLFS chooses the feature subset giving the maximum score. In contrast, the suggested method178
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identifies a feature subset under an applicable threshold to obtain a smaller feature subset with similar179

performance and minimal loss. We compare PCLFS and the extended method on various synthetic data180

sets and show that the suggested method reduces the number of features with a bearable score reduction.181

The algorithm for the new method is described below.182

183

inputs:184

Grid scores: g = [g1,g2, . . . ,gn]185

Number of selected features by PCLFS: npclfs186

Total number of features: n187

Feature importance scores (obtained from the classifier): i = [i1, i2, . . . , inpclfs
]188

Maximum tolerable F1-score reduction: T (User-defined)189

190

procedure:191

Step 1: Consider all the local maximum grid scores (g j) corresponding to the number of subsets of features

selected by PCLFS which is less than the optimal number of features selected (npclfs) where,

g j > max(g j−1,g j+1), j < npclfs

Step 2: Connect each point with the maximum point (gnpclfs
) and compute each line’s gradient values (i.e.,192

the tangent value of the cone).193

Step 3: Compare the gradient values with a threshold value t.

gradient =
(∆y) j

(∆x) j

< t (1)

The threshold (t) can be interpreted as the tolerable reduction of the F1-score to reduce one feature,194

where,195

t =
Maximum tolerable F1score reduction

Total number of features
=

T

n
(2)

Step 4: Obtain the F1- score, which gives the smallest number of features (nproposed).196

Note: If there is no value found for the given condition, we will return the same PCLFS results.197

Step 5: To get the relevant feature subset, use feature importance scores (i). Then obtain the best nproposed198

features as the smallest feature subset with similar performance (s).199

outputs:200

The smallest number of features with minimum scoring loss: nproposed201

Relevant feature subset: s202

203

Figure 4 presents how the algorithm picks the desired selection using the gradient method. In our204

algorithm, if we only consider F1-scores that give the smaller number of features, sometimes we end205

up with values where the neighbors are larger, and a larger F1-score for the neighbor indicates that the206

neighbor should be chosen. To avoid such situations and be well-defined, we require the selected value to207

be a local maximum besides having the smallest number of features.208

Finding an optimal threshold to distinguish the small difference between F1-scores was challenging as209

it depends on many factors. Therefore, the gradient method was introduced to find the F1-score reduction210

per feature for each subset selection. We compared each gradient with the maximum bearable gradient211

value. When we only consider a numerical cut-off value as the threshold, it will reduce the same amount212

regardless of the number of features removed. The tolerable F1-score should be explained for a single213

feature reduction to avoid this problem. We also observed that when the number of features in the data214

set increases, F1-score reduces drastically unless the threshold is extremely small, and it is required to215

change the threshold according to the number of features in the data set. Therefore, the threshold had216

to be defined to include the number of features as a parameter to have consistent solutions. Hence, we217

considered a tolerable F1-score decrease for one feature, in other words, ”the threshold,” by having the218

maximum tolerable F1-score reduction over all the features.219
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Visualization of the hypothetical execution of the proposed algorithm

Figure 4. Graphical view of the suggested algorithm. θ j is the angle between the horizontal dotted line

(a line parallel to the number of selected features axis) and the red line, which combines the jth point with

the maximum point. The blue point indicates the PCLFS feature selection with number of selected

features and the F1-score while the red point explains the same for the proposed method.

Simulation Study220

When introducing an algorithm, we performed a simulation study to determine how the factors affect221

the behavior of the final result. Therefore, we synthetically simulate samples, where the sample size222

is 1000. The number of classes is two (binary classification), and there is only one cluster per class.223

Several numbers of features were considered to compare different situations. Since different classification224

models perform uniquely in different data sets, we aim to introduce a general tool that works with multiple225

models. We train different binary classification models in data sets with different numbers of features226

and imbalance rates to ensure this. Initially, five different binary classification models were trained227

with PCLFS. They are Logistic Regression (LOGIT) (Weisberg, 2005), Linear Support Vector Machine228

(SVM Linear) (Xia and Jin, 2008), Decision Tree, Random Forest (RFC) (Breiman, 2001), and Light229

Gradient Boosting Classifier (LGBM C) (Friedman, 2001).230

3 SIMULATION RESULTS231

This section illustrates the results obtained through synthetic samples and the simulation study results on232

all three methods, existing RFE, PCLFS, and proposed PCLFS-extended.233

To capture the variability of the final F1-scores of each method, we conducted a simulation study234

to determine the validity of the suggested combined approach. One hundred samples are simulated235

from each scenario to reduce the variability in experimental results, while the number of informative236

features is increased from 1 to the total number of features. All features are classified as informative237

or non-informative. No redundant features or repeated features are included in simulated data sets. We238

generated data for 50%:50% balanced data and two other imbalance rates, 70%:30% and 90%:10%. Two239

sample sizes with 200 and 1000 samples were also examined, and results were discussed only for sample240

size 200 unless there is a notable discrepancy to emphasize. Most importantly, in this analysis, the models241

were fitted on original data and re-sampled data with SMOTE. Here, the results are only illustrated for the242

logistic regression model. Supplemental materials contain results for other classification models, with243

highly imbalanced data with a 90%:10% rate and a sample size of 1000.244

Simulation results without SMOTE245

Results obtained for the comparison of model F1-scores and feature selection correct percentages of RFE246

and PCLFS are shown in Figure 5. The figure shows results for sample sizes of 200 for the Logit classifier247
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Simulation results for Logit - 200 sample size (Without SMOTE)

Figure 5. Final model F1-scores and feature selection correct percentages for the Logit model, without

SMOTE when sample size is 200 and threshold is 0.0017.
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Simulation results for Logit - 200 sample size (Without SMOTE)

Figure 6. Number of selected features and feature selection TPR for the Logit model, without SMOTE

when sample size is 200 and threshold is 0.0017.
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Simulation results for Logit - 1000 sample size (Without SMOTE)

Figure 7. Accuracy measures for the Logit model for an imbalance rate of 0.9:0.1, without SMOTE

when sample size is 1000 and threshold is 0.0017.

when the threshold is 0.0017. However, we also compare the extended version of PCLFS (PCLFS-ext),248

which gives even a higher feature selection correct percentage for an insignificantly smaller F1-score249

reduction over the PCLFS method.250

To further understand the selection of features, we plotted the number of selected features and feature251

selection true positive rate (T PR f s) against the number of informative features given. Feature selection252

TPR was calculated using the equation explained in Matharaarachchi et al. (2021). For the original data,253

PCLFS and PCLFS-extended methods pick a relatively larger number of features than RFE. Nevertheless,254

the feature selection TPR is significantly higher in the proposed methods. The results with 200 sample255

size are shown in Figure 6. We note that when the sample size is smaller, the PCLFS-extended method is256

not tempted to pick a lower number of features in highly imbalanced data under the given threshold of257

0.0017. But, for a higher sample size of 1000, the proposed method outperformed the existing methods in258

each scenario considered in the simulation. In Figure 7 the results are shown for an imbalance rate of259

0.9:0.1. Similar but high pronounced effects are visible at the other imbalance rates.260

Simulation results with SMOTE261

We repeated the same procedure for imbalanced data by re-balancing using SMOTE with the Logit262

classifier for sample sizes 200 and 1000. Except for having lower feature selection correct percentages for263

highly imbalanced data with smaller sample sizes (in Figure 8), in all the other scenarios, PCLFS extended264

version performs much better than PCLFS and RFE on the same data set. Meanwhile, for data sets with265

a larger sample size (e.g., 1000), PCLFS and PCLFS-extended methods even pick a lower number of266

features than RFE when there are few informative features in the data set (Figure 9). This property is267

valuable when we are dealing with real-world problems.268
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Simulation results for Logit - 200 sample size (With SMOTE)

Figure 8. Accuracy measures for the Logit model for an imbalance rate of 0.9:0.1, with SMOTE when

sample size is 200 and threshold is 0.0017.
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Simulation results for Logit - 1000 sample size (With SMOTE)

Figure 9. Accuracy measures for the Logit model for an imbalance rate of 0.9:0.1, with SMOTE when

sample size is 1000 and threshold is 0.0017.

4 EXPERIMENTAL RESULTS269

SPECTF heart data270

To analyze the behavior of models on a real-world data set, we consider the publicly available Single-271

photon emission computed tomography (SPECT) heart data set (Kurgan et al., 2001; Krzysztof et al.,272

1997; Bache and Lichman, 2013), which describes diagnosing cardiac abnormalities using SPECT. This273

is the same data set used in (Matharaarachchi et al., 2021), and use it in order to be consistent with274

the analysis and results. Response of the data set consists of two categories: normal and abnormal, by275

considering the diagnosis of images. This data consists of binary class imbalanced data with a higher276

number of numerical features and a lower number of instances.277

The sample consists of data from 267 patients with 44 continuous features that have been created for278

each patient. Hence, it has 267 instances that are described by 45 attributes (44 continuous and 1 binary279

class). We also divided the data set into two groups, 75% training samples and 25% test samples. The280

class-imbalanced rate for the data set is 79.4%:20.6%, where the minority class represents the abnormal281

patients. The imbalance is the same in the training and test set.282

Then we applied Synthetic Minority Oversampling Technique (SMOTE) to handle imbalanced data283

to achieve higher accuracy in classification models. The SMOTE aims to balance class distribution by284

randomly increasing minority class examples by creating similar instances.285

We compare the proposed PCLFS and PCLFS-extended model results with the final F1-scores of the

existing RFE method. The results are shown in Table 1 highlighting the best results. For SMOTE data,

PCLFS selects a smaller number of features than RFE, with a higher F1-score for all the classification mod-

els. It further reduces the number of features considerably in the PCLFS-extended method for the Logit,

decision tree, and RFC models, and the last two columns of the Table 1 depicts the reduction/increment of
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Table 1. Final F1-score comparison between RFE and proposed methods (PCLFS/PCLFS-Extended

(t=0.0011)).

SMOTE Method
Basic RFE PCLFS PCLFS-Extended

Feature

reduction%/

(increment%)

F1-score

(reduction)/

increment#Features F1-scores #Features F1-scores #Features F1-scores #Features F1-scores

TRUE

Logit 44 0.6809 36 0.6957 24 0.6957 11 0.6939 56.8% (0.0018)

LGBM 44 0.6667 27 0.6286 13 0.7027 - - 31.8% 0.0741

Decision Tree 44 0.5556 44 0.5556 9 0.6667 3 0.6666 93.2% 0.1110

RFC 44 0.6486 38 0.6111 42 0.7059 12 0.6842 59.0% 0.0731

SVM-Linear 44 0.6511 30 0.6977 12 0.7727 - - 40.9% 0.0750

FALSE

Logit 44 0.5455 30 0.5000 44 0.5455 - - (31.8%) 0.0455

LGBM 44 0.6250 15 0.5455 15 0.6250 - - 0.0% 0.0795

Decision Tree 44 0.5294 27 0.5161 9 0.5946 - - 40.9% 0.0785

RFC 44 0.2609 9 0.3704 11 0.4444 - - (4.5%) 0.0740

SVM-Linear 44 0.5946 21 0.5882 37 0.6316 - - (36.4%) 0.0434

the percentages of features and the F1-scores over RFE and the proposed method where

Feature reduction/(increment)% =
Number of features reduced/(increased)

Total number of features
.

Figure 10 displays how the PCLFS-extended version picks a lesser number of features with similar286

performance with a maximum tolerable F1-score of 0.05, hence the threshold of 0.0011. Similar to the287

simulation results in Sec 3, the PCLFS-extended method picked a lower number of features than PCLFS288

when the data set is balanced.289

Further experiments on different data sets290

To further evaluate the performance of the existing and proposed approaches, we used five different291

continuous data sets which downloaded from UCI machine learning repository (Bache and Lichman,292

2013). They all have a binary response variable with a different number of cases, features and imbalance293

rates (Table 2). For every trial, we divided each data set into two groups, 75% training samples and 25%294

test samples. To capture the variability of imbalance data, we executed methods with and without SMOTE295

on the same data sets. The Logit model was used as the classifier and classification error rate and F1-score296

were used to evaluate the performance of each method on all data sets.297

Table 3 indicates the comparison of each method after 50 independent trials on each data set. Here,298

‘Basic’ is the data set with the original feature set utilized for classification. ‘Size’ indicates the average299

number of features selected by each method in 50 independent trials. Other than having F1-score, we300

used classification accuracy (error rate) to compare performance. ‘Best,’ ‘mean,’ and ‘std dev’ implies the301

best, the average, and the standard deviation of the classification error.302

Table 3 depicts that our proposed method outperforms the existing RFE feature selection method303

in various data sets by accomplishing equivalent or higher accuracy. We also cross-checked the results304

of the proposed method with the results obtained by Huda and Banka (2022) for different PSO-based305

feature selection methods while using the same real-world data sets, German, Ionosphere, Sonar, and306

Musk - Version1. These methods include some existing PSO feature selection methods such as PSOPRS,307

PSOPRSN (α = 0.9 and α = 0.5), and PSOPRSE, and some newly proposed efficient feature selec-308

tion methods using PSO with the fuzzy rough set as fitness function (PSOFRFSA, PSOFRFSAN, and309

PSOFRFSANA). Result of proposed methods by Huda and Banka (2022) on the same continuous data310

sets are shown in Table 4. Our proposed method showed better performance than PSOPRS, PSOPRSN311

(α = 0.9 and α = 0.5, where α is a parameter crossroads to the degree of dependency) PSOPRSE in every312

data set. Although the other methods, PSOFRFSA, PSOFRFSAN, and PSOFRFSANA, make reasonable313

improvements over our suggested approach in some data sets, it is not always the case. For instance, our314

method indicated better accuracy in the Musk - Version1 data set.315
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Number of features selected by each method

Figure 10. Selecting smaller number of features under the threshold of 0.0011. Red point indicates the

PCLFS selection whereas the blue point indicated the extended PCLFS method selection.

Table 2. Continuous data sets

Data set
Number of

features

Number of

Instances

Number of

classes
Class imbalance rate

German 24 1000 2 (0.7:0.3)

Ionosphere 34 351 2 (0.73:0.27)

SPECTF 44 267 2 (0.79:0.21)

Sonar 60 208 2 (0.53:0.47)

Musk - Version 1 166 476 2 (0.57:0.43)
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Table 3. Result of existing and proposed methods on continuous data sets

Data sets Methods
Without SMOTE With SMOTE

Size Best Mean ± Std dev F1-score Size Best Mean ± Std dev F1-score

German

Basic 24.00 19.33 23.99 ± 1.89 0.8380 24.00 22.67 26.62 ± 1.84 0.8118

PCLFS 17.62 18.67 23.17 ± 1.86 0.8445 18.52 21.33 25.27 ± 1.75 0.8214

PCLFS-ext 4.08 23.33 27.69 ± 2.35 0.8281 13.80 21.33 25.76 ± 1.99 0.8155

RFE 17.88 19.33 24.5 ± 2.49 0.8320 21.26 21.00 26.83 ± 2.11 0.8104

Ionosphere

Basic 34.00 6.60 12.74 ± 2.84 0.9033 34.00 8.49 14.04 ± 2.68 0.8940

PCLFS 30.32 6.60 12.28 ± 2.68 0.9073 30.24 8.49 13.32 ± 2.21 0.8978

PCLFS-ext 26.82 6.60 12.79 ± 3.04 0.9038 25.62 8.49 13.79 ± 2.61 0.8940

RFE 18.18 6.60 13.25 ± 3.14 0.9017 22.92 9.43 14.38 ± 2.69 0.8918

SPECTF

Basic 44.00 11.89 24.99 ± 6.01 0.3961 44.00 12.59 27.57 ± 6.44 0.4353

PCLFS 37.14 11.89 19.08 ± 3.93 0.4475 15.18 11.89 23.05 ± 5.24 0.5818

PCLFS-ext 34.22 12.59 22.59 ± 4.68 0.4457 11.70 11.89 26.15 ± 5.9 0.5794

RFE 21.94 12.59 24.57 ± 4.92 0.3783 28.54 11.19 27.49 ± 6 0.4526

Sonar

Basic 60.00 15.87 24.44 ± 4.94 0.7228 60.00 14.29 24.22 ± 4.86 0.7416

PCLFS 39.60 14.29 22.7 ± 4.58 0.7309 39.54 14.29 22.06 ± 4.1 0.7599

PCLFS-ext 38.86 14.29 22.76 ± 4.65 0.7304 38.00 14.29 22.1 ± 4.07 0.7589

RFE 17.04 15.87 25.27 ± 6.3 0.7104 15.34 14.29 24.54 ± 5.42 0.7467

Musk - Version1

Basic 166.00 10.49 17.68 ± 3.22 0.8128 166.00 10.49 17.61 ± 2.53 0.8121

PCLFS 149.22 10.49 15.61 ± 2.68 0.8315 150.86 9.79 15.76 ± 2.19 0.8301

PCLFS-ext 141.90 10.49 15.8 ± 2.8 0.8302 143.73 9.79 15.97 ± 2.33 0.8286

RFE 73.88 13.29 18.94 ± 4.74 0.7879 88.65 10.49 19.06 ± 3.49 0.7945

Table 4. Result of PSO-based methods proposed by Huda and Banka (2022) on continuous data sets

(without SMOTE)

Data sets Methods Size Best Mean±Std Dev

Musk - Version 1

PSOFRFSA 95.71 22.15 23.11±3.01

PSOFRFSAN 0.9 37.77 22.78 24.12±3.42

PSOFRFSAN 0.5 37.77 22.78 23.19±3.47

PSOFRFSANA 0.9 37.7 21.19 22.51±4.01

PSOFRFSANA 0.5 36.17 20.17 21.91±3.97

German

PSOFRFSA 16.14 21.78 22.18±1.31

PSOFRFSAN 0.9 7.9 19.02 21.17±1.67

PSOFRFSAN 0.5 5.47 19.38 21.91±1.07

PSOFRFSANA 0.9 7.81 19.02 21.01±1.57

PSOFRFSANA 0.5 5.41 19.38 21.37±1.37

Ionosphere

PSOFRFSA 19 5.18 6.81±3.13

PSOFRFSAN 0.9 4 5.49 6.84±4.1

PSOFRFSAN 0.5 3.7 5.39 6.93±3.93

PSOFRFSANA 0.9 3.7 5.39 6.94±3.27

PSOFRFSANA 0.5 3.7 5.39 6.98±3.19

Sonar

PSOFRFSA 34 17.04 19.4±4.01

PSOFRFSAN 0.9 7 14.77 15.2±6.27

PSOFRFSAN 0.5 76.71 15.08 16.78±5.45

PSOFRFSANA 0.9 6.02 14.01 15.93±4.2

PSOFRFSANA 0.5 5.13 14.97 15.79±4.02

5 DISCUSSION316

Feature selection has become an essential aspect of matured machine learning methods. Feature selection317

is also known as variable selection, feature reduction, attribute selection, or variable subset selection (Liu318

and Yu, 2005). This process is essential in practice for many reasons, especially if we have to collect data319

from costly sources such as sensors, patients, blood samples, etc. In such situations, we have to limit320
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the number of features to a reasonable value; identifying the most important feature subset is crucial.321

Not only that but having fewer features also increases the computational efficiency and the prediction322

performances of the model. As a solution, we have proposed a new approach for the existing wrapper323

methods to select a minimal number of important features with similar performance. Hence, this is an324

important contribution as it reduces costs, especially in data collection.325

Most of the wrapper feature selection methods compare scores of several feature subsets and select326

the one that gives the maximum score. There are other selections of fewer features with lower-score, yet327

with little difference in score. This paper proposes and applies an extended version of selecting a minimal328

number of features subset instead of having the subset with the maximum score. PCLFS uses the sum of329

absolute values of principal component loadings to rank features and capture the most informative feature330

subset. It obtains the best feature subset by comparing the scores, where the feature subset that gives the331

best score is identified as the optimal feature subset. Still, some other feature subsets practically reduce332

the number of features with minimal score loss.333

Our proposed method assesses the number of features below the maximum and receives the most334

beneficial smallest number of features and the feature subset with a tolerable score deduction. For335

the extended version, we only consider the feature subsets smaller than the previous subset selection;336

therefore, having a minimal feature set is guaranteed by the proposed approach under the threshold. The337

threshold plays a vital role in the introduced algorithm as the numerator, the maximum tolerable F1-score,338

is decided by the user using their domain knowledge and desire. The selection of the threshold is sensitive339

to the imbalance rate of the data. We can use a relatively larger threshold for highly imbalanced data to340

achieve a similar result. Although we have considered only five classification models in examples, like in341

PCLFS, the proposed method can also be fitted on any classification model as feature ordering is entirely342

independent of the classification method (Matharaarachchi et al., 2021).343

Although the underlying truth of the real-world data is hidden, we compare the result of the proposed344

method with existing PCLFS, RFE, and some other PSO-based feature selection methods on the same345

real data sets to compare the accuracy of each method.346

6 CONCLUSION347

This study introduces a novel gradient-based algorithm to further reduce the number of features with a348

similar performance to existing greedy feature selection approaches. The extended version of the existing349

PCLFS method was implemented to identify the most informative features first. First, we compare the350

proposed approach to PCLFS and RFE results on simulated data sets. and real-world data sets. Simulation351

results clearly shown that the proposed method makes a reasonable improvement over existing results,352

especially when we have a balanced data set and large sample size. For this purpose, we can re-balance353

the data set using existing methods such as SMOTE (Chawla et al., 2002). Then the results were compared354

with the most commonly used RFE method and some other PSO-based feature selection techniques for355

different continuous data sets. The results show that the proposed method allows us to select a subset356

that is often significantly smaller than that chosen by the original PCLFS method. A smaller informative357

feature set enables faster processing of data with higher accuracy, especially as more computationally358

expensive classification methods are used.359
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A SIMULATION RESULTS FOR DIFFERENT CLASSIFICATION MODELS360

Referring to the Simulation Results Section, Figures A1, A2, A3 and A4 present the results of the361

comparison of RFE, PCLFS, and PCLFS-ext methods for other classification models such as LGBM C,362

Decision Tree, RFC and SVM Linear with highly imbalanced data with 90%:10% rate and a sample363

size of 1000. As discussed in Sec 3, it is observed that, other than having higher model F1-scores and364

feature selection correct percentages, PCLFS-ext method also selects a lower number of features for many365

choices of informative features than the RFE method.366

A.1 Light Gradient Boosting (LGBM C)367

Simulation results for LGBM C - 1000 sample size (With SMOTE)

Figure A1. Rows represent final F1-scores, Feature selection correct percentages, and the number of

informative selected features, whereas the left-hand side column with original data and right is with

SMOTE data for the Lgbm C classifier with a threshold of 0.0017.
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A.2 Decision Trees368

Simulation results for Decision Trees - 1000 sample size (With SMOTE)

Figure A2. Rows represent final F1-scores, Feature selection correct percentages, and the number of

informative selected features, whereas the left-hand side column with original data and right is with

SMOTE data for the Decision tree classifier with a threshold of 0.0017.
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A.3 Random Forest Classifier (RFC)369

Simulation results for RFC - 1000 sample size (With SMOTE)

Figure A3. Rows represent final F1-scores, Feature selection correct percentages, and the number of

informative selected features, whereas the left-hand side column with original data and right is with

SMOTE data for the RFC with a threshold of 0.0017.
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A.4 SVM Linear370

Simulation results for SVM Linear - 1000 sample size (With SMOTE)

Figure A4. Rows represent final F1-scores, Feature selection correct percentages, and the number of

informative selected features, whereas the left-hand side column with original data and right is with

SMOTE data for the SVM-linear classifier with a threshold of 0.0017.
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