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We hide grayscale secret images into a grayscale cover image, which is considered to be a challenging
steganography problem. Our goal is to develop a steganography scheme with enhanced embedding
capacity while preserving the visual quality of the stego-image as well as the extracted secret image, and
ensuring that the stego-image is resistant to steganographic attacks.

The novel embedding rule of our scheme helps to hide secret image sparse coefficients into the
oversampled cover image sparse coefficients in a staggered manner. The stego-image is constructed by
using the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute Shrinkage and
Selection Operator (LASSO) formulation of the underlying minimization problem. Finally, the secret
images are extracted from the constructed stego-image using the reverse of our embedding rule. Using
these components together, to achieve the above mentioned competing goals, forms our most novel
contribution. We term our scheme SABMIS (Sparse Approximation Blind Multi-Image Steganography).

We perform extensive experiments on several standard images. By choosing the size of the length and
the width of the secret images to be half of the length and the width of cover image, respectively, we
obtain embedding capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two,
three, and four secret images, respectively. Our focus is on hiding multiple secret images. For the case of
hiding two and three secret images, our embedding capacities are higher than all the embedding
capacities obtained in the literature until now (3 times and 6 times than the existing best, respectively).
For the case of hiding four secret images, although our capacity is slightly lower than one work (about
2/3rd), we do better on the other two goals (quality of stego-image & extracted secret image as well as
resistant to steganographic attacks).

For our experiments, there is very little deterioration in the quality of the stego-images as compared to
their corresponding cover images. Like all other competing works, this is supported visually as well as
over 30 dB of Peak Signal-to-Noise Ratio (PSNR) values. The good quality of the stego-images is further
validated by multiple numerical measures. None of the existing works perform this exhaustive validation.
When using SABMIS, the quality of the extracted secret images is almost same as that of the
corresponding original secret images. This aspect is also not demonstrated in all competing literature.

SABMIS further improves the security of the inherently steganographic attack resistant transform based
schemes. Thus, it one of the most secure schemes among the existing ones. Additionally, we
demonstrate that SABMIS executes in few minutes, and show its application on the real-life problems of
securely transmitting medical images over the internet.
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ABSTRACT9

We hide grayscale secret images into a grayscale cover image, which is considered to be a

challenging steganography problem. Our goal is to develop a steganography scheme with en-

hanced embedding capacity while preserving the visual quality of the stego-image as well as
the extracted secret image, and ensuring that the stego-image is resistant to steganographic

attacks.
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The novel embedding rule of our scheme helps to hide secret image sparse coefficients

into the oversampled cover image sparse coefficients in a staggered manner. The stego-

image is constructed by using the Alternating Direction Method of Multipliers (ADMM) to
solve the Least Absolute Shrinkage and Selection Operator (LASSO) formulation of the un-

derlying minimization problem. Finally, the secret images are extracted from the constructed

stego-image using the reverse of our embedding rule. Using these components together, to
achieve the above mentioned competing goals, forms our most novel contribution. We term

our scheme SABMIS (Sparse Approximation Blind Multi-Image Steganography).
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We perform extensive experiments on several standard images. By choosing the size of

the length and the width of the secret images to be half of the length and the width of cover

image, respectively, we obtain embedding capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp,
and 8 bpp while embedding one, two, three, and four secret images, respectively. Our focus

is on hiding multiple secret images. For the case of hiding two and three secret images, our

embedding capacities are higher than all the embedding capacities obtained in the literature
until now (3 times and 6 times than the existing best, respectively). For the case of hiding four

secret images, although our capacity is slightly lower than (Hu, 2006) (about 2
3

rd
), we do better

on the other two goals (quality of stego-image & extracted secret image as well as resistant

to steganographic attacks).
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For our experiments, there is very little deterioration in the quality of the stego-images

as compared to their corresponding cover images. Like all other competing works, this is

supported visually as well as over 30 dB of Peak Signal-to-Noise Ratio (PSNR) values. The
good quality of the stego-images is further validated by multiple numerical measures. None of

the existing works perform this exhaustive validation. When using SABMIS, the quality of the
extracted secret images is almost same as that of the corresponding original secret images.

This aspect is also not demonstrated in all competing literature.
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SABMIS further improves the security of the inherently steganographic attack resistant
transform based schemes. Thus, it one of the most secure schemes among the existing ones.

Additionally, we demonstrate that SABMIS executes in few minutes, and show its application

on the real-life problems of securely transmitting medical images over the internet.
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1 INTRODUCTION44

The primary concern during the transmission of digital data over communication media45

is that anybody can access this data. Hence, to protect the data from being accessed by46

illegitimate users, the sender must employ some security mechanisms. In general, there47

are two main approaches used to protect secret data; cryptography (Stallings, 2019) and48

steganography (Kordov and Zhelezov, 2021), with our focus on the latter.49

Steganography is derived from the Greek words steganos for “covered” or “secret”50

and graphie for “writing”. In steganography, the secret data is hidden in some unsus-51

pected cover media so that it is visually imperceptible. Here, both the secret data as52

well as the cover media may be text or multimedia. Recently, steganography schemes53

that use images (binary, grayscale or color) as secret data as well as cover media have54

gained a lot of research interest due to their heavy use in World Wide Web applications.55

This is the first focus of our work 1. Some real-life applications of this include securing56

biometric data, digital signature, personal banking information, and medical data.57

Next, we present some relevant previous studies in this domain. Secret data can be58

hidden in images in two ways; spatially or by using a transform. In the spatial domain59

based image steganography scheme, secret data is hidden directly into the image by60

some modification in the values of the image pixels. These approaches have the draw-61

back that they are inherently not resistant to steganographic attacks (Artiemjew and Aleksandra,62

2020; Hassaballah et al., 2021). Some of the past works related to this are given in Ta-63

ble 1. The papers in this table are listed in the increasing order of the number of secret64

images hidden in the cover image.65

In the transform domain based image steganography scheme, first, the image is66

transformed into frequency components, and then the secret data is hidden into these67

components. This process makes these approaches intrinsically resistant to stegano-68

graphic attacks. Hence, such approaches form our second focus. Some of the past69

works related to this are given in Table 2. The papers in this table are listed in the70

increasing order of the number of secret images hidden in the cover image as well.71

Table 1. Spatial domain-based image steganography schemes.

Reference Technique Secret images Cover image

(Baluja, 2019)

A modified version of

Least Significant Bits

(LSB) with deep

neural networks

2 color color

(Gutub and Shaarani, 2020) LSB 2 color color

(Guttikonda et al., 2018) LSB 3 binary grayscale and color

(Hu, 2006)
A modified version of

LSB
4 grayscale grayscale

(Manujala and Danti, 2015)
A modified version of

LSB
4 color color

As mentioned above, images are of three kinds; binary, grayscale, and color. A72

grayscale image has more information than a binary image. Similarly, a color image73

1Hiding binary data into images is a different track, which we are not focusing in this paper. For the

sake of completeness, this is summarized in Appendix A.

ii/xxxviPeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66732:1:1:NEW 15 Jul 2022)

Manuscript to be reviewedComputer Science



Table 2. Transform domain-based image steganography schemes.

Reference Technique Secret images Cover image

(Sanjutha, 2018)

Discrete Wavelet

Transformation (DWT)

with Particle Swarm

Optimization (PSO)

1 grayscale color

(Arunkumar et al., 2019a)

Redundant Integer Wavelet

Transform (RIWT) and QR

Factorization

1 grayscale color

(Maheswari and Hemanth, 2017)

Contourlet and Fresnelet

Transformations with

Genetic Algorithm (GA)

and PSO

1 binary

(specifically, QR code)
grayscale

(Arunkumar et al., 2019b)

RIWT, Singular Value

Decomposition (SVD),

and Discrete Cosine

Transformation (DCT)

1 grayscale grayscale

(Hemalatha et al., 2013) DWT 2 grayscale color

(Gutub and Shaarani, 2020) DWT and SVD 2 color color

has more information than a grayscale image. Thus, hiding a color secret image is74

more challenging than hiding a grayscale secret image, which is more challenging than75

hiding a binary secret image. Similarly, applying this concept to the cover image, we76

see a reverse sequence; see Table 3. We focus on the middle case here, i.e., when both77

the secret images and the cover image are grayscale, which is considered challenging.78

This forms our third focus.79

Table 3. Image types and levels of challenge.

Image Type More Challenging Medium Challenging Less Challenging

Secret Image Color Grayscale Binary

Cover Image Binary Grayscale Color

The difficulty in designing a good steganography scheme for hiding secret images80

into a cover image is increasing the embedding capacity of the scheme while preserving81

the quality of the resultant stego-image and extracted secret images as well as making82

the scheme resistant to steganographic attacks. Hence, we need to balance these com-83

peting requirements. Here, not just the number of secret images but the total size of the84

secret images is also important. To capture this requirement of number as well as size,85

a metric of bits per pixel (bpp) is used.86

In this work, we present a novel image steganography scheme wherein up to four87

images can be hidden in a single cover image. The size of the length and the width of a88

secret image is about half of the length and the width of the cover image, respectively,89

which results in a very high bpp capacity. No one has attempted hiding up to four90

secret images in a cover image with the transform domain based approach until now,91

and those who have attempted hiding one, or two images have also not achieved the92

level of embedding capacity that we do. While enhancing the capacity as discussed93
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above, the quality of our stego-image does not deteriorate much. Also, we do not need94

any cover image data to extract secret images on the receiver side, which is commonly95

required with other schemes. We do require some algorithmic settings on the receiver96

side, however, these can be communicated to the receiver separately. Thus, this makes97

our scheme more secure.98

Let us consider the example of telediagnosis that refers to remote diagnosis. In99

this, medical images are distributed to some doctors for analyses and recommendations.100

During distribution, an unauthorized person can access these images and misuse them.101

To make this distribution process more secure, instead of directly sharing images, these102

can be hidden in a cover image using our steganography scheme and then the obtained103

stego-image can be shared. In this example, multiple secret images need to be shared104

(we consider sharing a maximum of four medical images). The existing transform105

based steganography schemes, which are inherently resistant to steganographic attacks,106

do not have such an embedding capacity. If we try to increase their capacity, then the107

quality of stego-image or extracted secret images gets degraded.108

The most novel feature of our innovative scheme is that it is a combination of dif-109

ferent components that helps us achieve the competing goals of increasing embedding110

capacity, good quality stego-image as well as extracted secret images, and high resis-111

tance to steganographics attacks. Each of these components is discussed next.112

The first component, i.e., hiding of secret images, consists of the parts below.113

(i) We perform sub-sampling on a cover image to obtain four sub-images of the cover114

image.115

(ii) We perform block-wise sparsification of each of these four sub-images using DCT116

(Discrete Cosine Transform) and form respective vectors.117

(iii) We represent each vector in two groups based upon large and small coefficients,118

and then oversample each of the resultant (or generated) sparse vector using a measure-119

ment matrix based linear measurements. The oversampling at this stage leads to sparse120

approximation.121

(iv) We repeat the second step above for each of the secret images.122

(v) We embed DCT coefficients from the four secret images into “a set” of linear mea-123

surements obtained from the four sub-images of the cover image using our new embed-124

ding rule.125

Amongst these parts, (i)–(ii) have been used in (Pal et al., 2019; Liu and Liao, 2008;126

Pan et al., 2015) while (iii)–(v) are new.127

Second, we generate the stego-image from these modified measurements by using128

the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute129

Shrinkage and Selection Operator (LASSO) formulation of the underlying minimiza-130

tion problem. This method has a fast convergence, is easy to implement, and also131

is extensively used in image processing. Here, the optimization problem is an 31-norm132

minimization problem, and the constraints comprise an over-determined system of equa-133

tions (Srinivas and Naidu, 2015). Use of this component in steganography is first of its134

kind as well.135

Third, we extract the secret images from the stego-image using our proposed extrac-136

tion rule, which is the reverse of our embedding rule mentioned above. As mentioned137

earlier, we do not require any information about the cover image while doing this ex-138

traction, which makes the process blind. Since our embedding procedure, as mentioned139
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above, is new, thus the extraction part is also new. We call our scheme SABMIS (Sparse140

Approximation Blind Multi-Image Steganography), and is described in Section 2.141

For performance evaluation, in Section 3 we perform extensive experiments on a142

set of standard images. We first compute the embedding capacity of our scheme, which143

turns out to be very good. Next, we check the quality of the stego-images by comparing144

them with their corresponding cover images. We use both a visual measure and a set145

of numerical measures for this comparison. The numerical measures used are: Peak146

Signal-to-Noise Ratio (PSNR) value, Mean Structural Similarity (MSSIM) index, Nor-147

malized Cross-Correlation (NCC) coefficient, entropy, and Normalized Absolute Error148

(NAE). The results show very little deterioration in the quality of the stego-images.149

Further, we visually demonstrate the high quality of the extracted secret images by150

comparing them with the corresponding original secret images. Also, via experiments,151

we support our conjecture that our scheme is resistant to steganographic attacks. Next,152

we demonstrate efficiency of our scheme by providing timing data. Finally, we present153

application of our scheme on real-life data in-turn demonstrating its usefulness.154

Also, we exhaustively compare SABMIS with competing schemes to demonstrate155

that it is among the best. For the sake of better exposition, this comparison is given in156

Introduction itself (see subsection below). Finally, in Section 4, we discuss conclusions157

and future work.158

1.1 Comparison with Past Work159

Here, we predominately compare our SABMIS scheme with the existing steganogra-160

phy schemes for the embedding capacity, the quality of stego-images, and resistant161

to steganographic attacks. For the stego-image quality comparison, since most works162

have computed PSNR values only, we use only this metric for our analysis. Although163

we check the quality of the extracted secret images by comparing them with the corre-164

sponding original secret images (as earlier), this check is not common in the existing165

works. Hence, we do not perform this comparison.166

In the literature, there exist multiple transform-based steganography schemes that167

hide one or two secret images. Hence, in Table 4 we compare our SABMIS scheme168

using the above mentioned metrics with such competing schemes. Recall, that like our169

SABMIS scheme these schemes are inherently resistant to steganographic attacks as170

well.171

As evident from Table 4, for the case of hiding one secret image, we compare with172

the best work of this category (Arunkumar et al., 2019b). Here, as for us, by using a173

transform based approach, a grayscale secret image is hidden into a grayscale cover174

image. The authors in (Arunkumar et al., 2019b) and our scheme both achieve an em-175

bedding capacity of 2 bpp. When comparing the stego-image and the corresponding176

cover image, (Arunkumar et al., 2019b) achieve a PSNR value of 49.69 dB (when ex-177

perimented with eight cover images) while we achieve a lower PSNR value of 41.64 dB178

(when experimenting with a higher number of cover images, i.e., ten). PSNR val-179

ues over 30 dB are considered good (Gutub and Shaarani, 2020; Zhang et al., 2013;180

Liu and Liao, 2008). Although, the scheme by (Arunkumar et al., 2019b) is superior181

than ours for hiding one secret image, it does not scale for the case of hiding multiple182

secret images, which we do (please see below).183

For the case of hiding two secret images, we again compare with the best work of184
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this category (Hemalatha et al., 2013). Here, using the transform based approach, two185

grayscale secret images are hidden into a color cover image. This setup is easier than186

our case where using a transform based approach, we embed two grayscale secret im-187

ages into a grayscale cover image (see Table 3). The authors in (Hemalatha et al., 2013)188

achieve an embedding capacity of 1.33 bpp while we achieve a higher embedding ca-189

pacity of 4 bpp. When comparing the stego-image and the corresponding cover image,190

(Hemalatha et al., 2013) achieve a PSNR value of 44.75 dB (when experimented with191

only two cover images) while we achieve a lower PSNR value of 38.74 dB (when ex-192

perimenting with a higher number of cover images, i.e., ten). To sum-up, our scheme193

is better than the one by (Hemalatha et al., 2013) because of the below reasons.194

In-terms of the quality of the scheme,195

a) we target a harder problem than (Hemalatha et al., 2013), and196

b) we achieve a higher embedding capacity than (Hemalatha et al., 2013).197

In-terms of the validation of the scheme,198

a) we experiment with a large number of cover images (ten as compared to two in199

(Hemalatha et al., 2013)),200

b) as discussed earlier, we obtain PSNR values over 30 dB of stego-images, which201

are considered acceptable, and202

c) we check the quality of stego-image on greater number of numerical measures203

(five as compared to one in (Hemalatha et al., 2013)).204

When using the transform-based approach, no one has hidden three or four secret205

images in a cover image. To demonstrate the broad applicability of our scheme, in Table206

5, we compare our SABMIS scheme using the above discussed metrics with the best207

spatial domain-based scheme that hide three and four secret images. Recall that, unlike208

our SABMIS scheme, these schemes are not intrinsically resistant to steganographic209

attacks. Please note that in the current scenario of transmitting stego-data over the210

internet, security is of paramount importance.211

As evident from Table 5, for the case of hiding three secret images, we compare212

with the best work of this category (Guttikonda et al., 2018). Here, three binary secret213

images are hidden into a grayscale cover image. As for the above case, this setup is214

easier than our case of hiding three grayscale secret images into a grayscale cover im-215

age (again see Table 3). The authors in (Guttikonda et al., 2018) achieve an embedding216

capacity of 1 bpp while we achieve a higher embedding capacity of 6 bpp. When com-217

paring the stego-image and the corresponding cover image, (Guttikonda et al., 2018)218

achieve a PSNR value of 46.36 dB (when experimented with only two cover images)219

while we achieve a lower PSNR value of 37.17 dB (when experimenting with a higher220

number of cover images, i.e., ten). To sum-up, our scheme is superior than the one by221

(Guttikonda et al., 2018) because of the below reasons.222

In-terms of the quality of the scheme,223

a) we target a harder problem than (Guttikonda et al., 2018),224

b) we achieve a higher embedding capacity than (Guttikonda et al., 2018), and225

c) we further improve the security of the inherently steganographic attack resistant226

transform based schemes.227

In-terms of the validation of the scheme,228

a) we experiment with a large number of cover images (ten as compared to two in229

(Guttikonda et al., 2018)),230
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b) as discussed earlier, we obtain PSNR values over 30 dB of stego-images, which231

are considered acceptable,232

c) we check the quality of stego-image on greater number of numerical measures233

(five as compared to one in (Guttikonda et al., 2018)),234

d) and we demonstrate the good quality of extracted secret images, which (Guttikonda et al.,235

2018) do not.236

Next, we compare with the best scheme that hide four secret images in a cover237

image, i.e., (Hu, 2006). As for our case, all images (secret and cover) are grayscale.238

The authors in (Hu, 2006) achieve an embedding capacity of 12 bpp while we achieve239

a lower embedding capacity of 8 bpp. When comparing the stego-image and the cor-240

responding cover image, (Hu, 2006) achieve a PSNR value of 34.80 dB (when exper-241

imented with five cover images) while we achieve a higher PSNR value of 35.66 dB242

(when experimenting with a higher number of cover images, i.e., ten). To sum-up, our243

scheme is better than the one by (Hu, 2006) because of the below reasons.244

In-terms of the quality of the scheme,245

a) our embedding capacity, although lower than (Hu, 2006), is on the higher side,246

b) we obtain higher PSNR values of stego-images as compared to those in (Hu,247

2006),248

c) and we further improve the security of the inherently steganographic attack resis-249

tant transform based schemes.250

In-terms of the validation of the scheme,251

a) we experiment with a large number of cover images (ten as compared to five in252

(Hu, 2006)),253

b) we check the quality of stego-image on greater number of numerical measures254

(five as compared to one in (Hu, 2006)),255

c) and we demonstrate the good quality of extracted secret images, which (Hu,256

2006) do not.257

Table 4. Performance comparison of our SABMIS scheme with competing

transform-based steganography schemes, which are inherently resistant to

steganographic attacks.

No.

of

secret

images

Steganography

Scheme

Type of

secret

image

Type of

cover

images

EC

(in bpp)

(Avg. PSNR,

No. of

Cover

Images)

Max.

PSNR

Resistant

to stegan-

ographic

attacks?

1
(Arunkumar et al., 2019b) Grayscale Grayscale 2 (49.69, 8) 50.15 Yes

SABMIS Grayscale Grayscale 2 (41.64, 10) 46.25 Yes

2
(Hemalatha et al., 2013) Grayscale Color 1.33 (44.75, 2) 44.80 Yes

SABMIS Grayscale Grayscale 4 (38.74, 10) 42.60 Yes

2 PROPOSED APPROACH258

Our sparse approximation based blind multi-image steganography scheme consists of259

the following components: (i) Hiding of secret images leading to the generation of the260

stego-data. (ii) Construction of the stego-image. (iii) Extraction of secret images from261

the stego-image. These parts are discussed in the respective subsections below.262
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Table 5. Performance comparison of our SABMIS scheme with competing spatial

domain-based steganography schemes, which are not inherently resistant to

steganographic attacks.

No.

of

secret

images

Steganography

Scheme

Type of

secret

image

Type of

cover

images

EC

(in bpp)

(Avg. PSNR,

No. of

Cover

Images)

Max.

PSNR

Resistant

to stegan-

ographic

attacks?

3
(Guttikonda et al., 2018) Binary Grayscale 1 (46.36, 2) 46.38 No

SABMIS Grayscale Grayscale 6 (37.17, 10) 41.06 Yes

4
(Hu, 2006) Grayscale Grayscale 12 (34.80, 5) 34.82 No

SABMIS Grayscale Grayscale 8 (35.66, 10) 39.74 Yes

2.1 Hiding Secret Images263

First, we perform sub-sampling of the cover image to obtain four sub-images. This264

type of sampling is done because we are hiding up to four secret images. Let CI be the265

cover image of size r× r. Then, the four sub-images each of size r
2
× r

2
are obtained as266

follows (Pan et al., 2015):267

CI1(n1,n2) =CI(2n121,2n2 21), (1a)268

CI2(n1,n2) =CI(2n1,2n2 21), (1b)269

CI3(n1,n2) =CI(2n121,2n2), (1c)270

CI4(n1,n2) =CI(2n1,2n2), (1d)271
272

where CIk, for k = {1,2,3,4}, are the four sub-images; n1,n2 = 1,2, . . . , r
2

(in our case,273

r is divisible by 2); and CI( · , · ) is the pixel value at ( · , · ). A cover image and the274

corresponding four sub-sampled images are shown in Figure 1.275

Figure 1. A cover image and its 4 sub-sampled images (sta, 2022).

Originally, these sub-images are not sparse; hence, next, we perform block-wise276

sparsification of each of these images. For this, we divide each sub-image into blocks277

of size b×b and obtain r2

4×b2 blocks for each sub-image (in our case, b divides r). Now,278

we apply discrete cosine transformation to each block. That is,279

si = DCT (xi), (2)280
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where i = 1,2, . . . , r2

4×b2 , xi and si are the ith original and sparse blocks of the same281

size, i.e, b× b, respectively, and DCT is the Discrete Cosine Transform. Further, we282

pick the final sparse blocks using a zig-zag scanning order as used in our earlier work283

(Pal et al., 2019), and obtain corresponding sparse vectors each of size b2 ×1. The zig-284

zag scanning order for a block of size 8×8 is shown in Figure 2. This order helps us to285

arrange the DCT coefficients with the set of large coefficients first, followed by the set286

of small coefficients, which assists in the preservation of a good quality stego-image.287

Next, we represent each vector in two groups based upon large (say #p1) and small288

(say #p2) coefficients, i.e., si,u * R
p1 and si,v * R

p2 , where p1 f p2. Each of these289

vectors is sparse and p1 + p2 = b2. Further, we oversample each sparse vector using290

linear measurements as below.291

yi =

[

yi,u

yi,v

]

=

[

si,u

Φsi,v

]

, (3)292

where yi *R
(p1+p3)×1 is the set of linear measurements, and Φ *R

p3×p2 is the column293

normalised measurement matrix consisting of normally distributed random numbers294

with p3 > p2 and p3 * N (i.e., the sparse coefficients are oversampled) 2. This over-295

sampling helps us to perform sparse approximation. By employing this approximation296

(along with our novel embedding rule discussed towards the end of this subsection), we297

achieve a higher embedding capacity. Moreover, our approach gains an extra layer of298

security because the linear measurements include measurement-matrix encoded small299

coefficients of the sparse vectors obtained after DCT. Since the distribution of coeffi-300

cients of the generated sparse vectors is almost the same for all the blocks of an image,301

we use the same measurement matrix for all the blocks.302

Figure 2. Zig-zag scanning order for a block of size 8×8.

Next, we perform processing of the secret images for hiding them into the cover303

image. Let the size of each secret image be m×m. Initially, we perform block-wise304

2In the experimental results section, we show how to experimentally pick these coefficients.
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DCT of each of these images and obtain their corresponding DCT coefficients. Here,305

the size of each block taken is l× l, and hence, we have m2

l2 blocks for each secret image.306

In our case, l divides m, and we ensure that m2

l2 will be less than or equal to r2

4×b2 so that307

the number of blocks of the secret image is less than or equal to the number of blocks308

of a cover sub-image. Thereafter, we arrange these DCT coefficients as a vector in309

the earlier discussed zig-zag scanning order. Let tı̂ * Rl2×1, for ı̂ = 1,2, . . . , m2

l2 , be the310

vector representation of the DCT coefficients of one secret image. We pick the initial311

p4 DCT coefficients with relatively larger values (out of the available l2 coefficients)312

for hiding2, where p4 * N. Omitting the remaining coefficients (l2 2 p4) does not313

significantly deteriorate the quality of the extracted secret image.314

Here, we show the hiding of only one secret image into one sub-image of the cover315

image. However, in our steganography scheme, we can hide a maximum of four secret316

images, one in each of the four sub-images of the cover image, which is demonstrated317

in the experimental results section. If we want to hide less than four secret images, we318

can randomly select the corresponding sub-images from the available four.319

Next, using our novel embedding rule (discussed below), we hide the chosen p4320

DCT coefficients of the secret image into a selected set of p1+ p3 linear measurements321

obtained from the sub-image of the cover image, leading to the generation of the stego-322

data (we ensure that p4 is less than p1 + p3).323

Table 6. The detail of hiding secret image coefficients into the linear measurement

coefficients of the cover image.

Secret Image Coefficient Indices

1 2 to c c+ 1 to p4

Companion Linear Measurement Coefficient Indices

p1 2 2c p1 2 2c+ 1 to p1 2 c2 1 p1 + c+ 1 to p1 + p4

Replaced Linear Measurement Coefficient Indices

p1 p1 2 c+ 1 to p1 2 1 p1 + p4 + 1 to p1 + 2× p42 c

We hide secret image data into the cover image by taking linear combinations of324

each secret image coefficient with a companion linear measurement coefficient of the325

cover image. These linear combinations replace certain other linear coefficients of the326

cover image to obtain the so called stego-data (subsequently, stego-image). The three327

groups of index coefficients are listed in Table 6.328

The data in Table 6 is based upon three design choices as below.329

a) As can be seen from Table 6, we divide each group of coefficients into three330

ranges in a staggered manner to achieve a higher level of security.331

b) The specific choice of indices in the second and fourth rows of Table 6 is made332

so as to hide secret image coefficients in relatively small valued cover image co-333

efficients (companion linear measurement coefficients). This results in relatively334

improved quality stego-image.335

c) In Table 6, the replaced linear measurement coefficient indices differ just slightly336

from the chosen companion coefficient indices (fourth and sixth rows respec-337

tively). The reason for this is that we want our extraction rule (discussed in338

section 2.3) to be as less lossy as possible, resulting in less deteriorated extracted339

secret images.340
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Algorithm 1 Embedding Rule

Input:

• yi: Sequence of linear measurements of the cover image with i =

1,2, . . . , r2

4×b2 .

• tı̂: Sequence of transform coefficients of the secret image with ı̂ =

1,2, . . . , m2

l2 .

• The choice of our r, b, m, and l is such that m2

l2 is less than or equal to r2

4×b2 .

• p1 and p4 are lengths of certain vectors defined on pages ix and x, respec-

tively.

• α , β , γ , and c are algorithmic constants that are chosen based upon experi-

ence. The choices of these constants are discussed in the experimental results

sections.

Output:

• y2i: The modified version of the linear measurements with i = 1,2, . . . , r2

4×b2 .

1: Initialize y2i to yi, where i = 1,2, . . . , r2

4×b2 .

2: for ı̂ = 1 to m2

l2 do

3: // Embedding of the first coefficient.

y2ı̂(p1) = yı̂(p1 22c)+α × tı̂(1).

4: for j = p1 2 c+1 to p1 21 do

5: // Embedding of the next c21 coefficients.

y2ı̂( j) = yı̂( j2 c)+β × tı̂( j2 p1 + c+1).

6: end for

7: for k = p1 + p4 +1 to p1 +2× p4 2 c do

8: // Embedding of the remaining p4 2 c coefficients.

y2ı̂(k) = yı̂(k2 p4 + c)+ γ × tı̂(k2 p1 2 p4 + c).

9: end for

10: end for

11: return y2i

The whole process is given in Algorithm 1. Specifically, the indices discussed341

in Table 6 are given on line 3, lines 4 – 6, and lines 7 – 9 of this algorithm, respec-342

tively. The block diagram for this complete data embedding process is given in Figure343

3. A small numerical example, which further explains this hiding process is given in344

Appendix B.345
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Figure 3. The embedding process.

2.2 Construction of the Stego-Image346

As mentioned earlier, the next step in our scheme is the construction of the stego-image.347

Since we can hide a maximum of four secret images into four sub-images of a single348

cover image, we first construct four sub-stego-images and then perform inverse sam-349

pling to obtain a single stego-image. Let s2i be the sparse vector of the ith block of a350

sub-stego-image. The sparse vector s2i is the concatenation of s2i,u and s2i,v. Here, the size351

of s2i,u, s2i,v, and s2 is the same as that of si,u, si,v, and s, respectively. Then, we have352

s2i,u = y2i,u, (4a)353

s2i,v = argmin
s2i,v*R

p2

�s2i,v�1 subject to Φs2i,v = y2i,v. (4b)354

355

where y2i is defined in Algorithm 1, and it is equal to

[

y2i,u
y2i,v

]

as split in (3). The sec-356

ond part (4b) (i.e., obtaining s2i,v), is an 31-norm minimization problem. Here, we can357

observe that in the above optimization problem, the constraints are oversampled. As358

earlier, this oversampling helps us to do sparsification, which leads to increased em-359

bedding capacity as well as increased security because the measurement matrix is en-360

coded. For the solution of the minimization problem (4b), we use ADMM (Boyd et al.,361

2010; Gabay, 1976) to solve the LASSO (Hwang et al., 2016; Nardone et al., 2019)362

formulation of this minimization problem3. We use this method because it has a fast363

convergence, is easy to implement, and also is extensively used in image processing364

(Boyd et al., 2010; Hwang et al., 2016).365

Next, we convert each vector s2i into a block of size b× b. After that, we apply366

inverse discrete cosine transformation (i.e., the two-dimensional Inverse DCT) to each367

of these blocks to generate blocks x2i of the image. That is,368

x2i = IDCT
(

s2i
)

. (5)369

3Since the linear system of equations in (4b) is overdetermined, we solve it in least squares sense

that causes loss of information.
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Next, we construct the sub-stego-image of size r
2
× r

2
by arranging all these blocks x2i.370

We repeat the above steps to construct all four sub-stego-images. At last, we perform371

inverse sampling and obtain a single constructed stego-image from these four sub-stego-372

images. In the experiments section, we show that the quality of the stego-image is373

also very good. The block representation of these steps is given in Figure 4. A small374

numerical example, which further explains this process is given in Appendix C.375

Figure 4. Stego-image construction.

2.3 Extraction of the Secret Images376

In this subsection, we discuss the process of extracting secret images from the stego-377

image. Initially, we perform sampling (as done in Section 2.1 using (1a)–(1d)) of the378

stego-image to obtain four sub-stego-images. Since the extraction of all the secret379

images is similar, here, we discuss the extraction of only one secret image from one380

sub-stego-image. First, we perform block-wise sparsification of the chosen sub-stego-381

image. For this, we divide the sub-stego-image into blocks of size b× b. We obtain382

a total of r2

4×b2 blocks. Further, we sparsify each block (say x22i ) by computing the383

corresponding sparse vector (say s22i ). That is,384

s22i = DCT (x22i ). (6)385

Next, as earlier, we arrange these sparse blocks in a zig-zag scanning order, ob-386

tain the corresponding sparse vectors each of size b2 × 1, and then categorize each of387

them into two groups s22i,u * R
p1 and s22i,v * R

p2 . Here, as before, p1 and p2 are the388

numbers of coefficients having large values and small values (or zero values), respec-389

tively. After that, we oversample each sparse vector using linear measurements (say390

y22i * R
(p1+p3)×1),391

y22i =

[

y22i,u
y22i,v

]

=

[

s22i,u
Φs22i,v

]

. (7)392

From y22i , we extract the DCT coefficients of the embedded secret image using Algo-393

rithm 2. This extraction rule is the reverse of the embedding rule given in Algorithm394

1.395
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Algorithm 2 Extraction Rule

Input:

• y22i : Sequence of linear measurements of the stego-image with i =

1,2, . . . , r2

4×b2 .

• p1, p4, α , β , γ , and c are chosen as in Algorithm 1.

Output:

• t 2ı̂ : Sequence of transform coefficients of the secret image with ı̂ =

1,2, . . . , m2

l2 .

1: Initialize t 2ı̂ to zeros, where ı̂ = 1,2, . . . , m2

l2 .

2: for ı̂ = 1 to m2

l2 do

3: // Extraction of the first coefficient.

t 2ı̂(1) =
y22ı̂ (p1)2y22ı̂ (p122c)

α .

4: for j = p1 2 c+1 to p1 21 do

5: // Extraction of the next c21 coefficients.

t 2ı̂( j2 p1 + c+1) =
y22ı̂ ( j)2y22ı̂ ( j2c)

β
.

6: end for

7: for k = p1 + p4 +1 to p1 +2× p4 2 c do

8: // Extraction of the remaining p4 2 c coefficients.

t 2ı̂(k2 p1 2 p4 + c) =
y22ı̂ (k)2y22ı̂ (k2p4+c)

γ .

9: end for

10: end for

11: return t 2ı̂

In Algorithm 2, t 2ı̂ *R
l2×1, for ı̂ = 1,2, . . . , m2

l2 , are the vector representations of the396

DCT coefficients of the blocks of one extracted secret image. Next, we convert each397

vector t 2ı̂ into blocks of size l × l, and then perform a block-wise Inverse DCT (IDCT)398

(using (5)) to obtain the secret image pixels. Finally, we obtain the extracted secret399

image of size m×m by arranging all these blocks column wise. As mentioned earlier,400

this steganography scheme is a blind multi-image steganography scheme because it401

does not require any cover image data at the receiver side for the extraction of secret402

images.403

Here, the process of hiding (and extracting) secret images is not fully lossless4, re-404

sulting in the degradation of the quality of extracted secret images. This is because we405

first oversample the original image using (3), and then we construct the stego-image406

by solving the optimization problem (4b), which leads to a loss of information. How-407

ever, our algorithm is designed in such a way that we are able to extract high-quality408

4This is common in transform-based image steganography.
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secret images. We support this fact with examples in the experiments section (specifi-409

cally, Section 3.3). We term our algorithm Sparse Approximation Blind Multi-Image410

Steganography (SABMIS) scheme due to the involved sparse approximation and the411

blind multi-image steganography.412

The above extraction process is represented via a block diagram in Figure 5. As413

discussed earlier, this extraction is just the reverse of the embedding process.414

Figure 5. The extraction process.

3 EXPERIMENTAL RESULTS415

Experiments are carried out in MATLAB on a machine with an Intel Core i5 processor416

@2.50 GHz and 8GB RAM. We use 10 standard test images (those which are frequently417

found in literature) for our experiments. These image are freely available with no copy-418

right (sta, 2022).419

Here, we take all ten images shown in Figure 6 as the cover images, and four images;420

Figures 6(B), 6(E), 6(F), and 6(J) as the secret images for our experiments. However,421

we can use any of the ten images as the secret images.422

Although the images shown in Figure 6 look to be of the same dimension, they are423

of varying sizes. For our experiments, each cover image is converted to 1024× 1024424

size (i.e., r× r). We take blocks of size 8×8 for the cover images (i.e., b×b). Recall425

from subsection 2.1 that the size of the DCT sparsified vectors is (p1 + p2)× 1 with426

p1 + p2 = b2 (here, b2 = 64). In general, applying DCT on images results in sparse427

vectors where more than half of the coefficients have values that are either very small428

or zero (Agrawal and Ahuja, 2021; Pal et al., 2019; Pan et al., 2015). This is the case429

here as well. Hence, in our experiments, we take p1 = p2 = 32. Recall, the size of the430

measurement matrix Φ is p3 × p2 with p3 > p2. We take p3 = 50× p2. Without loss431

of generality, the element values of the column-normalized measurement matrix are432

taken as random numbers with mean 0 and standard deviation 1, which is a common433

standard.434
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Figure 6. Test images used in our experiments (sta, 2022). (A) Fruits, (B) Peppers,

(C) Boat, (D) House, (E) Lake, (F) Stream, (G) Living room, (H) Tulips, (I) Airplane,

and (J) Camera man.

There are many options for taking the size of the secret images. In one way the size435

of the length and the width of the secret image is taken to be the same as the length and436

the width of the cover image (Sanjutha, 2018). Another approach, which many papers437

follow, the dimensions of secret image is taken to be substantially smaller than the438

dimensions of the cover image. For example, the size of the length and the width of the439

secret image to be half of the length and the width of the cover image (Hemalatha et al.,440

2013; Arunkumar et al., 2019a,b), respectively. Another option is to use a factor of441

one-fourth (Manujala and Danti, 2015). Hence, without any loss of generality, we take442

the dimensions of secret image to be half of the dimensions of cover image.443

Thus, each of the secret image is converted to 512×512 size (i.e., m×m). We take444

blocks of size 8× 8 for the secret images as well (i.e., l × l). In general, the DCT co-445

efficients can be divided into three sets (Shastri et al., 2018); low frequencies, middle446

frequencies, and high frequencies. Low frequencies are associated with the illumina-447

tion, middle frequencies are associated with the structure, and high frequencies are448

associated with the noise or small variation details. Thus, these high-frequency coef-449

ficients are of very little importance for the to-be embedded secret images. Since the450

number of high-frequency coefficients is usually half of the total number of coefficients,451

we take p4 = 32 (using 8×8 divided by 2).452

The values of the constants in Algorithm 1 and Algorithm 2 are taken as follows5
453

(based upon experience): α = 0.01, β = 0.1, γ = 1, and c = 6. The LASSO constant454

is taken as λ = 0.011λmax, where λmax = �ΦT y2i,v�∞ with � · �∞ being the 3∞-norm455

(Agrawal et al., 2021). For ADMM, we set the absolute stopping tolerance as 1×1024,456

and the relative stopping tolerance as 1× 1022. These values are again taken based457

upon our experience with a similar algorithm (Agrawal et al., 2021). Eventually, our458

ADMM always converges in 5 to 20 iterations.459

5The values of these constants do not affect the convergence of ADMM much. Determining the

range of values that work best here is part of our future work.
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As mentioned earlier, in the six sections below we experimentally demonstrate the460

usefulness of our steganography scheme. In Section 3.1, we show analytically that our461

SABMIS scheme gives excellent embedding capacities. In Section 3.2, we show that462

the quality of the constructed stego-images, when compared with the corresponding463

cover images, is high. In Section 3.3, we demonstrate the good quality of the extracted464

secret images when compared with the original secret images. In Section 3.4, we show465

that our SABMIS scheme is resistant to steganographic attacks. In Section 3.5, we466

demonstrate efficiency of SABMIS by providing its timing data. In Section 3.6, we467

discuss applicability of our scheme to real-life data, and hence, demonstrate its practical468

usefulness.469

3.1 Embedding Capacity Analysis470

The embedding capacity (or embedding rate) is the number (or length) of secret bits471

that can be hidden/ embedded in each pixel of the cover image. It is measured in bits472

per pixel6 (bpp) and is calculated as follows:473

EC in bpp =
Total number of secret bits embedded

Total number of pixels in the cover image
. (8)474

As motivated on the previous page, we chose the size of the length and the width of475

secret image to be half of the length and the width of cover image, respectively. Since476

our cover images are of size 1024× 1024, our secret images are taken to be of size477

512× 512. For a grayscale image, each pixel size is 8 bits. Hence, when hiding one478

secret image in a cover image, we obtain embedding capacity as below.479

EC in bpp =
512×512×8

1024×1024
, (9)480

which is equal to 2 bpp. Similarly, while hiding two, three, and four secret images in481

a cover image, we obtain the embedding capacities of 4 bpp, 6 bpp, and 8 bpp, respec-482

tively.483

3.2 Stego-Image Quality Assessment484

In general, the visual quality of the stego-image degrades as the embedding capacity in-485

creases. Hence, preserving the visual quality becomes increasingly important. There is486

no universal criterion to determine the quality of the constructed stego-image. However,487

we evaluate it by visual and numerical measures. We use Peak Signal-to-Noise Ratio488

(PSNR), Mean Structural Similarity (MSSIM) index, Normalized Cross-Correlation489

(NCC) coefficient, entropy, and Normalized Absolute Error (NAE) numerical mea-490

sures.491

When using the visual measures, we construct the stego-images corresponding to492

the different cover images used in our experiments and then check their distortion vi-493

sually. We also check their corresponding edge map diagrams. Here, we present the494

visual comparison only for ‘Stream’ as the cover image with ‘Lake’ secret image and495

6Since in the transform domain-based steganography schemes, some specific transform coefficients

are hidden into the cover image (along with the secret bits), a more appropriate term that can be used for

embedding capacity is “bits of information per pixel” (bipp). However, to avoid confusion, we use the

term bpp in this paper, which is commonly used.
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the corresponding stego-image. We get similar results for the other images as well. The496

comparison is given in Figure 7. The cover image and its corresponding edge map are497

shown in parts (a) and (b) of this figure. The stego-image and its corresponding edge498

map are given in parts (c) and (d) of the same figure. When we compare each figure499

with its counterpart, we find that they are very similar.500

(A)

(B)

(C)

(D)

Figure 7. Visual quality analysis between ‘Stream’ cover image (CI) and its

corresponding stego-image (SI) (with ‘Lake’ secret image embedded in it). (A) cover

image, (B) cover image edge map, (C) stego-image, and (D) stego-image edge map.

Next, when using the numerical measures to assess the quality of the stego-image501

with respect to the cover image, we first evaluate the most common measure of PSNR502

value in Section 3.2.1. Subsequently, we evaluate the other more rarely used numerical503

measures of MSSIM index, NCC coefficient, entropy, and NAE in Section 3.2.2.504
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3.2.1 Peak Signal-to-Noise Ratio (PSNR) Value505

We compute the PSNR values to evaluate the imperceptibility of stego-images (SI) with506

respect to the corresponding cover images (CI) as follows (Elzeki et al., 2021):507

PSNR(CI,SI) = 10log10

R2

MSE(CI,SI)
dB, (10)508

where R is the maximum intensity of the pixels, which is 255 for grayscale images, dB509

refers to decibel, and MSE(CI,SI) represents the mean square error between the cover510

image CI and the stego-image SI that is calculated as511

MSE(CI,SI) =
∑r1

i=1 ∑r2
j=1 (CI (i, j)2SI (i, j))2

r1× r2
, (11)512

where r1 and r2 represent the row and column numbers of the image (for us either cover513

or stego), respectively, and CI(i, j) and SI(i, j) represent the pixel values of the cover514

image and the stego-image, respectively.515

A higher PSNR value indicates a higher imperceptibility of the stego-image with516

respect to the corresponding cover image. In general, a value higher than 30 dB is517

considered to be good since human eyes can hardly distinguish the distortion in the518

image (Gutub and Shaarani, 2020; Zhang et al., 2013; Liu and Liao, 2008).519

The PSNR values of the stego-images corresponding to the ten cover images are520

given in Figure 8 and Figure 9. In Figure 8, we show the PSNR values of all the521

stego-images when separately all the four secret images (mentioned above in Figure522

6) are hidden. In this figure, we obtain the highest PSNR value (46.25 dB) when the523

‘Peppers’ secret image is hidden in the ‘House’ cover image, while the lowest PSNR524

value (37.66 dB) is obtained when the ‘Stream’ secret image is hidden in the ‘Stream’525

cover image.526

In Figure 9, we show the PSNR values for the four cases of hiding one, two, three,527

and four secret images in the ten cover images. As we have four secret images, when528

hiding one secret image, we have a choice of hiding any one of them and present the529

resulting PSNR values. However, we separately hide all four images, obtain their PSNR530

values, and then present the average results. Similarly, the average PSNR values are531

presented for the cases when we hide two and three images. In this figure, we obtain the532

highest average PSNR value (45.21 dB) when one secret image is hidden in the ‘House’533

cover image, while the lowest PSNR value (31.78 dB) is obtained when all four secret534

images are hidden in the ‘Stream’ cover image. Also, we observe that for all test cases,535

we obtain PSNR values higher than 30 dB which, as earlier, are considered good.536

3.2.2 Other Numerical Measures537

538

Mean Structural Similarity (MSSIM) Index This is an image quality assessment met-539

ric used to measure the structural similarity between two images, which is most no-540

ticeable to humans (Habib et al., 2016; Elzeki et al., 2021). MSSIM between the cover541

image CI and the stego-image SI is given as542

MSSIM(CI,SI)=
1

M

M

∑
j=1

SSIM(ci j,si j), (12)543

544
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Figure 8. PSNR values of the stego-images when only one secret image is hidden.
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Figure 9. PSNR values of the stego-images when different numbers of images are

hidden.

where ci j and si j are the pixel values of the cover image and the stego-image, respec-545

tively, at the jth local window7 with M being the number of local windows (Habib et al.,546

2016; Wang et al., 2004), and547

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ 2
x +σ 2

y +C2)
, (13)548

549

where for vectors x and y; µx is the weighted mean of x; µy is the weighted mean of y;550

σx is the weighted standard deviation of x; σy is the weighted standard deviation of y;551

σxy is the weighted covariance between x and y; C1 and C2 are positive constants.552

We take M = 1069156, C1 = (0.01× 255)2, and C2 = (0.03× 255)2 based upon553

the recommendations from (Habib et al., 2016; Wang et al., 2004). The value of the554

MSSIM index lies between 0 and 1, where the value 0 indicates that there is no struc-555

tural similarity between the cover image and the corresponding stego-image, and the556

value 1 indicates that the images are identical.557

Normalized Cross-Correlation (NCC) Coefficient: This metric measures the amount558

of correlation between two images (Parah et al., 2016). The NCC coefficient between559

7It is a 11×11 Gaussian matrix, which is standard in the calculation of MSSIM.
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the cover image CI and the stego-image SI is given as560

NCC(CI,SI) =
∑r1

i=1 ∑r2
j=1CI(i, j)SI(i, j)

∑r1
i=1 ∑r2

j=1CI2(i, j)
, (14)561

562

where r1 and r2 represent the row and column numbers of the image (for us either cover563

or stego), respectively, and CI(i, j) and SI(i, j) represent the pixel values of the cover564

image and the stego-image, respectively. The NCC coefficient value of 0 indicates that565

the cover image and the stego-image are not correlated while a value of 1 indicates that566

the two are highly correlated.567

Entropy: In general, entropy is defined as the measure of average uncertainty of a568

random variable. In the context of an image, it is a statistical measure of randomness569

that can be used to characterize the texture of the image (Gonzalez et al., 2004). For a570

grayscale image (either a cover image or a stego-image in our case), entropy is given as571

E =2
255

∑
i=0

(pi log2 pi), (15)572

573

where pi * [0,1] is the fraction of image pixels that have the value i. If the stego-image574

is similar to its corresponding cover image, then the two should have similar entropy575

values (due to similar textures).576

Normalized Absolute Error (NAE): This metric is a distance measure that captures577

pixel-wise differences between two images (Arunkumar et al., 2019b). NAE between578

the cover image CI and the stego-image SI is given as579

NAE(CI,SI) =
∑r1

i=1 ∑r2
j=1 (|CI (i, j)2SI (i, j) |)

∑r1
i=1 ∑r2

j=1CI (i, j)
, (16)580

where r1 and r2 represent the row and the column numbers of the image (for us either581

cover or stego), respectively, and CI(i, j) and SI(i, j) represent the pixel values of the582

cover image and the stego-image, respectively. NAE has values in the range 0 to 1.583

A value close to 0 indicates that the cover image is very close to its corresponding584

stego-image, and a value close to 1 indicates that the two are substantially far apart.585

In Table 7, we present the values of MSSIM index, NCC coefficient, entropy and586

NAE for our SABMIS scheme when hiding all four secret images. We do not present587

the values for the cases of embedding less than four secret images as their results will588

be better than those given in Table 7. Hence, our reported results are for the worst case.589

From this table, we observe that all values of the MSSIM index are nearly equal to 1590

(different in the sixth place of decimal), the values of NCC coefficients are close to591

1, and values of NAE are close to 0. The entropy values of the cover and the stego-592

images are almost identical. All these values indicate that the cover images and their593

corresponding stego-images are almost identical.594

3.3 Secret Image Quality Assessment595

Since human observers are considered the final arbiter to assess the quality of the ex-596

tracted secret images, we compare one such original secret image and its corresponding597
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Table 7. MSSIM index, NCC coefficient, entropy, and NAE of the stego-images

when compared with the corresponding cover images.

Cover

Image
MSSIM NCC

Entropy
NAE

Cover

Image

Stego-

Image

Fruits 1 0.9996 7.488 7.496 0.009

Peppers 1 0.9997 7.573 7.603 0.012

Boat 1 0.9998 7.121 7.151 0.012

House 1 0.9998 5.756 6.630 0.007

Lake 1 0.9997 7.471 7.513 0.013

Stream 1 0.9991 7.702 7.719 0.020

Livingroom 1 0.9996 7.431 7.438 0.014

Tulips 1 0.9994 7.713 7.735 0.011

Jetplane 1 0.9998 6.716 6.795 0.008

Cameraman 1 0.9999 7.055 7.133 0.009

Average 1 0.9996 7.202 7.320 0.011

extracted secret image. The results of all other combinations are almost the same. In598

Figures 10(A) and 10(C), we show the original ‘Lake’ secret image and the extracted599

‘Lake’ secret image (from the ‘Stream’ stego-image). From these figures, we observe600

that there is little distortion in the extracted image. Besides this, for these two images,601

we also present their corresponding edge map diagrams (in Figures 10(B) and 10(D),602

respectively). Again, we observe minimal variations between the original and the ex-603

tracted secret images.604

3.4 Security Analysis605

The SABMIS scheme is a transform domain based technique which employs an indi-606

rect embedding strategy, i.e., it does not follow the Least Significant Bits (LSB) flipping607

method, and hence, it is immune to statistical attacks (Westfeld and Pfitzmann, 2000;608

Yu et al., 2009). Moreover, in the SABMIS scheme, the measurement matrix Φ, and609

the embedding/ extraction algorithmic settings are considered as secret-keys, which are610

shared between the sender and the legitimate receiver. Even if the eavesdropper inter-611

cepting the stego-data becomes aware that SABMIS scheme has been used to embed612

a secret image, he would not know these secret keys. Hence, we achieve increased613

security in our proposed system.614

To justify this, we extract the secret image in two ways, i.e., by using correct secret-615

keys and by using wrong secret-keys. Here, we embed only one secret image in a cover616

image although these experiments can be extended to the cases of embedding two, three617

or four secret images. Since the measurement matrix, which we use (random matrix618

having numbers with mean 0 and standard deviation 1) is one of the most commonly619

used measurement matrix and the eavesdropper might be able to guess it, we use this620

same measurement matrix while building wrong secret-keys. Here, we use the same621

dimension of this matrix as well, i.e., p3× p2. In reality, the guessed matrix size would622

be different from the original matrix size, which would make the extraction task of the623

eavesdropper more difficult.624

The algorithmic settings that we use will be completely unknown to the eavesdrop-625

per as above. These involve using a set of cover image coefficient indices where secret626

xxii/xxxviPeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66732:1:1:NEW 15 Jul 2022)

Manuscript to be reviewedComputer Science



(A) (C)

(B) (D)

Figure 10. Visual quality analysis between the ‘Lake’ original secret image and the

‘Lake’ extracted secret image (from the ‘Stream’ stego-image). (A) ‘Lake’ Original

Secret Image, (B) Original Secret Image edge map, (C) ‘Lake’ Extracted Secret

Image, and (D) Extracted Secret Image edge map.

image coefficients are embedded (p1 and p4) and few constants (α = 0.01, β = 0.1,627

γ = 1 and c = 6). While building wrong secret-keys, without changing the indices (i.e.,628

same p1 and p4), we take the common guess of one for all constants (i.e., α = 1, β = 1,629

γ = 1 and c = 1). In reality, the eavesdropper would not be able to correctly guess these630

indices as well, resulting in further challenges during extraction.631

In Figure 11 (A) and (B), we compare the ‘Lake’ secret image when extracted using632

correct and wrong secret-keys (from the ‘Stream’ stego-image), respectively. From this633

figure, we see that when using correct secret-keys, the visual distortion in the extracted634

secret image is negligible (as evident by comparing with Figure 6(E)), and when using635

the wrong secret-keys, the distortion in the extracted secret image is very high (it is636

almost black).637
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Figure 11. Visual quality analysis between the ‘Lake’ extracted secret image using

correct and wrong secret-keys (from the ‘Stream’ stego-image). (A) ‘Lake’ extracted

secret image (using correct secret-keys), and (B) ‘Lake’ extracted secret image (using

wrong secret-keys).

Further, we numerically demonstrate that the correctly and wrongly extracted secret638

images are very different. We compute all the earlier discussed measures, i.e., PSNR,639

MSSIM, NCC, Entropy, and NAE values between the correctly and wrongly extracted640

secret images (when all four secret images had been separately embedded in the ten641

cover image). The average values of all these metrics are given in Table 8. In this642

table, we observe that PSNR values are very low (recall over 30 dB are considered643

good). The MSSIM and NCC values are close to 0. The entropy values of correctly644

and wrongly extracted secret images are far from each other. Finally, NAE values are645

close to 1. Hence, two images are substantially different from each other. Therefore,646

in the SABMIS scheme, a change in secret-keys will lead to a shift in the accuracy647

between the correctly and wrongly extracted secret images, in turn, making our scheme648

secure.649

3.5 Timing Data650

The time taken by our SABMIS scheme is not of great importance here because all651

computations are done offline, whether it is hiding of secret images, stego-image con-652

struction, or the extraction of the secret images. However, for the sake of completeness,653

this data, while together hiding the four secret images in the ten cover images, is given654

in Table 9.655

It is evident that the scheme is completely executed in a few minutes. Further,656

hiding and the extraction steps take about the same time (which they should because of657

similar steps), which is 10% of the total time. The most expensive step is stego-image658

construction, where the optimization problem is solved, which takes 80% of the total659

time.660
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Table 8. Average PSNR, MSSIM, NCC, Entropy, and NAE value between the

correctly and wrongly extracted secret images.

Cover

Image
PSNR MSSIM NCC

Entropy
NAE

Correctly

Extracted

Secret Image

Wrongly

Extracted

Secret Image

Fruits 6.032 0.0116 0.0037 7.188 1.409 0.9952

Pepper 5.767 0.0061 0.0034 7.604 1.419 0.9955

Boat 5.760 0.0070 0.0030 7.546 1.324 0.9959

House 5.767 0.0036 0.0015 7.533 0.897 0.9979

Lake 5.767 0.0083 0.0044 7.534 1.587 0.9942

Stream 5.835 0.0113 0.0071 7.542 1.974 0.9910

Livingroom 5.775 0.0078 0.0039 7.544 1.521 0.9948

Tulips 5.655 0.0162 0.0038 7.253 1.527 0.9948

Airplane 5.762 0.0074 0.00322 7.533 1.385 0.9956

Cameraman 5.780 0.0054 0.0025 7.531 1.151 0.9966

Average 5.790 0.0085 0.0037 7.481 1.419 0.9952

Table 9. Timing data while embedding four secret images into different cover images.

Cover Image
Run Time of Different Stages of our SABMIS Scheme (in Seconds)

Hiding of

Secret Images

Stego-image

Construction

Secret Images

Extraction
Total Time

Fruits 8.92 74.67 12.78 96.37

Pepper 8.21 73.65 10.34 92.20

Boat 8.01 76.82 8.67 93.50

House 7.98 76.58 13.86 98.42

Lake 7.99 80.07 8.42 96.48

Stream 10.81 69.81 10.24 90.86

Livingroom 8.13 84.15 8.49 100.77

Tulips 8.68 81.34 9.13 99.15

Airplane 8.43 80.16 8.82 97.41

Cameraman 8.16 79.12 8.75 96.03

Average 8.38 77.34 9.83 95.55

3.6 Application of Our Scheme on Real-life Data661

In the two subsections below (3.6.1 and 3.6.2), we experiment on hiding mammograms662

and brain images (in cases where some loss is acceptable) in nondescript cover images.663

Sending these images safely across the internet is useful in breast cancer and brain664

related disease diagnosis, respectively. For the first case, we do not have reference665

steganographic data to compare against, while for the second case, we do have such666

data.667

3.6.1 Hiding Mammograms668

Here, we hide one through four mammograms (Heath et al., 1998, 2001) (see two in669

Figure 12(A) and Figure 12(C)) into all the cover images used in our experiments.670

These mammograms are freely available for research purposes. In Table 10, we present671

the embedding capacity and PSNR values from these experiments. As evident, we672

obtain good embedding capacity and average as well as maximum PSNR values. The673

other image comparison metrics turn out to be similar as well.674
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In figure 13, we present the visual comparison for ‘Stream’ as the cover image675

and the corresponding stego-image. We see that the cover and its corresponding stego-676

image are very similar. We get analogous results for the other images as well. We also677

check their edge maps (as discussed in Section 3.2) and obtained good results.678

Next, we assess the quality of the extracted secret mammograms. In Figures 12(A)679

and 12(C), we show two original mammograms, and in Figures 12(B) and Figure 12(D),680

we show the two respective extracted mammograms (from the ‘Stream’ stego-image).681

From these figures, we observe that there is very little distortion in the extracted mam-682

mograms. We get similar results for the other two mammograms as well.683

(A) (B)

(C) (D)

Figure 12. Visual quality analysis between the ‘Mammogram’ original secret image

and the ‘Mammogram’ extracted secret image (from the ‘Stream’ stego-image). (A)

‘Mammogram’ Original Secret Image, (B) ‘Mammogram’ Extracted Secret Image, (C)

‘Mammogram’ Original Secret Image, and (D) ‘Mammogram’ Extracted Secret

Image.

xxvi/xxxviPeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66732:1:1:NEW 15 Jul 2022)

Manuscript to be reviewedComputer Science



(A) (B)

Figure 13. Visual quality analysis between ‘Stream’ cover image (CI) and its

corresponding stego-image (SI) when four mammograms are hidden. (A) Cover

Image, and (B) Stego-image.

Table 10. Results of applicability of our scheme on real-life data (i.e.,

Mammograms).

No.

of

secret

images

Steganography

Scheme

Type of

secret

image

Type of

cover

images

EC

(in bpp)

(Avg. PSNR,

No. of

Cover

Images)

Max. PSNR

1 SABMIS Grayscale Grayscale 2 (44.30, 10) 49.41

2 SABMIS Grayscale Grayscale 4 (35.54, 10) 39.90

3 SABMIS Grayscale Grayscale 6 (34.87, 10) 39.10

4 SABMIS Grayscale Grayscale 8 (34.32, 10) 38.56

3.6.2 Hiding Brain Images684

The authors in (Arunkumar et al., 2019b) hide a brain image into a cover image. Since685

the original brain image as used in (Arunkumar et al., 2019b) is not publicly available,686

we work with a image that is quite similar to the image used in (Arunkumar et al.,687

2019b), and is available in free public domain with no copyright (see Figure 14(A))688

(Bra, 2022a,b). By using SABMIS, we hide one through four copies of this image into689

all cover images (presented earlier), and compare with the results of (Arunkumar et al.,690

2019b).691

This comparison is given in Table 11. As evident, we are not competitive with692

(Arunkumar et al., 2019b) for the case of hiding one secret image (also discussed in693

Section 1.1). However, (Arunkumar et al., 2019b)'s scheme can hide only one secret694

image while our scheme can hide multiple secret images. We observe that using SAB-695

MIS to hide four secret images in a cover image, we obtain a good embedding capacity696

of 8 bpp and a good average PSNR value of 33.56. The other image comparison metrics697

turn out to be similar as well.698

As mentioned above, (Arunkumar et al., 2019b) do not hide more than one secret699
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image, and hence, we have no reference data to compare against in rest of our results700

(quality of stego-image, quality of secret image, and resistant to steganographic attacks).701

In Figure 15, we present the visual comparison of ‘Stream’ as the cover image and the702

corresponding stego-image while hiding four copies of this brain image. As evident,703

the cover and its corresponding stego-image are very similar. We get analogous results704

for the other cover images as well. We also check their edge maps (as discussed in705

Section 3.2) and obtained good results.706

In Figure 14, we show the original brain secret image and one of the extracted brain707

image (from the ‘Stream’ stego-image). From these figures, we observe that when708

compared with the original secret image, the quality of the extracted secret image is709

good. Finally, like (Arunkumar et al., 2019b), our scheme is inherently resistant to710

steganographic attacks. Our design makes our scheme more robust.711

(A) (B)

Figure 14. Visual quality analysis between the ‘Brain’ original secret image (Bra,

2022a,b) and the ‘Brain’ extracted secret image (from the ‘Stream’ stego-image). (A)

‘Brain’ Original Secret Image, and (B) ‘Brain’ Extracted Secret Image.

Table 11. Application of our scheme on real-life data (brain image), and its

comparison with one scheme.

No.

of

secret

images

Steganography

Scheme

Type of

secret

image

Type of

cover

images

EC

(in bpp)

(Avg. PSNR,

No. of

Cover

Images)

Max. PSNR

1 (Arunkumar et al., 2019b) Grayscale Grayscale 2 (49.69, 8) 50.15

1 SABMIS Grayscale Grayscale 2 (41.54, 10) 44.58

4 SABMIS Grayscale Grayscale 8 (33.56, 10) 37.74

4 CONCLUSIONS AND FUTURE WORK712
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(A) (B)

Figure 15. Visual quality analysis between ‘Stream’ cover image (CI) and its

corresponding stego-image (SI) when four copies of brain medical images are hidden.

(A) Cover Image, and (B) Stego-image.

In image steganography, the challenges are increasing the embedding capacity of the713

scheme, maintaining the quality of the stego-image as well as extracted secret image,714

and ensuring that the scheme is resistant to steganographic attacks. We propose SAB-715

MIS, a blind multi-image steganography scheme for securing secret images in cover716

images to substantially overcome these challenges. All our images are grayscale, which717

is a hard problem.718

Our proposed SABMIS consists of many novel features to tackle the above chal-719

lenges. This includes a novel embedding rule that embeds the secret image sparse720

coefficients into oversampled cover image sparse coefficients in a staggered manner;721

a transformed LASSO formulation of the underline optimization problem to construct722

the stego-image, which is eventually solved by ADMM; and finally, the reverse of our723

unique embedding rule resulting in an extraction rule.724

We perform exhaustive experiments to demonstrate that our scheme overcomes all725

the challenges of image steganography as discussed above. We focus on embedding726

multiple secret images. The embedding capacity of SABMIS for the case of embed-727

ding two and three secret images is the best in the published literature (3 times and 6728

times than the existing best, respectively). While embedding four secret images, our729

embedding capacity is slightly lower than (Hu, 2006) (about 2
3

rd
) but we do substan-730

tially better in overcoming the other challenges.731

The quality of our stego-images (when compared with the corresponding cover im-732

ages) and our extracted secret images (when compared with the corresponding original733

secret images) are the best among the existing literature (over 30 dB of PSNR values).734

SABMIS is intrinsically as well as designed to be resistant to steganographic attacks735

(because transform based and algorithmic settings, respectively), making it one of the736

most secure schemes among the existing ones.737

Additionally, we show that SABMIS can be applied in very less amount of time,738
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and also demonstrate SABMIS's successful application on real-life problem of securely739

sending medical images over the internet.740

Next, we discuss the future work in this context. First is further improving our al-741

gorithm. As mentioned earlier, our SABMIS scheme has multiple novel components.742

Although in Appendix D, we perform sensitivity analysis of SABMIS with respect to743

one such component (oversampling), a more detailed analysis is part of future work. In744

future, we plan to find improved values of parameters α,β ,γ , etc. used in the embed-745

ding and the extraction aspects of SABMIS. Further, our scheme may give poor results746

when embedding more than four secret images (see Appendix E). Hence, exploring this747

aspect is also part of our future work.748

Second is extending our scheme to embed images into videos because the amount of749

information that may be hidden in an image is limited. Third is adapting our scheme for750

real-life applications. Although in this paper, we discuss use of SABMIS for securing751

mammograms and brain images while transmitting them over the internet, extensive752

experiments for this are part of our future work. Another related application is safely753

sharing biometric data of people over the internet. We plan to explore this aspect in754

future as well.755

A SOME STEGANOGRAPHY SCHEMES FOR HIDING BINARY756

SECRET DATA757

As discussed in the introduction, our focus is on hiding images into an image, and the758

images can be binary, grayscale, or color. Hiding binary data into images is a separate759

problem because the evaluation metrics for hiding images and binary data are com-760

pletely different. However, for the sake of completeness, in Table 12, we summarize761

some existing works that discuss hiding of binary data into images. These papers are762

sorted on the decreasing order of date of publishing.763

Table 12. Some steganography schemes for hiding binary secret data into an image.

All cover images are colored below.

Reference Technique

(AlKhodaidi and Gutub, 2021) LSB (Least Significant Bits)

(Al-Shaarani and Gutub, 2021a) LSB and DWT (Discrete Wavelet Transform)

(Al-Shaarani and Gutub, 2021b) LSB and DWT

(Hureib and Gutub, 2020) LSB

(Gutub and Al-Ghamdi, 2020) LSB

(Almutairi et al., 2019) LSB

(Gutub and Al-Ghamdi, 2019)
A modified version of

LSB

(Alanizy et al., 2018) LSB

(Gutub and Al-Juaid, 2018) LSB

(Parvez and Gutub, 2011)
A modified version of

LSB

(Gutub, 2010)
A modified version of

LSB
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B A SMALL NUMERICAL EXAMPLE OF OUR EMBEDDING764

PROCESS765

Our embedding process for a small example (with 2 × 2 blocks for both the secret766

and cover images) is shown in Figure 16. In the experiments, we show the results of767

hiding/ embedding up to four secret images in a cover image. However, for the sake of768

simplicity, here, we show the case of hiding one secret image into a cover image.769

A small block of cover image
Sparse blocks s

i 
in vector form

Blocks having 

low value

Linear measurement

Blocks

having 

large value

A small block of secret image

DCT coefficients

[-3.56, 6.21, 7.82,......., 2.50]

[249.99, 6.21, 498.99,......., 2.50]

Companion Linear measurement (size 150 x 1)

Replaced linear measurement (size 150 x 1)
Measurement stream (size 151 x 1)

Measurement matrix 

(size 150 X 3)

Figure 16. A small numerical example of secret image embedding.

C A SMALL NUMERICAL EXAMPLE OF OUR STEGO-IMAGE770

CONSTRUCTION PROCESS771

Our stego-image construction process, from the stego-data obtained from Figure 16, is772

shown in Figure 17.773

Approximate sparse

blocks

Blocks of stego-image

Inverse DCT

Figure 17. A small numerical example of stego-image construction.
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D SENSITIVITY OF OUR SCHEME WITH RESPECT TO THE774

NOVEL COMPONENTS775

Here, we demonstrate that when we omit or restrict a particular component of our776

steganography scheme, then how it affects the overall performance. As discussed ear-777

lier, the novel components of SABMIS are; the oversampling of the cover image sparse778

coefficients and hiding secret image sparse data into them in a staggered way (our em-779

bedding rule); using ADMM to solve the LASSO formulation of the underlying mini-780

mization problem for stego-image construction; and the extraction of the secret images781

by the extraction rule (which is the reverse of the embedding rule).782

Without loss of generality, we restrict the oversampling component and show its783

effects on the performance8. As mentioned in the experimental result section (i.e., in784

Section 3), the size of the measurement matrix Φ is p3 × p2 with p3 > p2. Earlier, we785

took p3 = 50× p2. Here, we take p3 = 2× p2, i.e., we restrict this oversampling. In786

Figure 18, we show the stego-image PSNR values for the case of hiding one, two, three,787

and four secret images with this restricted oversampling in SABMIS. Comparing this788

figure with Figure 9 (hiding one to four secret images with original oversampling in789

SABMIS), we observe that the PSNR values reduce substantially. Hence, the novel790

component of oversampling of our SABMIS scheme greatly affects the overall perfor-791

mance9.792

Figure 18. PSNR values of the stego-images when different numbers of images are

hidden in the ten cover images (with restricted oversampling in SABMIS).

E A POSSIBLE SCENARIO WHERE OUR SCHEME IS NOT793

THE BEST794

Here, we give a possible scenario where our scheme does not give the best results. We795

hide six (instead of four) secret images using our proposed steganography scheme and796

check all the evaluation metrics discussed earlier. The secret images chosen are shown797

in Figures 6(A), 6(B), 6(D), 6(E), 6(F), and 6(J).798

We achieve up to 12 bpp embedding capacity. Visually, both the cover image and799

the stego-image are almost identical (see Figure 19). While looking at the numerical800

8Since we design our embedding rule in such a way that we always need the number of linear mea-

surements larger than the number of sparse coefficients, we could not completely omit this oversampling.
9We obtain similar results with other comparison metrics as well.
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measures, we achieve an average PSNR value of 34.39 dB, average MSSIM value close801

to 0.9991, average NCC value of 0.9981, nearly same entropy of the cover image and802

the stego-image, and average NAE value close to 0. All these values further indicate803

that the stego-image is very similar to its corresponding cover image. However, the804

original secret image and the extracted secret image are very different (see Figure 20).805

Hence, we observe that when we try to hide more than four secret images using our806

scheme, the quality of extracted secret images degrades.807

(A) (B)

Figure 19. Visual quality analysis between ‘Stream’ cover image (CI) and its

corresponding stego-image (SI), when hiding six secret images. (A) Cover Image, and

(B) Stego-image.
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