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Steganography is a technique of hiding secret data in some unsuspected cover media so that it is visually
imperceptible. The secret data as well as the cover media may be text or multimedia. Image
steganography, where the cover media is an image, is one of the most commonly used schemes. Here,
we focus on image steganography where the hidden data is also an image. Specifically, we embed
grayscale secret images into a grayscale cover image, which is considered to be a challenging problem.
Our goal is to develop a steganography scheme with enhanced embedding capacity while preserving the
visual quality of the stego-image and ensuring that the stego-image is resistant to steganographic
attacks.

Our proposed scheme involves use of sparse approximation and our novel embedding rule, which helps
to increase the embedding capacity and adds a layer of security. The stego-image is constructed by
using the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute Shrinkage and
Selection Operator (LASSO) formulation of the underlying minimization problem. This method has a fast
convergence, is easy to implement, and also is extensively used in image processing. Finally, the secret
images are extracted from the constructed stego-image using the reverse of our embedding rule. Using
these components together helps us to embed up to four secret images into one cover image (instead of
the common embedding of two secret images) and forms our most novel contribution. We term our
scheme SABMIS (Sparse Approximation Blind Multi-image Steganography).

We perform extensive experiments on several standard images, and evaluate the embedding capacity,
Peak Signal-to-Noise Ratio (PSNR) value, mean Structural Similarity (MSSIM) index, Normalized Cross-
Correlation (NCC) coefficients, entropy, and Normalized Absolute Error (NAE). We obtain embedding
capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two, three, and four
secret images, respectively. These embedding capacities are higher than all the embedding capacities
obtained in the literature until now. Further, there is very little deterioration in the quality of the stego-
image as compared to its corresponding cover image (measured by above metrics). The quality of the
original secret images and their corresponding extracted secret images is also almost the same. Further,
due to our algorithmic design, our scheme is resistant to steganographic attacks as well.
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ABSTRACT

Steganography is a technique of hiding secret data in some unsuspected cover media
so that it is visually imperceptible. The secret data as well as the cover media may be
text or multimedia. Image steganography, where the cover media is an image, is one
of the most commonly used schemes. Here, we focus on image steganography where
the hidden data is also an image. Specifically, we embed grayscale secret images
into a grayscale cover image, which is considered to be a challenging problem. Our
goal is to develop a steganography scheme with enhanced embedding capacity while
preserving the visual quality of the stego-image and ensuring that the stego-image is
resistant to steganographic attacks.

Our proposed scheme involves use of sparse approximation and our novel embedding
rule, which helps to increase the embedding capacity and adds a layer of security. The
stego-image is constructed by using the Alternating Direction Method of Multipliers
(ADMM) to solve the Least Absolute Shrinkage and Selection Operator (LASSO) for-
mulation of the underlying minimization problem. This method has a fast convergence,
is easy to implement, and also is extensively used in image processing. Finally, the
secret images are extracted from the constructed stego-image using the reverse of
our embedding rule. Using these components together helps us to embed up to four
secret images into one cover image (instead of the common embedding of two secret
images) and forms our most novel contribution. We term our scheme SABMIS (Sparse
Approximation Blind Multi-Image Steganography).

We perform extensive experiments on several standard images, and evaluate the
embedding capacity, Peak Signal-to-Noise Ratio (PSNR) value, mean Structural Simi-
larity (MSSIM) index, Normalized Cross-Correlation (NCC) coefficients, entropy, and
Normalized Absolute Error (NAE). We obtain embedding capacities of 2bpp (bits
per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two, three, and four secret
images, respectively. These embedding capacities are higher than all the embedding
capacities obtained in the literature until now. Further, there is very little deteriora-
tion in the quality of the stego-image as compared to its corresponding cover image
(measured by above metrics). The quality of the original secret images and their
corresponding extracted secret images is also almost the same. Further, due to our
algorithmic design, our scheme is resistant to steganographic attacks as well.
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INTRODUCTION

The primary concern during the transmission of digital data over communication media
is that anybody can access this data. Hence, to protect the data from being accessed by
illegitimate users, the sender must employ some security mechanisms. In general, there
are two main approaches used to protect secret data; cryptography (Stallings, 2019) and
steganography (Kordov and Zhelezov, 2021), with our focus on the latter.

Steganography is derived from the Greek words steganos for “covered” or “secret
and graphie for “writing”. In steganography, the secret data is hidden in some unsus-
pected cover media so that it is visually imperceptible. Here, both the secret data as well
as the cover media may be text or multimedia. Recently, steganography schemes that
use images as secret data as well as cover media have gained a lot of research interest
due to their heavy use in World Wide Web applications. This is the focus of our work.

Next, we present some relevant previous studies in this domain. Secret data can
be embedded in images in two ways; spatially or by using a transform. In the spatial
domain based image steganography scheme, secret data is embedded directly into the
image by some modification in the values of the image pixels. Some of the past works
related to this are given in Table 1. In the transform domain based image steganography
scheme, first, the image is transformed into frequency components, and then the secret
data is embedded into these components. Some of the past works related to this are
given in Table 2.

29

Table 1. Spatial domain-based image steganography schemes.

Reference Technique Secret images| Cover image
A modified version of
(Baluja, 2019) Le;‘its]sg‘)ggvlif;‘ﬁ?;e?ts 2 color color
neural networks
(Gutub and Shaarani, 2020) LSB 2 color color
(Guttikonda et al., 2018) LSB 3 binary grayscale and color

Images are of three kinds; binary, grayscale, and color. A grayscale image has more
information than a binary image. Similarly, a color image has more information than a
grayscale image. Thus, hiding a color secret image is more challenging than hiding a
grayscale secret image, which is more challenging than hiding a binary secret image.
Similarly, applying this concept to the cover image, we see a reverse sequence; see Table
3. We focus on the middle case here, i.e., when both the secret images and the cover
image are grayscale, which is considered challenging.

The difficulty in designing a good steganography scheme for embedding secret
images into a cover image is increasing the embedding capacity of the scheme while
preserving the quality of the resultant stego-image as well as making the scheme resistant
to steganographic attacks. Usually, the more the number of secret images to be embedded
(which often translates to heavier secret images), the lower the quality of the obtained
stego-image. Hence, we need to balance these two competing requirements. Until now,
in most works, researchers have embedded two secret images in a cover image. Some
people have looked at embedding three secret images but this is rare (Guttikonda et al.,
2018). Here, not just the number of secret images but the total size of the secret images

ii/xxiii
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Table 2. Transform domain-based image steganography schemes.

Reference Technique Secret images Cover image
Discrete Wavelet
Transformation (DWT)
with Particle Swarm
Optimization (PSO)
Redundant Integer Wavelet
(Arunkumar et al., 2019a) Transform (RIWT) and QR 1 binary color
factorization
Contourlet and Fresnelet

Transformations with 1 binary
Genetic Algorithm (GA) | (specifically, QR code)
and PSO
RIWT, Singular Value
Decomposition (SVD),
and Discrete Cosine
Transformation (DCT)

(Hemalatha et al., 2013) DWT 2 grayscale color
(Gutub and Shaarani, 2020) DWT and SVD 2 color color

(Sanjutha, 2018) 1 grayscale color

(Maheswari and Hemanth, 2017) grayscale

(Arunkumar et al., 2019b) 1 binary grayscale

is also important. To capture this requirement of number as well as size, a metric of bits
per pixel (bpp) is used.

In this work, we present a novel image steganography scheme wherein up to four
images can be hidden in a single cover image. The size of a secret image is about
half of that of the cover image, which results in a very high bpp capacity. No one has

Kindly refer the litergryfpiempted embedding up to four secret images in a cover image until now, and those
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who have attempted embedding one, two, or three images have also not achieved the
level of embedding capacity that we do. While enhancing the capacity as discussed
above, the quality of our stego-image does not deteriorate much. Also, we do not need
any cover image data to extract secret images on the receiver side, which is commonly
required with other schemes. We do require some algorithmic settings on the receiver
side, however, these can be communicated to the receiver separately. Thus, this makes
our scheme more secure.

Our innovative scheme has three components, which we discuss next. The first
component, i.e., embedding of secret images, consists of the following parts:
(1) We perform sub-sampling on a cover image to obtain four sub-images of the cover
image.
(i) We perform block-wise sparsification of each of these four sub-images using DCT
(Discrete Cosine Transform) and form a vector.
(ii1) We represent each vector in two groups based upon large and small coefficients, and
then project each of the resultant (or generated) sparse vector onto linear measurements
by using a measurement matrix (random matrix whose columns are normalized). The
oversampling at this stage leads to sparse approximation.
(iv) We repeat the second step above for each of the secret images.
(v) We embed DCT coefficients from the four secret images into “a set” of linear
measurements obtained from the four sub-images of the cover image using our new
embedding rule.

ili/xxiii
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Table 3. Image types and levels of challenge.

Image Type More Challenging Medium Challenging Less Challenging

Secret Image Color Grayscale Binary
Cover Image Binary Grayscale Color
104 Second, we generate the stego-image from these modified measurements by using

105 the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute
106 Shrinkage and Selection Operator (LASSO) formulation of the underlying minimization
107 problem. This method has fast convergence, is easy to implement, and also is extensively
108 used in image processing. Here, the optimization problem is an ¢-norm minimization
100 problem, and the constraints comprise an over-determined system of equations (Srinivas
110 and Naidu, 2015).
111 Third, we extract the secret images from the stego-image using our proposed extrac-
112 tion rule, which is the reverse of our embedding rule mentioned above. As mentioned
113 earlier, we do not require any information about the cover image while doing this
114 extraction, which makes the process blind. We call our scheme SABMIS (Sparse
115 Approximation Blind Multi-Image Steganography).
116 For performance evaluation, we perform extensive experiments on a set of standard
117 images. We first compute the embedding capacity of our scheme, which turns out to
11s  be very good. Next, we check the quality of the stego-images by comparing them with
119 their corresponding cover images. We use both a visual measure and a set of numerical
120 measures for this comparison. The numerical measures used are: Peak Signal-to-Noise
121 Ratio (PSNR) value, Mean Structural Similarity (MSSIM) index, Normalized Cross-
122 Correlation (NCC) coefficient, entropy, and Normalized Absolute Error (NAE). The
123 results show very little deterioration in the quality of the stego-images.
124 Further, we visually demonstrate the high quality of the extracted secret images by
125 comparing them with the corresponding original secret images. Also, via experiments,
126 We support our conjecture that our scheme is resistant to steganographic attacks. Finally,
127 we compare the embedding capacity of our scheme and PSNR values of our stego-images
128 with the corresponding data from competitive schemes available in the literature!. These
Some methods are avil éﬁﬁtéwo checks (quality of the extracted secr'et im?lg?s and experimentation for resistance
s to steganographic attacks) are not common in existing works, and hence, we are unable
to perform these two comparisons. The superiority of our scheme over past works is
summarized below.
133 Because of the lack of past work of embedding grayscale secret images into a
134 grayscale cover image, we compare with the cases of embedding binary images into a
135 grayscale image or embedding grayscale images into a color image. Both these problems
136 are easier than our problem as discussed earlier; see Table 3.
137 For the case of embedding one secret image into a cover image, we compare with
138 (Arunkumar et al., 2019b). Here, a binary secret image is embedded into a grayscale
139 cover image. The authors in (Arunkumar et al., 2019b) achieve an embedding capacity

in literature for this 131
comparative analysis,

"'Most of the existing works do not compute the other numerical mesaures of SSIM index, NCC
coefficient, entropy and NAE.
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of 0.25 bpp while we achieve an embedding capacity of 2 bpp. When comparing the
stego-image and the corresponding cover image, (Arunkumar et al., 2019b) achieve a
PSNR value of 49.69 dB while we achieve a PSNR value of 41.88 dB. This is considered
acceptable because we are compromising very little in quality while gaining a lot more
in embedding capacity. Moreover, PSNR values over 30 dB are considered good (Gutub
and Shaarani, 2020; Zhang et al., 2013; Liu and Liao, 2008).

For the case of embedding two secret images in a cover image, we compare with
(Hemalatha et al., 2013). Here, two grayscale images are embedded into a color cover
image. The authors in (Hemalatha et al., 2013) achieve an embedding capacity of
1.33 bpp while we achieve an embedding capacity of 4 bpp. When comparing the stego-
image and the corresponding cover image, (Hemalatha et al., 2013) achieve a PSNR
value of 44.75 dB while we achieve a PSNR value of 38.94 dB. This is again considered
acceptable because of the reason discussed above.

For the case of embedding three secret images in a cover image, we compare with
(Guttikonda et al., 2018). Here, three binary images are embedded into a grayscale cover
image. The authors in (Guttikonda et al., 2018) achieve an embedding capacity of 2 bpp
while we achieve an embedding capacity of 6 bpp. When comparing the stego-image
and the corresponding cover image, (Guttikonda et al., 2018) achieve a PSNR value
of 46.36 dB while we achieve a PSNR value of 37.31dB. Again, this is considered
acceptable.

When embedding four secret images in a cover image, we achieve an embedding
capacity of 8 bpp and a PSNR value of 35.92 dB, which no one else has done.

The remainder of this paper has three more sections. In Section 2, we present
our proposed sparse approximation based blind multi-image steganography scheme.
The experimental results are presented in Section 3. Finally, in Section 4, we discuss
conclusions and future work.

PROPOSED APPROACH

Our sparse approximation based blind multi-image steganography scheme consists of
the following components: (i) Embedding of secret images leading to the generation of
the stego-data. (i1) Construction of the stego-image. (ii1) Extraction of secret images
from the stego-image. These parts are discussed in the respective subsections below.

Embedding Secret Images

First, we perform sub-sampling of the cover image to obtain four sub-images. This type
of sampling is done because we are embedding up to four secret images. Let CI be the
cover image of size r X r. Then, the four sub-images each of size 5 x 5 are obtained as
follows (Pan et al., 2015):

CI'(ny,ny) =CI(2ny — 1,2n5 — 1), (1a)
CI%(ny,ny) = CI(2n1,2ny — 1), (1b)
CP(ny,ny) = CI(2n; — 1,2ny), (Ic)
CI*(ny,nz) = CI(2ny1,2ny), (1d)

v/xxiii
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i1 where CI¥, for k = {1,2,3,4}, are the four sub-images; ny,n, = 1,2,..., 5 (in our case,
182 r is divisible by 2); and CI( -, - ) is the pixel value at (-, -). A cover image and the
183 corresponding four sub-sampled images are shown in Figure 1.

Sub-sampling

Boat Cover Image 4 sub-sampled images

Figure 1. A cover image and its 4 sub-sampled images (SIP, 2021).

184 Originally, these sub-images are not sparse; hence, next, we perform block-wise

15 sparsification of each of these images. For this, we divide each sub-image into blocks of
. .2 . . .

186 size b x b and obtain &W blocks for each sub-image (in our case, b divides r). Now,

157 we sparsify each block using the discrete cosine transformation. That is,
188 si = DCT (x;), (2)

189 wWherei=1,2,..., %, x; and s; are the " original and sparse blocks of the same size,
190 1.e, b X b, respectively, and DCT is the Discrete Cosine Transform. Further, we pick
191 the final sparse blocks using a zig-zag scanning order as used in our earlier work (Pal
w2 et al., 2019), and obtain corresponding sparse vectors each of size b x 1. The zig-zag
153 scanning order for a block of size 8 x 8 is shown in Figure 2. This order helps us to
1.« arrange the DCT coefficients with the set of large coefficients first, followed by the set
15 of small coefficients, which assists in the preservation of a good quality stego-image.
196 Next, we represent each vector in two groups based upon large (say #p1) and small
197 (say #p) coefficients, i.e., s;, € RP! and s;, € RP?, where p; < p>. Each of these
e vectors is sparse and p; + p» = b>. Further, we project each sparse vector onto linear
199 Mmeasurements as

Yiu Siu
R PN ) , 3
200 Yi |:)7i,v:| [ési,v] (3)

200 where y; € R(P1+p3)x1 ig the set of linear measurements, and @ € RP3*P2 ig the column
202 normalised measurement matrix consisting of normally distributed random numbers with
203 p3 > por and p3 € N (i.e., the sparse coefficients are oversampled). This oversampling
204 helps us to perform sparse approximation. By employing this approximation (along
205 with our novel embedding rule discussed towards the end of this subsection), we achieve
206 a higher embedding capacity. Moreover, our approach gains an extra layer of security

vi/xxiii
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because the linear measurements are measurement-matrix encoded small coefficients
of the sparse vectors obtained after DCT. Since the distribution of coefficients of the
generated sparse vectors is almost the same for all the blocks of an image, we use the
same measurement matrix for all the blocks.

> A

N
/|

—x| <%/ |

v
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4 I N

SN NS

x| €<

v

Figure 2. Zig-zag scanning order for a block of size 8 x 8.

Next, we perform processing of the secret images for embedding them into the cover
image. Let the size of each secret image be m x m. Initially, we perform block-wise
DCT of each of these images and obtain their corresponding DCT coefficients. Here,

) ) 2 )
the size of each block taken is [ x /, and hence, we have 'l”—z blocks for each secret image.

In our case, [ divides m, and we ensure that 'l”—; will be less than or equal to % SO
that the number of blocks of the secret image is less than or equal to the number of
blocks of a sub-image. Thereafter, we arrange these DCT coefficients as a vector in
the earlier discussed zig-zag scanning order. Let #; € RlzXl, fori=1,2,..., ’7—22, be the
vector representation of the DCT coefficients of one secret image. We pick the initial p4
DCT coefficients with relatively larger values (out of the available /% coefficients) for
embedding, where ps € N.

Here, we show the embedding of only one secret image into one sub-image of the
cover image. However, in our steganography scheme, we can embed a maximum of
four secret images, one in each of the four sub-images of the cover image, which is
demonstrated in the experimental results section. If we want to embed less than four
secret images, we can randomly select the corresponding sub-images from the available
four.

Next, using our novel embedding rule (discussed below), we embed the chosen p4
DCT coefficients of the secret image into a selected set of p; 4 p3 linear measurements
obtained from the sub-image of the cover image, leading to the generation of the stego-
data (we ensure that py4 is less than p; + p3). The selected linear measurements are
chosen to give the best results, i.e., satisfy all the three goals of higher embedding
capacity, less deterioration in the quality of the stego-image and more security.

Initially, we embed the first coefficient of the secret image into the (p; —2¢)"

vii/xxiii
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index of the original linear measurements vector to obtain the ptlh index of the resultant
modified linear measurements vector (where ¢ is some user chosen constant). Further,
we embed the next ¢ — 1 coefficients from the secret image into p; —2c+1to p;y —c—1
indices of the original linear measurements vector to obtain the p; —c+1 to p; — 1
indices of the resultant modified linear measurements vector.

Finally, we embed the remaining p4 — ¢ coefficients from the secret image into
p1+c+1 to p; + ps indices of the original linear measurements vector to obtain
p1+psa+1to pp+2 X ps—c indices of the resultant modified linear measurements
vector. The whole process in given in Algorithm 1. Specifically, the embedding rules
discussed above are given on line 3, lines 4 — 6, and lines 7 — 9 of this algorithm,
respectively.

Construction of the Stego-Image

As mentioned earlier, the next step in our scheme is the construction of the stego-image.
Since we can embed a maximum of four secret images into four sub-images of a single
cover image, we first construct four sub-stego-images and then perform inverse sampling
to obtain a single stego-image. Let s} be the sparse vector of the i block of a sub-stego-
image. The sparse vector s; is the concatenation of s; , and s} . Here, the size of 5] , 5] ,
and s is the same as that of Siu» Siv, and s, respectively. Then, we have

/ /
Siu = Viu (4a)
sa‘, = argmin ||S§7v||1 subject to qu;’V = yav. (4b)
f €R

The second part (4b) (i.e., obtaining S;7v)’ is an £;-norm minimization problem. Here,
we can observe that in the above optimization problem, the constraints are oversampled.
As earlier, this oversampling helps us to do sparsification, which leads to increased
embedding capacity without degradation of the quality of both the stego-image and the
secret image. For the solution of the minimization problem (4b), we use ADMM (Boyd
et al., 2010; Gabay, 1976) to solve the LASSO (Hwang et al., 2016; Nardone et al.,
2019) formulation of this minimization problem. The reason is that this method has a
fast convergence, is easy to implement, and also is extensively used in image processing
(Boyd et al., 2010; Hwang et al., 2016).

Next, we convert each vector s’ into a block of size b x b. After that, we perform
inverse sparsification (i.e., we apply the two-dimensional Inverse DCT) to each of these
blocks to generate blocks x. of the image. That is,

x; =IDCT (s}) . ®)

Next, we construct the sub-stego-image of size 5 X 5 by arranging all these blocks x}. We
repeat the above steps to construct all four sub-stego-images. At last, we perform inverse
sampling and obtain a single constructed stego-image from these four sub-stego-images.
In the experiments section, we show that the quality of the stego-image is also very
good.

Extraction of the Secret Images
In this subsection, we discuss the process of extracting secret images from the stego-
image. Initially, we perform sampling (as done in Section 2.1 using (1a)—(1d)) of the
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Algorithm 1 Embedding Rule
Input:

* yi: Sequence of linear measurements of the cover image with i =
2
-
1,2,..., 05

m2

* 1;: Sequence of transform coefficients of the secret image withi=1,2,..., R

. . 2, 2

* The choice of our r, b, m, and [ is such that ”liz is less than or equal to 2 ; nE

* p1 and py4 are lengths of certain vectors defined on pages vi and vii, respec-
tively.

* a, B, 7, and c are algorithmic constants that are chosen based upon experience.
The choices of these constants are discussed in the experimental results
sections.

Output:

. . . . . 2
. y;: The modified version of the linear measurements withi =1,2,..., —4;52-
., . . b _2
1: Initialize ) to y;, where i =1,2,..., 7.
2
. P _r_
2: fori=1t0 ;5 do

3: // Embedding of the first coefficient.

yi(p1) = yi(p1 —2¢) + o x ;(1).
4: for j=p;—c+1top;—1do

5: // Embedding of the next ¢ — 1 coefficients.
Yii) =yi(i—¢)+ B xt;(j—pr1+c+1).
6: end for

7: fork=p +ps+1top;+2xps—cdo

8: // Embedding of the remaining p4 — ¢ coefficients.
Yi(k) = yi(k — pa+c) +yxti(k—p1 — pa+c).
9: end for
10: end for

11: return y

stego-image to obtain four sub-stego-images. Since the extraction of all the secret
images is similar, here, we discuss the extraction of only one secret image from one sub-
stego-image. First, we perform block-wise sparsification of the chosen sub-stego-image.
For this, we divide the sub-stego-image into blocks of size b x b. We obtain a total of
% blocks. Further, we sparsify each block (say x;') by computing the corresponding
sparse vector (say s/). That is,

s! = DCT (x!). (6)

Next, as earlier, we arrange these sparse blocks in a zig-zag scanning order, obtain
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Algorithm 2 Extraction Rule

Input:

« y/: Sequence of linear measurements of the stego-image with i =
2
12,55
* p1 and py4 are lengths of certain vectors defined on pages vi and vii, respec-

tively.

* a, B, 7, and c are algorithmic constants that are chosen based upon experience.
The choices of these constants are discussed in the experimental results

section.
Output:
. . A 2
. ti’ : Sequence of transform coefficients of the secret image with7=1,2,..., rl”—z
e . " 2
1: Initialize 7] to zeros, where i =1,2,..., T
2
) - r
2: fori=1to yoy do
3: // Extraction of the first coefficient.
/! 1
! — -2
/(1) = % (p1) yo,‘(m )

4 for j=p—c+1top;—1do
// Extraction of the next ¢ — 1 coefficients.

((j—pr+e+1) = 2D

6: end for
7: fork=pi+ps+1top+2xps—cdo
8: /I Extraction of the remaining p4 — ¢ coefficients.
ti(k—p1—pas+c)= yﬁ/(k)_yglq(,k_pﬁc) :
9: end for
10: end for

11: return f/

the corresponding sparse vectors each of size b% x 1, and then categorize each of them
into two groups s/, € RP! and s/, € RP2. Here, as before, p; and p; are the numbers of
coefficients having large values and small values (or zero values), respectively. After

that, we project each sparse vector onto linear measurements (say y; € R(P1p3)x1y

/! i
" y ul S iu
=[5]-1d)
From y/, we extract the DCT coefficients of the embedded secret image using Algorithm
2. This extraction rule is the reverse of the embedding rule given in Algorithm 1.

In Algorithm 2, tlf € RPx Ufori=1,2,..., '7—22, are the vector representations of the
DCT coefficients of the blocks of one extracted secret image. Next, we convert each
vector £/ into blocks of size [ x [, and then perform a block-wise Inverse DCT (IDCT)
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(f) Stream (g) Living room (i) Jetplane (j) Camera man

Figure 3. Test images used in our experiments (SIP, 2021; Ima, 2021).

205 (using (5)) to obtain the secret image pixels. Finally, we obtain the extracted secret
206 1mage of size m X m by arranging all these blocks column wise. As mentioned earlier,
297 this steganography scheme is a blind multi-image steganography scheme because it does
208 NOt require any cover image data at the receiver side for the extraction of secret images.
299 Here, the process of hiding (and extracting) secret images is not fully lossless?,
a0 resulting in the degradation of the quality of extracted secret images. This is because
st we first oversample the original image using (3), and then we construct the stego-
302 image by solving the optimization problem (4b), which leads to a loss of information.
ss However, our algorithm is designed in such a way that we are able to extract high-
304 quality secret images. We support this fact with examples in the experiments section
a5 (specifically, Section 3.3). We term our algorithm Sparse Approximation Blind Multi-
ss Image Steganography (SABMIS) scheme due to the involved sparse approximation and
307 the blind multi-image steganography.

»s EXPERIMENTAL RESULTS

a9 Experiments are carried out in MATLAB on a machine with an Intel Core i3 processor
a0 @2.30 GHz and 4GB RAM. We use a set of 31 standard grayscale images available
s11 from miscellaneous category of the USC-SIPI image database (SIP, 2021) and standard
a2 test images from http://imageprocessingplace.com (Ima, 2021). In this work, we report
a1z results for 10 images (shown in Figure 3). However, our SABMIS scheme is applicable
a4 to other images as well. Our selection is justified by the fact that the image processing
a5 literature has frequently used these 10 images or a subset of them.

316 Here, we take all ten images shown in Figure 3 as the cover images, and four images;
a7 Figures 3b, 3e, 3f and 3j as the secret images for our experiments. However, we can use
s any of the ten images as the secret images.

319 Although the images shown in Figure 3 look to be of the same dimension, they are
a0 of varying sizes. For our experiments, each cover image is converted to 1024 x 1024
a2t size (i.e., r X r). We take blocks of size 8 x 8 for the cover images (i.e., b x b). Recall

2This is common in transform-based image steganography.
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from subsection 2.1 that the size of the DCT sparsified vectors is (p; + p2) x 1 with
p1+ pr = b? (here, b> = 64). Applying DCT on images results in a sparse vector
where more than half of the coefficients have values that are either very small or zero
(Agrawal and Ahuja, 2021; Pal et al., 2019). This is the case here as well. Hence, in our
experiments, we take p; = p» = 32. Recall, the size of the measurement matrix P is
p3 X pp with p3 > p,. We take p3 = 50 x p,. Without loss of generality, the element
values of the column-normalized measurement matrix are taken as random numbers
with mean 0 and standard deviation 1, which is a common standard.

Each of the secret image is converted to 512 x 512 size (i.e., m x m). This choice
is also motivated by the fact that we chose the size of the secret image to be half of
that of the cover image (1024 x 1024). We take blocks of size 8 x 8 for the secret
images as well (i.e., [ x ). In general, the DCT coefficients can be divided into three
sets; low frequencies, middle frequencies, and high frequencies. Low frequencies are
associated with the illumination, middle frequencies are associated with the structure,
and high frequencies are associated with the noise or small variation details. Thus, these
high-frequency coefficients are of very little importance for the to-be embedded secret
images. Since the number of high-frequency coefficients is usually half of the total
number of coefficients, we take ps = 32 (using 8 x 8 divided by 2).

The values of the constants in Algorithm 1 and Algorithm 2 are taken as follows>
(based upon experience): & = 0.01, § = 0.1, y=1, and ¢ = 6. For ADMM, we set the
maximum number of iterations as 500, the absolute stopping tolerance as 1 x 10~#, and
the relative stopping tolerance as 1 x 1072, These values are again taken based upon
our experience with a similar algorithm (Agrawal and Ahuja, 2021). Eventually, our
ADMM almost always converges in 10 to 15 iterations.

As mentioned earlier, in the five sections below we experimentally demonstrate the
usefulness of our steganography scheme. First, in Section 3.1, we show analytically
that our SABMIS scheme gives excellent embedding capacities. Second, in Section
3.2, we show that the quality of the constructed stego-images, when compared with the
corresponding cover images, is of high. Third, in Section 3.3, we demonstrate the good
quality of the extracted secret images when compared with the original secret images.
Fourth, in Section 3.4, we show that our SABMIS scheme is resistant to steganographic
attacks. Finally and fifth, in Section 3.5, we perform a comparison of our scheme with
various other steganography schemes.

Embedding Capacity Analysis

The embedding capacity (or embedding rate) is the number (or length) of secret bits that
can be embedded in each pixel of the cover image. It is measured in bits per pixel* (bpp)
and is calculated as follows:

Total number of secret bits embedded

EC in bpp = (8)

Total number of pixels in the cover image

3The values of these constants do not affect the convergence of ADMM much. Determining the range
of values that work best here is part of our future work.

4Since in the transform domain-based steganography schemes, some specific transform coefficients
are embedded into the cover image (along with the secret bits), a more appropriate term that can be used
for embedding capacity is “bits of information per pixel” (bipp). However, to avoid confusion, we use the
term bpp in this paper, which is commonly used.

Xii/xxiii

Peer] Comput. Sci. reviewing PDF | (CS-2021:10:66732:0:1:NEW 19 Nov 2021)



PeerJ

Klndlyjustlfy 361

362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

382

383
384

385
386

387
388

389

390

391
392
393
394
395
396
397
398

399

In this scheme, we embed a maximum of four secret images each of size 512 x 512 in a
cover image of size 1024 x 1024. Thus, we obtain embedding capacities of 2 bpp, 4 bpp,
6 bpp, and 8 bpp while embedding one, two, three, and four secret images, respectively.

Stego-Image Quality Assessment

In general, the visual quality of the stego-image degrades as the embedding capacity
increases. Hence, preserving the visual quality becomes increasingly important. There is
no universal criterion to determine the quality of the constructed stego-image. However,
we evaluate it by visual and numerical measures. We use Peak Signal-to-Noise Ratio
(PSNR), Mean Structural Similarity (MSSIM) index, Normalized Cross-Correlation
(NCC) coefficient, entropy, and Normalized Absolute Error (NAE) numerical measures.

When using the visual measures, we construct the stego-images corresponding to the
different cover images used in our experiments and then check their distortion visually.
We also check their corresponding edge map diagrams. Here, we present the visual
comparison only for ‘Stream’ as the cover image with ‘Lake’ secret image and the
corresponding stego-image. We get similar results for the other images as well. The
comparison is given in Figure 4. The cover image and its corresponding edge map are
shown in parts (a) and (b) of this figure. The stego-image and its corresponding edge
map are given in parts (c) and (d) of the same figure. When we compare each figure
with its counterpart, we find that they are very similar.

Next, when using the numerical measures to assess the quality of the stego-image
with respect to the cover image, we first evaluate the most common measure of PSNR
value in Section 3.2.1. Subsequently, we evaluate the other more rarely used numerical
measures of MSSIM index, NCC coefficient, entropy, and NAE in Section 3.2.2.

Peak Signal-to-Noise Ratio (PSNR) Value
We compute the PSNR values to evaluate the imperceptibility of stego-images (SI) with
respect to the corresponding cover images (I) as follows (Elzeki et al., 2021):

2

R
PSNR(1,S1) = 10log;g 7 - 9)

—————dB
(1,S1)

where MSE (I, SI) represents the mean square error between the cover image I and the
stego-image S/, R is the maximum intensity of the pixels, which is 255 for grayscale
images, and dB refers to decibel. This error is calculated as

R .. NN
LY G, J)—SIG, j))
rl xr2

MSE(I,SI) = : (10)
where r1 and r2 represent the row and column numbers of the image (for us either cover
or stego), respectively, and (i, j) and SI(i, j) represent the pixel values of the cover
image and the stego-image, respectively.

A higher PSNR value indicates a higher imperceptibility of the stego-image with
respect to the corresponding cover image. In general, a value higher than 30dB is
considered to be good since human eyes can hardly distinguish the distortion in the
image (Gutub and Shaarani, 2020; Zhang et al., 2013; Liu and Liao, 2008).

The PSNR values of the stego-images corresponding to the ten cover images are
given in Figure 5 and Figure 6. In Figure 5, we show the PSNR values of all the
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(b) CI Edge Map (d) ST Edge Map

Figure 4. Visual quality analysis between ‘Stream’ cover image (CI) and its
corresponding stego-image (SI).

stego-images when separately all the four secret images (mentioned above in Figure 3)
are embedded. In this figure, we obtain the highest PSNR value (46.25 dB) when the
‘Peppers’ secret image is hidden in the ‘House’ cover image, while the lowest PSNR
value (37.66 dB) is obtained when the ‘Stream’ secret image is hidden in the ‘Stream’
cover image.

In Figure 6, we show the PSNR values for the four cases of embedding one, two,
three, and four secret images in the ten cover images. As we have four secret images,
when embedding one secret image, we have a choice of embedding any one of them
and present the resulting PSNR values. However, we separately embed all four images,
obtain their PSNR values, and then present the average results. Similarly, the average
PSNR values are presented for the cases when we embed two and three images. In this
figure, we obtain the highest average PSNR value (45.21 dB) when one secret image is
hidden in the ‘House’ cover image, while the lowest PSNR value (31.78 dB) is obtained
when all four secret images are hidden in the ‘Stream’ cover image. Also, we observe
that for all test cases, we obtain PSNR values higher than 30 dB which, as earlier, are
considered good.
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Figure 5. PSNR values of the stego-images when only one secret image is hidden.
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Figure 6. PSNR values of the stego-images when different numbers of images are
hidden.

Other Numerical Measures

Mean Structural Similarity (MSSIM) Index This is an image quality assessment met-
ric used to measure the structural similarity between two images, which is most notice-
able to humans (Habib et al., 2016; Elzeki et al., 2021). MSSIM between the cover
image / and the stego-image SI is given as

1 M
MSSIM(1,S1) = m Y SSIM(ij,sij), (11)
j=1

where i; and si; are the content of the cover image and the stego-image, respectively, at
the j* local window with M being the number of local windows (Habib et al., 2016;
Wang et al., 2004), and

(21cpty +C1) (205 + C2)
(U2 +u2+Cr) (0 + 07 +C)’

SSIM (x,y) = (12)

where for vectors x and y, L, is the weighted mean of x, p, is the weighted mean of y,
o, is the weighted standard deviation of x, oy is the weighted standard deviation of y,

O,y is the weighted covariance between x and y, C; and C;, are positive constants.
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We take M = 1069156, C; = (0.01 x 255)2, and C; = (0.03 x 255)? based upon
the recommendations from (Habib et al., 2016; Wang et al., 2004). The value of the
MSSIM index lies between O and 1, where the value 0 indicates that there is no structural
similarity between the cover image and the corresponding stego-image, and the value 1
indicates that the images are identical.

Normalized Cross-Correlation (NCC) Coefficient: This metric measures the amount
of correlation between two images (Parah et al., 2016). The NCC coefficient between
the cover image I and the stego-image S/ is given as

YL X2 1, ST, j)
:11 252:1 12(17])

where r1 and r2 represent the row and column numbers of the image (for us either cover
or stego), respectively, and I(i, j) and SI(i, j) represent the pixel values of the cover
image and the stego-image, respectively. The NCC coefficient value of 1 indicates that
the cover image and the stego-image are highly correlated while a value of 0 indicates
that the two are not correlated.

NCC(I,SI) = (13)

Entropy: In general, entropy is defined as the measure of average uncertainty of a
random variable. In the context of an image, it is a statistical measure of randomness
that can be used to characterize the texture of the image (Gonzalez et al., 2004). For a
grayscale image (either a cover image or a stego-image in our case), entropy is given as

255

E ==Y (pilog,p)), (14)
i=0

where p; € [0, 1] is the fraction of image pixels that have the value i. If the stego-image
is similar to its corresponding cover image, then the two should have similar entropy
values (due to similar textures).

Normalized Absolute Error (NAE): This metric is a distance measure that captures
pixel-wise differences between two images (Arunkumar et al., 2019b). NAE between
the cover image / and the stego-image S/ is given as

YL X (CI (G, )= ST, j)])
VARD WRY O I(AY)

NAE(1,SI) = : (15)

where r1 and r2 represent the row and the column numbers of the image (for us either
cover or stego), respectively, and CI(i, j) and SI(i, j) represent the pixel values of the
cover image and the stego-image, respectively. NAE has values in the range O to 1.
A value close to 0 indicates that the cover image is very close to its corresponding
stego-image, and a value close to 1 indicates that the two are substantially far apart.

In Table 4, we present the values of MSSIM index, NCC coefficient, entropy and
NAE for our SABMIS scheme when hiding all four secret images. We do not present
the values for the cases of embedding less than four secret images as their results will
be better than those given in Table 4. Hence, our reported results are for the worst case.
From this table, we observe that all values of the MSSIM index are nearly equal to 1
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(different in the sixth place of decimal), the values of NCC coefficients are close to 1, and
values of NAE are close to 0. The entropy values of the cover and the stego-images are
almost identical. All these values indicate that the cover images and their corresponding
stego-images are almost identical.

Table 4. MSSIM index, NCC coefficient, entropy, and NAE of the stego-images when
compared with the corresponding cover images.

Cover MSSIM | NCC Entropy NAE
Image Cover Stego-
Image Image
Cars 1 0.9998 6.608 6.627 0.010
Peppers 1 0.9997 7.573 7.603 0.012
Boat 1 0.9998 7.121 7.151 0.012
House 1 0.9998 5.756 6.630 0.007
Lake 1 0.9997 7.471 7.513 0.013
Stream 1 0.9991 7.702 7.719 0.020
Livingroom 1 0.9996 7.431 7.438 0.014
Tank 1 0.9998 6.372 6.412 0.011
Jetplane 1 0.9998 6.716 6.795 0.008
Cameraman 1 0.9999 7.055 7.133 0.009
Average 1 0.9996 6.982 7.102 0.012

Secret Image Quality Assessment

Since human observers are considered the final arbiter to assess the quality of the
extracted secret images, we compare one such original secret image and its corresponding
extracted secret image. The results of all other combinations are almost the same. In
Figures 7a and 7c, we show the original ‘Lake’ secret image and the extracted ‘Lake’
secret image (from the ‘Stream’ stego-image). From these figures, we observe that there
is very little distortion in the extracted image. Besides this, for these two images, we
also present their corresponding edge map diagrams (in Figures 7b and 7d, respectively).
Again, we observe minimal variations between the original and the extracted secret
images.

Security Analysis

The SABMIS scheme is a transform domain based technique which employs an indirect
embedding strategy, i.e., it does not follow the Least Significant Bit (LSB) flipping
method, and hence, it is immune to statistical attacks (Westfeld and Pfitzmann, 2000;
Yu et al., 2009). Moreover, in the SABMIS scheme, the measurement matrix ®, and
the embedding/ extraction algorithmic settings are considered as secret-keys, which are
shared between the sender and the legitimate receiver. It is assumed that these keys are
not known to the eavesdropper. Hence, we achieve increased security in our proposed
system.

To justify this, we extract the secret image in two ways, i.e., by using correct secret-
keys and by using wrong secret-keys. Since the measurement matrix, which we use
(random matrix having numbers with mean 0 and standard deviation 1) is one of the
most commonly used measurement matrix and the eavesdropper can easily guess it, we
use this same measurement matrix while building wrong secret-keys. Here, we use the
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Figure 7. Visual quality analysis between the ‘Lake’ original secret image and the
‘Lake’ extracted secret image (from the ‘Stream’ stego-image).

same dimension of this matrix as well, i.e., p3 x p2. In reality, the guessed matrix size
would be different from the original matrix size, which would make the extraction task
of the eavesdropper more difficult.

The algorithmic settings that we use will be completely unknown to the eavesdropper.
These involve using few constants (& = 0.01, § = 0.1, y =1 and ¢ = 6) and a set of
cover image coefficients where secret image coefficients are embedded (using p1 and
p4). While building wrong secret-keys, we take the common guess of one for all
constants (i.e., @ = 1, B = 1, y=1 and ¢ = 1) without changing the rest of the settings
(i.e., same pl and p4). In reality, the eavesdropper would not be able to correctly guess
these other settings as well resulting in a further challenges during extraction.

We compare the average NAE values (between the original secret images and the
corresponding extracted ones) for both these cases. These values are presented in Figure
8. In this figure, we see that for correct secret-keys, the NAE values are close to 0, and
the for wrong secret-keys, the NAE values are very high. Hence, in the SABMIS scheme,
a change in secret-keys will lead to a shift in the accuracy between the original secret
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Figure 8. Average NAE value between the four original secret images and their
corresponding extracted secret images when using correct and wrong secret-keys.
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Figure 9. Visual quality analysis between the ‘Lake’ extracted secret image using
correct and wrong secret-keys (from the ‘Stream’ stego-image).

si3 images and their corresponding extracted ones, in turn, making our scheme secure.

514 Moreover, in Figure 9 (a) and (b), we compare the ‘Lake’ secret image when extracted
515 using correct and wrong secret-keys (from the ‘Stream’ stego-image), respectively.
ste  From this figure, we see that when using correct secret-keys, the visual distortion in
si7  the extracted secret image is negligible, and when using the wrong secret-keys, the
sis  distortion in the extracted secret image is very high (it is almost black).

59 Performance Comparison

s20 We compare our SABMIS scheme with the existing steganography schemes (discussed
s21  1n the Introduction section) for the embedding capacity, the quality of stego-images,
s22 and resistance to steganographic attacks. For the stego-image quality comparison, since
s2s most works have computed PSNR values only, we use only this metric for analysis.
s24  Further, resistance to steganographic attacks is not experimented by most of the past
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Table 5. Performance comparison of our SABMIS scheme with various other
steganography schemes.

Numbers Embedding Resistant
of Type of Type of . PSNR | to stegan-
Steganography Scheme . . capacity | . .
secret secret image | cover images (in bpp) (in dB) | ographic
images attacks?
1 (Arunkumar et al., 2019b) Binary Grayscale 0.25 49.69 Yes
SABMIS Grayscale Grayscale 2 41.88 Yes
) (Hemalatha et al., 2013) | Grayscale Color 1.33 44.75 Yes
SABMIS Grayscale Grayscale 4 38.94 Yes
3 (Guttikonda et al., 2018) Binary Grayscale 2 46.36 No
SABMIS Grayscale Grayscale 6 37.31 Yes
4 SABMIS Grayscale Grayscale 8 35.92 Yes

works. Rather, they have just stated whether their scheme has such a property or not.
Hence, we use this information for comparison. Finally, although we check the quality
of the extracted secret images by comparing them with the corresponding original secret
images (as earlier), this check is not common in the existing works. Hence, we do not
perform this comparison.

As mentioned in the introduction, because of the lack of past work of embedding
grayscale secret images into a grayscale cover image, we compare with the cases of
embedding binary images into a grayscale image or embedding grayscale images into a
color image. Both these problems are easier than our problem.

This comparison is given in Table 5. As evident from this table, our scheme outper-
forms the competitive schemes in embedding capacity for the three cases of embedding
one, two, and three secret images. We do have a slight loss in the quality of the stego-
images. However, as earlier, this is considered acceptable because we are compromising
very little in quality while gaining a lot more in embedding capacity. Moreover, PSNR
values over 30 dB are considered good (Gutub and Shaarani, 2020; Zhang et al., 2013;
Liu and Liao, 2008). Further, our scheme, like most of the other competitive schemes
(not all; please see (Guttikonda et al., 2018)), is resistant to steganographic attacks.
Finally, we are the first ones to embed four secret images in a cover image.

CONCLUSIONS AND FUTURE WORK

Securing secret information over Internet-based applications becomes important as
illegitimate users try to access them. One way to secure this data is to hide them into
an image as the cover media, known as image steganography. Here, the challenges
are increasing the embedding capacity of the scheme, maintaining the quality of the
stego-image, and ensuring that the scheme is resistant to steganographic attacks. We
propose a blind multi-image steganography scheme for securing secret images in cover
images to substantially overcome all the three challenges. All our images are grayscale,
which is a hard problem.

First, we perform sampling of the cover image to obtain four sub-images. Further,
we sparsify (using DCT) each sub-image and obtain its sparse linear measurements using
a random measurement matrix. Then, we embed DCT coefficients of the secret images
into these linear measurements using our novel embedding rule. Second, we construct
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the stego-image from these modified measurements by solving the resulting LASSO
problem using ADMM. Third, using our proposed extraction rule, we extract the secret
images from the stego-image. We call this scheme SABMIS (Sparse Approximation
Blind Multi-Image Steganography). Using these components together helps us to embed
up to four secret images into one cover image (instead of the common embedding of
two secret images).

We perform experiments on several standard grayscale images. We obtain embedding
capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two,
three, and four secret images, respectively. These embedding capacities are higher
than all the embedding capacities obtained in the literature until now. Further, there
is with very little deterioration in the quality of the stego-image as compared to its
corresponding cover image (measured by the above metrics). The quality of the original
secret images and their corresponding extracted secret images is also almost the same.
Further, due to our algorithmic design, our scheme is resistant to steganographic attacks
as well.

Next, we discuss the future work in this context. First, since we embed secret images
in images, in the future we plan to embed the secret data into text, audio, and video.
Second, we plan to apply optimization techniques to improve the values of parameters
a, 3,7, etc. used in the embedding and the extraction algorithms of the SABMIS scheme.
Third, we plan to extend this work to real-time applications such as hiding fingerprint
data, iris data, medical information of patients, and personal signatures.
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