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Steganography is a technique of hiding secret data in some unsuspected cover media so that it is visually
imperceptible. The secret data as well as the cover media may be text or multimedia. Image
steganography, where the cover media is an image, is one of the most commonly used schemes. Here,
we focus on image steganography where the hidden data is also an image. Specifically, we embed
grayscale secret images into a grayscale cover image, which is considered to be a challenging problem.
Our goal is to develop a steganography scheme with enhanced embedding capacity while preserving the
visual quality of the stego-image and ensuring that the stego-image is resistant to steganographic
attacks.

Our proposed scheme involves use of sparse approximation and our novel embedding rule, which helps
to increase the embedding capacity and adds a layer of security. The stego-image is constructed by
using the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute Shrinkage and
Selection Operator (LASSO) formulation of the underlying minimization problem. This method has a fast
convergence, is easy to implement, and also is extensively used in image processing. Finally, the secret
images are extracted from the constructed stego-image using the reverse of our embedding rule. Using
these components together helps us to embed up to four secret images into one cover image (instead of
the common embedding of two secret images) and forms our most novel contribution. We term our
scheme SABMIS (Sparse Approximation Blind Multi-Image Steganography).

We perform extensive experiments on several standard images, and evaluate the embedding capacity,
Peak Signal-to-Noise Ratio (PSNR) value, mean Structural Similarity (MSSIM) index, Normalized Cross-
Correlation (NCC) coefficients, entropy, and Normalized Absolute Error (NAE). We obtain embedding
capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two, three, and four
secret images, respectively. These embedding capacities are higher than all the embedding capacities
obtained in the literature until now. Further, there is very little deterioration in the quality of the stego-
image as compared to its corresponding cover image (measured by above metrics). The quality of the
original secret images and their corresponding extracted secret images is also almost the same. Further,
due to our algorithmic design, our scheme is resistant to steganographic attacks as well.
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ABSTRACT9

Steganography is a technique of hiding secret data in some unsuspected cover media

so that it is visually imperceptible. The secret data as well as the cover media may be

text or multimedia. Image steganography, where the cover media is an image, is one

of the most commonly used schemes. Here, we focus on image steganography where

the hidden data is also an image. Specifically, we embed grayscale secret images

into a grayscale cover image, which is considered to be a challenging problem. Our

goal is to develop a steganography scheme with enhanced embedding capacity while

preserving the visual quality of the stego-image and ensuring that the stego-image is

resistant to steganographic attacks.
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Our proposed scheme involves use of sparse approximation and our novel embedding

rule, which helps to increase the embedding capacity and adds a layer of security. The

stego-image is constructed by using the Alternating Direction Method of Multipliers

(ADMM) to solve the Least Absolute Shrinkage and Selection Operator (LASSO) for-

mulation of the underlying minimization problem. This method has a fast convergence,

is easy to implement, and also is extensively used in image processing. Finally, the

secret images are extracted from the constructed stego-image using the reverse of

our embedding rule. Using these components together helps us to embed up to four

secret images into one cover image (instead of the common embedding of two secret

images) and forms our most novel contribution. We term our scheme SABMIS (Sparse

Approximation Blind Multi-Image Steganography).

We perform extensive experiments on several standard images, and evaluate the

embedding capacity, Peak Signal-to-Noise Ratio (PSNR) value, mean Structural Simi-

larity (MSSIM) index, Normalized Cross-Correlation (NCC) coefficients, entropy, and

Normalized Absolute Error (NAE). We obtain embedding capacities of 2 bpp (bits

per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two, three, and four secret

images, respectively. These embedding capacities are higher than all the embedding

capacities obtained in the literature until now. Further, there is very little deteriora-

tion in the quality of the stego-image as compared to its corresponding cover image

(measured by above metrics). The quality of the original secret images and their

corresponding extracted secret images is also almost the same. Further, due to our

algorithmic design, our scheme is resistant to steganographic attacks as well.
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INTRODUCTION41

The primary concern during the transmission of digital data over communication media42

is that anybody can access this data. Hence, to protect the data from being accessed by43

illegitimate users, the sender must employ some security mechanisms. In general, there44

are two main approaches used to protect secret data; cryptography (Stallings, 2019) and45

steganography (Kordov and Zhelezov, 2021), with our focus on the latter.46

Steganography is derived from the Greek words steganos for “covered” or “secret”47

and graphie for “writing”. In steganography, the secret data is hidden in some unsus-48

pected cover media so that it is visually imperceptible. Here, both the secret data as well49

as the cover media may be text or multimedia. Recently, steganography schemes that50

use images as secret data as well as cover media have gained a lot of research interest51

due to their heavy use in World Wide Web applications. This is the focus of our work.52

Next, we present some relevant previous studies in this domain. Secret data can53

be embedded in images in two ways; spatially or by using a transform. In the spatial54

domain based image steganography scheme, secret data is embedded directly into the55

image by some modification in the values of the image pixels. Some of the past works56

related to this are given in Table 1. In the transform domain based image steganography57

scheme, first, the image is transformed into frequency components, and then the secret58

data is embedded into these components. Some of the past works related to this are59

given in Table 2.60

Table 1. Spatial domain-based image steganography schemes.

Reference Technique Secret images Cover image

(Baluja, 2019)

A modified version of

Least Significant Bits

(LSB) with deep

neural networks

2 color color

(Gutub and Shaarani, 2020) LSB 2 color color

(Guttikonda et al., 2018) LSB 3 binary grayscale and color

Images are of three kinds; binary, grayscale, and color. A grayscale image has more61

information than a binary image. Similarly, a color image has more information than a62

grayscale image. Thus, hiding a color secret image is more challenging than hiding a63

grayscale secret image, which is more challenging than hiding a binary secret image.64

Similarly, applying this concept to the cover image, we see a reverse sequence; see Table65

3. We focus on the middle case here, i.e., when both the secret images and the cover66

image are grayscale, which is considered challenging.67

The difficulty in designing a good steganography scheme for embedding secret68

images into a cover image is increasing the embedding capacity of the scheme while69

preserving the quality of the resultant stego-image as well as making the scheme resistant70

to steganographic attacks. Usually, the more the number of secret images to be embedded71

(which often translates to heavier secret images), the lower the quality of the obtained72

stego-image. Hence, we need to balance these two competing requirements. Until now,73

in most works, researchers have embedded two secret images in a cover image. Some74

people have looked at embedding three secret images but this is rare (Guttikonda et al.,75

2018). Here, not just the number of secret images but the total size of the secret images76
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Table 2. Transform domain-based image steganography schemes.

Reference Technique Secret images Cover image

(Sanjutha, 2018)

Discrete Wavelet

Transformation (DWT)

with Particle Swarm

Optimization (PSO)

1 grayscale color

(Arunkumar et al., 2019a)

Redundant Integer Wavelet

Transform (RIWT) and QR

factorization

1 binary color

(Maheswari and Hemanth, 2017)

Contourlet and Fresnelet

Transformations with

Genetic Algorithm (GA)

and PSO

1 binary

(specifically, QR code)
grayscale

(Arunkumar et al., 2019b)

RIWT, Singular Value

Decomposition (SVD),

and Discrete Cosine

Transformation (DCT)

1 binary grayscale

(Hemalatha et al., 2013) DWT 2 grayscale color

(Gutub and Shaarani, 2020) DWT and SVD 2 color color

is also important. To capture this requirement of number as well as size, a metric of bits77

per pixel (bpp) is used.78

In this work, we present a novel image steganography scheme wherein up to four79

images can be hidden in a single cover image. The size of a secret image is about80

half of that of the cover image, which results in a very high bpp capacity. No one has81

attempted embedding up to four secret images in a cover image until now, and those82

who have attempted embedding one, two, or three images have also not achieved the83

level of embedding capacity that we do. While enhancing the capacity as discussed84

above, the quality of our stego-image does not deteriorate much. Also, we do not need85

any cover image data to extract secret images on the receiver side, which is commonly86

required with other schemes. We do require some algorithmic settings on the receiver87

side, however, these can be communicated to the receiver separately. Thus, this makes88

our scheme more secure.89

Our innovative scheme has three components, which we discuss next. The first90

component, i.e., embedding of secret images, consists of the following parts:91

(i) We perform sub-sampling on a cover image to obtain four sub-images of the cover92

image.93

(ii) We perform block-wise sparsification of each of these four sub-images using DCT94

(Discrete Cosine Transform) and form a vector.95

(iii) We represent each vector in two groups based upon large and small coefficients, and96

then project each of the resultant (or generated) sparse vector onto linear measurements97

by using a measurement matrix (random matrix whose columns are normalized). The98

oversampling at this stage leads to sparse approximation.99

(iv) We repeat the second step above for each of the secret images.100

(v) We embed DCT coefficients from the four secret images into “a set” of linear101

measurements obtained from the four sub-images of the cover image using our new102

embedding rule.103

iii/xxiiiPeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66732:0:1:NEW 19 Nov 2021)

Manuscript to be reviewedComputer Science

ASHA DURAFE
Highlight

ASHA DURAFE
Typewriter
Kindly refer the literature 

throughly.



Table 3. Image types and levels of challenge.

Image Type More Challenging Medium Challenging Less Challenging

Secret Image Color Grayscale Binary

Cover Image Binary Grayscale Color

Second, we generate the stego-image from these modified measurements by using104

the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute105

Shrinkage and Selection Operator (LASSO) formulation of the underlying minimization106

problem. This method has fast convergence, is easy to implement, and also is extensively107

used in image processing. Here, the optimization problem is an ℓ1-norm minimization108

problem, and the constraints comprise an over-determined system of equations (Srinivas109

and Naidu, 2015).110

Third, we extract the secret images from the stego-image using our proposed extrac-111

tion rule, which is the reverse of our embedding rule mentioned above. As mentioned112

earlier, we do not require any information about the cover image while doing this113

extraction, which makes the process blind. We call our scheme SABMIS (Sparse114

Approximation Blind Multi-Image Steganography).115

For performance evaluation, we perform extensive experiments on a set of standard116

images. We first compute the embedding capacity of our scheme, which turns out to117

be very good. Next, we check the quality of the stego-images by comparing them with118

their corresponding cover images. We use both a visual measure and a set of numerical119

measures for this comparison. The numerical measures used are: Peak Signal-to-Noise120

Ratio (PSNR) value, Mean Structural Similarity (MSSIM) index, Normalized Cross-121

Correlation (NCC) coefficient, entropy, and Normalized Absolute Error (NAE). The122

results show very little deterioration in the quality of the stego-images.123

Further, we visually demonstrate the high quality of the extracted secret images by124

comparing them with the corresponding original secret images. Also, via experiments,125

we support our conjecture that our scheme is resistant to steganographic attacks. Finally,126

we compare the embedding capacity of our scheme and PSNR values of our stego-images127

with the corresponding data from competitive schemes available in the literature1. These128

last two checks (quality of the extracted secret images and experimentation for resistance129

to steganographic attacks) are not common in existing works, and hence, we are unable130

to perform these two comparisons. The superiority of our scheme over past works is131

summarized below.132

Because of the lack of past work of embedding grayscale secret images into a133

grayscale cover image, we compare with the cases of embedding binary images into a134

grayscale image or embedding grayscale images into a color image. Both these problems135

are easier than our problem as discussed earlier; see Table 3.136

For the case of embedding one secret image into a cover image, we compare with137

(Arunkumar et al., 2019b). Here, a binary secret image is embedded into a grayscale138

cover image. The authors in (Arunkumar et al., 2019b) achieve an embedding capacity139

1Most of the existing works do not compute the other numerical mesaures of SSIM index, NCC

coefficient, entropy and NAE.
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of 0.25 bpp while we achieve an embedding capacity of 2 bpp. When comparing the140

stego-image and the corresponding cover image, (Arunkumar et al., 2019b) achieve a141

PSNR value of 49.69 dB while we achieve a PSNR value of 41.88 dB. This is considered142

acceptable because we are compromising very little in quality while gaining a lot more143

in embedding capacity. Moreover, PSNR values over 30 dB are considered good (Gutub144

and Shaarani, 2020; Zhang et al., 2013; Liu and Liao, 2008).145

For the case of embedding two secret images in a cover image, we compare with146

(Hemalatha et al., 2013). Here, two grayscale images are embedded into a color cover147

image. The authors in (Hemalatha et al., 2013) achieve an embedding capacity of148

1.33 bpp while we achieve an embedding capacity of 4 bpp. When comparing the stego-149

image and the corresponding cover image, (Hemalatha et al., 2013) achieve a PSNR150

value of 44.75 dB while we achieve a PSNR value of 38.94 dB. This is again considered151

acceptable because of the reason discussed above.152

For the case of embedding three secret images in a cover image, we compare with153

(Guttikonda et al., 2018). Here, three binary images are embedded into a grayscale cover154

image. The authors in (Guttikonda et al., 2018) achieve an embedding capacity of 2 bpp155

while we achieve an embedding capacity of 6 bpp. When comparing the stego-image156

and the corresponding cover image, (Guttikonda et al., 2018) achieve a PSNR value157

of 46.36 dB while we achieve a PSNR value of 37.31 dB. Again, this is considered158

acceptable.159

When embedding four secret images in a cover image, we achieve an embedding160

capacity of 8 bpp and a PSNR value of 35.92 dB, which no one else has done.161

The remainder of this paper has three more sections. In Section 2, we present162

our proposed sparse approximation based blind multi-image steganography scheme.163

The experimental results are presented in Section 3. Finally, in Section 4, we discuss164

conclusions and future work.165

PROPOSED APPROACH166

Our sparse approximation based blind multi-image steganography scheme consists of167

the following components: (i) Embedding of secret images leading to the generation of168

the stego-data. (ii) Construction of the stego-image. (iii) Extraction of secret images169

from the stego-image. These parts are discussed in the respective subsections below.170

Embedding Secret Images171

First, we perform sub-sampling of the cover image to obtain four sub-images. This type172

of sampling is done because we are embedding up to four secret images. Let CI be the173

cover image of size r× r. Then, the four sub-images each of size r
2
× r

2
are obtained as174

follows (Pan et al., 2015):175

CI1(n1,n2) =CI(2n1 −1,2n2 −1), (1a)176

CI2(n1,n2) =CI(2n1,2n2 −1), (1b)177

CI3(n1,n2) =CI(2n1 −1,2n2), (1c)178

CI4(n1,n2) =CI(2n1,2n2), (1d)179
180
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where CIk, for k = {1,2,3,4}, are the four sub-images; n1,n2 = 1,2, . . . , r
2

(in our case,181

r is divisible by 2); and CI( · , · ) is the pixel value at ( · , · ). A cover image and the182

corresponding four sub-sampled images are shown in Figure 1.183

Figure 1. A cover image and its 4 sub-sampled images (SIP, 2021).

Originally, these sub-images are not sparse; hence, next, we perform block-wise184

sparsification of each of these images. For this, we divide each sub-image into blocks of185

size b×b and obtain r2

4×b2 blocks for each sub-image (in our case, b divides r). Now,186

we sparsify each block using the discrete cosine transformation. That is,187

si = DCT (xi), (2)188

where i = 1,2, . . . , r2

4×b2 , xi and si are the ith original and sparse blocks of the same size,189

i.e, b× b, respectively, and DCT is the Discrete Cosine Transform. Further, we pick190

the final sparse blocks using a zig-zag scanning order as used in our earlier work (Pal191

et al., 2019), and obtain corresponding sparse vectors each of size b2 ×1. The zig-zag192

scanning order for a block of size 8× 8 is shown in Figure 2. This order helps us to193

arrange the DCT coefficients with the set of large coefficients first, followed by the set194

of small coefficients, which assists in the preservation of a good quality stego-image.195

Next, we represent each vector in two groups based upon large (say #p1) and small196

(say #p2) coefficients, i.e., si,u ∈ R
p1 and si,v ∈ R

p2 , where p1 ≤ p2. Each of these197

vectors is sparse and p1 + p2 = b2. Further, we project each sparse vector onto linear198

measurements as199

yi =

[

yi,u

yi,v

]

=

[

si,u

Φsi,v

]

, (3)200

where yi ∈ R
(p1+p3)×1 is the set of linear measurements, and Φ ∈ R

p3×p2 is the column201

normalised measurement matrix consisting of normally distributed random numbers with202

p3 > p2 and p3 ∈ N (i.e., the sparse coefficients are oversampled). This oversampling203

helps us to perform sparse approximation. By employing this approximation (along204

with our novel embedding rule discussed towards the end of this subsection), we achieve205

a higher embedding capacity. Moreover, our approach gains an extra layer of security206
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because the linear measurements are measurement-matrix encoded small coefficients207

of the sparse vectors obtained after DCT. Since the distribution of coefficients of the208

generated sparse vectors is almost the same for all the blocks of an image, we use the209

same measurement matrix for all the blocks.210

Figure 2. Zig-zag scanning order for a block of size 8×8.

Next, we perform processing of the secret images for embedding them into the cover211

image. Let the size of each secret image be m×m. Initially, we perform block-wise212

DCT of each of these images and obtain their corresponding DCT coefficients. Here,213

the size of each block taken is l× l, and hence, we have m2

l2 blocks for each secret image.214

In our case, l divides m, and we ensure that m2

l2 will be less than or equal to r2

4×b2 so215

that the number of blocks of the secret image is less than or equal to the number of216

blocks of a sub-image. Thereafter, we arrange these DCT coefficients as a vector in217

the earlier discussed zig-zag scanning order. Let tı̂ ∈ Rl2×1, for ı̂ = 1,2, . . . , m2

l2 , be the218

vector representation of the DCT coefficients of one secret image. We pick the initial p4219

DCT coefficients with relatively larger values (out of the available l2 coefficients) for220

embedding, where p4 ∈ N.221

Here, we show the embedding of only one secret image into one sub-image of the222

cover image. However, in our steganography scheme, we can embed a maximum of223

four secret images, one in each of the four sub-images of the cover image, which is224

demonstrated in the experimental results section. If we want to embed less than four225

secret images, we can randomly select the corresponding sub-images from the available226

four.227

Next, using our novel embedding rule (discussed below), we embed the chosen p4228

DCT coefficients of the secret image into a selected set of p1 + p3 linear measurements229

obtained from the sub-image of the cover image, leading to the generation of the stego-230

data (we ensure that p4 is less than p1 + p3). The selected linear measurements are231

chosen to give the best results, i.e., satisfy all the three goals of higher embedding232

capacity, less deterioration in the quality of the stego-image and more security.233

Initially, we embed the first coefficient of the secret image into the (p1 − 2c)th
234
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index of the original linear measurements vector to obtain the pth
1 index of the resultant235

modified linear measurements vector (where c is some user chosen constant). Further,236

we embed the next c−1 coefficients from the secret image into p1−2c+1 to p1−c−1237

indices of the original linear measurements vector to obtain the p1 − c+ 1 to p1 − 1238

indices of the resultant modified linear measurements vector.239

Finally, we embed the remaining p4 − c coefficients from the secret image into240

p1 + c + 1 to p1 + p4 indices of the original linear measurements vector to obtain241

p1 + p4 + 1 to p1 + 2× p4 − c indices of the resultant modified linear measurements242

vector. The whole process in given in Algorithm 1. Specifically, the embedding rules243

discussed above are given on line 3, lines 4 – 6, and lines 7 – 9 of this algorithm,244

respectively.245

Construction of the Stego-Image246

As mentioned earlier, the next step in our scheme is the construction of the stego-image.247

Since we can embed a maximum of four secret images into four sub-images of a single248

cover image, we first construct four sub-stego-images and then perform inverse sampling249

to obtain a single stego-image. Let s′i be the sparse vector of the ith block of a sub-stego-250

image. The sparse vector s′i is the concatenation of s′i,u and s′i,v. Here, the size of s′i,u, s′i,v,251

and s′ is the same as that of si,u, si,v, and s, respectively. Then, we have252

s′i,u = y′i,u, (4a)253

s′i,v = argmin
s′i,v∈R

p2

‖s′i,v‖1 subject to Φs′i,v = y′i,v. (4b)254

255

The second part (4b) (i.e., obtaining s′i,v), is an ℓ1-norm minimization problem. Here,256

we can observe that in the above optimization problem, the constraints are oversampled.257

As earlier, this oversampling helps us to do sparsification, which leads to increased258

embedding capacity without degradation of the quality of both the stego-image and the259

secret image. For the solution of the minimization problem (4b), we use ADMM (Boyd260

et al., 2010; Gabay, 1976) to solve the LASSO (Hwang et al., 2016; Nardone et al.,261

2019) formulation of this minimization problem. The reason is that this method has a262

fast convergence, is easy to implement, and also is extensively used in image processing263

(Boyd et al., 2010; Hwang et al., 2016).264

Next, we convert each vector s′i into a block of size b×b. After that, we perform265

inverse sparsification (i.e., we apply the two-dimensional Inverse DCT) to each of these266

blocks to generate blocks x′i of the image. That is,267

x′i = IDCT
(

s′i
)

. (5)268

Next, we construct the sub-stego-image of size r
2
× r

2
by arranging all these blocks x′i. We269

repeat the above steps to construct all four sub-stego-images. At last, we perform inverse270

sampling and obtain a single constructed stego-image from these four sub-stego-images.271

In the experiments section, we show that the quality of the stego-image is also very272

good.273

Extraction of the Secret Images274

In this subsection, we discuss the process of extracting secret images from the stego-275

image. Initially, we perform sampling (as done in Section 2.1 using (1a)–(1d)) of the276
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Algorithm 1 Embedding Rule

Input:

• yi: Sequence of linear measurements of the cover image with i =

1,2, . . . , r2

4×b2 .

• tı̂: Sequence of transform coefficients of the secret image with ı̂ = 1,2, . . . , m2

l2 .

• The choice of our r, b, m, and l is such that m2

l2 is less than or equal to r2

4×b2 .

• p1 and p4 are lengths of certain vectors defined on pages vi and vii, respec-

tively.

• α , β , γ , and c are algorithmic constants that are chosen based upon experience.

The choices of these constants are discussed in the experimental results

sections.

Output:

• y′i: The modified version of the linear measurements with i = 1,2, . . . , r2

4×b2 .

1: Initialize y′i to yi, where i = 1,2, . . . , r2

4×b2 .

2: for i = 1 to r2

4×b2 do

3: // Embedding of the first coefficient.

y′i(p1) = yi(p1 −2c)+α × ti(1).

4: for j = p1 − c+1 to p1 −1 do

5: // Embedding of the next c−1 coefficients.

y′i( j) = yi( j− c)+β × ti( j− p1 + c+1).

6: end for

7: for k = p1 + p4 +1 to p1 +2× p4 − c do

8: // Embedding of the remaining p4 − c coefficients.

y′i(k) = yi(k− p4 + c)+ γ × ti(k− p1 − p4 + c).

9: end for

10: end for

11: return y′i

stego-image to obtain four sub-stego-images. Since the extraction of all the secret277

images is similar, here, we discuss the extraction of only one secret image from one sub-278

stego-image. First, we perform block-wise sparsification of the chosen sub-stego-image.279

For this, we divide the sub-stego-image into blocks of size b×b. We obtain a total of280

r2

4×b2 blocks. Further, we sparsify each block (say x′′i ) by computing the corresponding281

sparse vector (say s′′i ). That is,282

s′′i = DCT (x′′i ). (6)283

Next, as earlier, we arrange these sparse blocks in a zig-zag scanning order, obtain284
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Algorithm 2 Extraction Rule

Input:

• y′′i : Sequence of linear measurements of the stego-image with i =

1,2, . . . , r2

4×b2 .

• p1 and p4 are lengths of certain vectors defined on pages vi and vii, respec-

tively.

• α , β , γ , and c are algorithmic constants that are chosen based upon experience.

The choices of these constants are discussed in the experimental results

section.

Output:

• t ′ı̂ : Sequence of transform coefficients of the secret image with ı̂ = 1,2, . . . , m2

l2 .

1: Initialize t ′ı̂ to zeros, where ı̂ = 1,2, . . . , m2

l2 .

2: for i = 1 to r2

4×b2 do

3: // Extraction of the first coefficient.

t ′i(1) =
y′′i (p1)−y′′i (p1−2c)

α .

4: for j = p1 − c+1 to p1 −1 do

5: // Extraction of the next c−1 coefficients.

t ′i( j− p1 + c+1) =
y′′i ( j)−y′′i ( j−c)

β
.

6: end for

7: for k = p1 + p4 +1 to p1 +2× p4 − c do

8: // Extraction of the remaining p4 − c coefficients.

t ′i(k− p1 − p4 + c) =
y′′i (k)−y′′i (k−p4+c)

γ .

9: end for

10: end for

11: return t ′ı̂

the corresponding sparse vectors each of size b2 ×1, and then categorize each of them285

into two groups s′′i,u ∈ R
p1 and s′′i,v ∈ R

p2 . Here, as before, p1 and p2 are the numbers of286

coefficients having large values and small values (or zero values), respectively. After287

that, we project each sparse vector onto linear measurements (say y′′i ∈ R
(p1+p3)×1),288

y′′i =

[

y′′i,u
y′′i,v

]

=

[

s′′i,u
Φs′′i,v

]

. (7)289

From y′′i , we extract the DCT coefficients of the embedded secret image using Algorithm290

2. This extraction rule is the reverse of the embedding rule given in Algorithm 1.291

In Algorithm 2, t ′ı̂ ∈ R
l2×1, for ı̂ = 1,2, . . . , m2

l2 , are the vector representations of the292

DCT coefficients of the blocks of one extracted secret image. Next, we convert each293

vector t ′ı̂ into blocks of size l × l, and then perform a block-wise Inverse DCT (IDCT)294
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(a) Cars (b) Peppers (c) Boat (d) House (e) Lake

(f) Stream (g) Living room (h) Tank (i) Jetplane (j) Camera man

Figure 3. Test images used in our experiments (SIP, 2021; Ima, 2021).

(using (5)) to obtain the secret image pixels. Finally, we obtain the extracted secret295

image of size m×m by arranging all these blocks column wise. As mentioned earlier,296

this steganography scheme is a blind multi-image steganography scheme because it does297

not require any cover image data at the receiver side for the extraction of secret images.298

Here, the process of hiding (and extracting) secret images is not fully lossless2,299

resulting in the degradation of the quality of extracted secret images. This is because300

we first oversample the original image using (3), and then we construct the stego-301

image by solving the optimization problem (4b), which leads to a loss of information.302

However, our algorithm is designed in such a way that we are able to extract high-303

quality secret images. We support this fact with examples in the experiments section304

(specifically, Section 3.3). We term our algorithm Sparse Approximation Blind Multi-305

Image Steganography (SABMIS) scheme due to the involved sparse approximation and306

the blind multi-image steganography.307

EXPERIMENTAL RESULTS308

Experiments are carried out in MATLAB on a machine with an Intel Core i3 processor309

@2.30 GHz and 4GB RAM. We use a set of 31 standard grayscale images available310

from miscellaneous category of the USC-SIPI image database (SIP, 2021) and standard311

test images from http://imageprocessingplace.com (Ima, 2021). In this work, we report312

results for 10 images (shown in Figure 3). However, our SABMIS scheme is applicable313

to other images as well. Our selection is justified by the fact that the image processing314

literature has frequently used these 10 images or a subset of them.315

Here, we take all ten images shown in Figure 3 as the cover images, and four images;316

Figures 3b, 3e, 3f and 3j as the secret images for our experiments. However, we can use317

any of the ten images as the secret images.318

Although the images shown in Figure 3 look to be of the same dimension, they are319

of varying sizes. For our experiments, each cover image is converted to 1024×1024320

size (i.e., r× r). We take blocks of size 8×8 for the cover images (i.e., b×b). Recall321

2This is common in transform-based image steganography.

xi/xxiiiPeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66732:0:1:NEW 19 Nov 2021)

Manuscript to be reviewedComputer Science



from subsection 2.1 that the size of the DCT sparsified vectors is (p1 + p2)× 1 with322

p1 + p2 = b2 (here, b2 = 64). Applying DCT on images results in a sparse vector323

where more than half of the coefficients have values that are either very small or zero324

(Agrawal and Ahuja, 2021; Pal et al., 2019). This is the case here as well. Hence, in our325

experiments, we take p1 = p2 = 32. Recall, the size of the measurement matrix Φ is326

p3 × p2 with p3 > p2. We take p3 = 50× p2. Without loss of generality, the element327

values of the column-normalized measurement matrix are taken as random numbers328

with mean 0 and standard deviation 1, which is a common standard.329

Each of the secret image is converted to 512×512 size (i.e., m×m). This choice330

is also motivated by the fact that we chose the size of the secret image to be half of331

that of the cover image (1024× 1024). We take blocks of size 8× 8 for the secret332

images as well (i.e., l × l). In general, the DCT coefficients can be divided into three333

sets; low frequencies, middle frequencies, and high frequencies. Low frequencies are334

associated with the illumination, middle frequencies are associated with the structure,335

and high frequencies are associated with the noise or small variation details. Thus, these336

high-frequency coefficients are of very little importance for the to-be embedded secret337

images. Since the number of high-frequency coefficients is usually half of the total338

number of coefficients, we take p4 = 32 (using 8×8 divided by 2).339

The values of the constants in Algorithm 1 and Algorithm 2 are taken as follows3
340

(based upon experience): α = 0.01, β = 0.1, γ = 1, and c = 6. For ADMM, we set the341

maximum number of iterations as 500, the absolute stopping tolerance as 1×10−4, and342

the relative stopping tolerance as 1×10−2. These values are again taken based upon343

our experience with a similar algorithm (Agrawal and Ahuja, 2021). Eventually, our344

ADMM almost always converges in 10 to 15 iterations.345

As mentioned earlier, in the five sections below we experimentally demonstrate the346

usefulness of our steganography scheme. First, in Section 3.1, we show analytically347

that our SABMIS scheme gives excellent embedding capacities. Second, in Section348

3.2, we show that the quality of the constructed stego-images, when compared with the349

corresponding cover images, is of high. Third, in Section 3.3, we demonstrate the good350

quality of the extracted secret images when compared with the original secret images.351

Fourth, in Section 3.4, we show that our SABMIS scheme is resistant to steganographic352

attacks. Finally and fifth, in Section 3.5, we perform a comparison of our scheme with353

various other steganography schemes.354

Embedding Capacity Analysis355

The embedding capacity (or embedding rate) is the number (or length) of secret bits that356

can be embedded in each pixel of the cover image. It is measured in bits per pixel4 (bpp)357

and is calculated as follows:358

EC in bpp =
Total number of secret bits embedded

Total number of pixels in the cover image
. (8)359

3The values of these constants do not affect the convergence of ADMM much. Determining the range

of values that work best here is part of our future work.
4Since in the transform domain-based steganography schemes, some specific transform coefficients

are embedded into the cover image (along with the secret bits), a more appropriate term that can be used

for embedding capacity is “bits of information per pixel” (bipp). However, to avoid confusion, we use the

term bpp in this paper, which is commonly used.
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In this scheme, we embed a maximum of four secret images each of size 512×512 in a360

cover image of size 1024×1024. Thus, we obtain embedding capacities of 2 bpp, 4 bpp,361

6 bpp, and 8 bpp while embedding one, two, three, and four secret images, respectively.362

Stego-Image Quality Assessment363

In general, the visual quality of the stego-image degrades as the embedding capacity364

increases. Hence, preserving the visual quality becomes increasingly important. There is365

no universal criterion to determine the quality of the constructed stego-image. However,366

we evaluate it by visual and numerical measures. We use Peak Signal-to-Noise Ratio367

(PSNR), Mean Structural Similarity (MSSIM) index, Normalized Cross-Correlation368

(NCC) coefficient, entropy, and Normalized Absolute Error (NAE) numerical measures.369

When using the visual measures, we construct the stego-images corresponding to the370

different cover images used in our experiments and then check their distortion visually.371

We also check their corresponding edge map diagrams. Here, we present the visual372

comparison only for ‘Stream’ as the cover image with ‘Lake’ secret image and the373

corresponding stego-image. We get similar results for the other images as well. The374

comparison is given in Figure 4. The cover image and its corresponding edge map are375

shown in parts (a) and (b) of this figure. The stego-image and its corresponding edge376

map are given in parts (c) and (d) of the same figure. When we compare each figure377

with its counterpart, we find that they are very similar.378

Next, when using the numerical measures to assess the quality of the stego-image379

with respect to the cover image, we first evaluate the most common measure of PSNR380

value in Section 3.2.1. Subsequently, we evaluate the other more rarely used numerical381

measures of MSSIM index, NCC coefficient, entropy, and NAE in Section 3.2.2.382

Peak Signal-to-Noise Ratio (PSNR) Value383

We compute the PSNR values to evaluate the imperceptibility of stego-images (SI) with384

respect to the corresponding cover images (I) as follows (Elzeki et al., 2021):385

PSNR(I,SI) = 10log10

R2

MSE(I,SI)
dB, (9)386

where MSE(I,SI) represents the mean square error between the cover image I and the387

stego-image SI, R is the maximum intensity of the pixels, which is 255 for grayscale388

images, and dB refers to decibel. This error is calculated as389

MSE(I,SI) =
∑

r1
i=1 ∑

r2
j=1 (I (i, j)−SI (i, j))2

r1× r2
, (10)390

where r1 and r2 represent the row and column numbers of the image (for us either cover391

or stego), respectively, and I(i, j) and SI(i, j) represent the pixel values of the cover392

image and the stego-image, respectively.393

A higher PSNR value indicates a higher imperceptibility of the stego-image with394

respect to the corresponding cover image. In general, a value higher than 30 dB is395

considered to be good since human eyes can hardly distinguish the distortion in the396

image (Gutub and Shaarani, 2020; Zhang et al., 2013; Liu and Liao, 2008).397

The PSNR values of the stego-images corresponding to the ten cover images are398

given in Figure 5 and Figure 6. In Figure 5, we show the PSNR values of all the399
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(a) Cover Image (CI)

(b) CI Edge Map

(c) Stego-Image (SI)

(d) SI Edge Map

Figure 4. Visual quality analysis between ‘Stream’ cover image (CI) and its

corresponding stego-image (SI).

stego-images when separately all the four secret images (mentioned above in Figure 3)400

are embedded. In this figure, we obtain the highest PSNR value (46.25 dB) when the401

‘Peppers’ secret image is hidden in the ‘House’ cover image, while the lowest PSNR402

value (37.66 dB) is obtained when the ‘Stream’ secret image is hidden in the ‘Stream’403

cover image.404

In Figure 6, we show the PSNR values for the four cases of embedding one, two,405

three, and four secret images in the ten cover images. As we have four secret images,406

when embedding one secret image, we have a choice of embedding any one of them407

and present the resulting PSNR values. However, we separately embed all four images,408

obtain their PSNR values, and then present the average results. Similarly, the average409

PSNR values are presented for the cases when we embed two and three images. In this410

figure, we obtain the highest average PSNR value (45.21 dB) when one secret image is411

hidden in the ‘House’ cover image, while the lowest PSNR value (31.78 dB) is obtained412

when all four secret images are hidden in the ‘Stream’ cover image. Also, we observe413

that for all test cases, we obtain PSNR values higher than 30 dB which, as earlier, are414

considered good.415
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Figure 5. PSNR values of the stego-images when only one secret image is hidden.
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Figure 6. PSNR values of the stego-images when different numbers of images are

hidden.

Other Numerical Measures416

417

Mean Structural Similarity (MSSIM) Index This is an image quality assessment met-418

ric used to measure the structural similarity between two images, which is most notice-419

able to humans (Habib et al., 2016; Elzeki et al., 2021). MSSIM between the cover420

image I and the stego-image SI is given as421

MSSIM(I,SI) =
1

M

M

∑
j=1

SSIM(i j,si j), (11)422

423

where i j and si j are the content of the cover image and the stego-image, respectively, at424

the jth local window with M being the number of local windows (Habib et al., 2016;425

Wang et al., 2004), and426

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
, (12)427

428

where for vectors x and y, µx is the weighted mean of x, µy is the weighted mean of y,429

σx is the weighted standard deviation of x, σy is the weighted standard deviation of y,430

σxy is the weighted covariance between x and y, C1 and C2 are positive constants.431
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We take M = 1069156, C1 = (0.01× 255)2, and C2 = (0.03× 255)2 based upon432

the recommendations from (Habib et al., 2016; Wang et al., 2004). The value of the433

MSSIM index lies between 0 and 1, where the value 0 indicates that there is no structural434

similarity between the cover image and the corresponding stego-image, and the value 1435

indicates that the images are identical.436

Normalized Cross-Correlation (NCC) Coefficient: This metric measures the amount437

of correlation between two images (Parah et al., 2016). The NCC coefficient between438

the cover image I and the stego-image SI is given as439

NCC(I,SI) =
∑

r1
i=1 ∑

r2
j=1 I(i, j)SI(i, j)

∑
r1
i=1 ∑

r2
j=1 I2(i, j)

, (13)440

441

where r1 and r2 represent the row and column numbers of the image (for us either cover442

or stego), respectively, and I(i, j) and SI(i, j) represent the pixel values of the cover443

image and the stego-image, respectively. The NCC coefficient value of 1 indicates that444

the cover image and the stego-image are highly correlated while a value of 0 indicates445

that the two are not correlated.446

Entropy: In general, entropy is defined as the measure of average uncertainty of a447

random variable. In the context of an image, it is a statistical measure of randomness448

that can be used to characterize the texture of the image (Gonzalez et al., 2004). For a449

grayscale image (either a cover image or a stego-image in our case), entropy is given as450

E =−
255

∑
i=0

(pi log2 pi), (14)451

452

where pi ∈ [0,1] is the fraction of image pixels that have the value i. If the stego-image453

is similar to its corresponding cover image, then the two should have similar entropy454

values (due to similar textures).455

Normalized Absolute Error (NAE): This metric is a distance measure that captures456

pixel-wise differences between two images (Arunkumar et al., 2019b). NAE between457

the cover image I and the stego-image SI is given as458

NAE(I,SI) =
∑

r1
i=1 ∑

r2
j=1 (|CI (i, j)−SI (i, j) |)

∑
r1
i=1 ∑

r2
j=1CI (i, j)

, (15)459

where r1 and r2 represent the row and the column numbers of the image (for us either460

cover or stego), respectively, and CI(i, j) and SI(i, j) represent the pixel values of the461

cover image and the stego-image, respectively. NAE has values in the range 0 to 1.462

A value close to 0 indicates that the cover image is very close to its corresponding463

stego-image, and a value close to 1 indicates that the two are substantially far apart.464

In Table 4, we present the values of MSSIM index, NCC coefficient, entropy and465

NAE for our SABMIS scheme when hiding all four secret images. We do not present466

the values for the cases of embedding less than four secret images as their results will467

be better than those given in Table 4. Hence, our reported results are for the worst case.468

From this table, we observe that all values of the MSSIM index are nearly equal to 1469
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(different in the sixth place of decimal), the values of NCC coefficients are close to 1, and470

values of NAE are close to 0. The entropy values of the cover and the stego-images are471

almost identical. All these values indicate that the cover images and their corresponding472

stego-images are almost identical.473

Table 4. MSSIM index, NCC coefficient, entropy, and NAE of the stego-images when

compared with the corresponding cover images.

Cover

Image
MSSIM NCC

Entropy
NAE

Cover

Image

Stego-

Image

Cars 1 0.9998 6.608 6.627 0.010

Peppers 1 0.9997 7.573 7.603 0.012

Boat 1 0.9998 7.121 7.151 0.012

House 1 0.9998 5.756 6.630 0.007

Lake 1 0.9997 7.471 7.513 0.013

Stream 1 0.9991 7.702 7.719 0.020

Livingroom 1 0.9996 7.431 7.438 0.014

Tank 1 0.9998 6.372 6.412 0.011

Jetplane 1 0.9998 6.716 6.795 0.008

Cameraman 1 0.9999 7.055 7.133 0.009

Average 1 0.9996 6.982 7.102 0.012

Secret Image Quality Assessment474

Since human observers are considered the final arbiter to assess the quality of the475

extracted secret images, we compare one such original secret image and its corresponding476

extracted secret image. The results of all other combinations are almost the same. In477

Figures 7a and 7c, we show the original ‘Lake’ secret image and the extracted ‘Lake’478

secret image (from the ‘Stream’ stego-image). From these figures, we observe that there479

is very little distortion in the extracted image. Besides this, for these two images, we480

also present their corresponding edge map diagrams (in Figures 7b and 7d, respectively).481

Again, we observe minimal variations between the original and the extracted secret482

images.483

Security Analysis484

The SABMIS scheme is a transform domain based technique which employs an indirect485

embedding strategy, i.e., it does not follow the Least Significant Bit (LSB) flipping486

method, and hence, it is immune to statistical attacks (Westfeld and Pfitzmann, 2000;487

Yu et al., 2009). Moreover, in the SABMIS scheme, the measurement matrix Φ, and488

the embedding/ extraction algorithmic settings are considered as secret-keys, which are489

shared between the sender and the legitimate receiver. It is assumed that these keys are490

not known to the eavesdropper. Hence, we achieve increased security in our proposed491

system.492

To justify this, we extract the secret image in two ways, i.e., by using correct secret-493

keys and by using wrong secret-keys. Since the measurement matrix, which we use494

(random matrix having numbers with mean 0 and standard deviation 1) is one of the495

most commonly used measurement matrix and the eavesdropper can easily guess it, we496

use this same measurement matrix while building wrong secret-keys. Here, we use the497
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(a) ‘Lake’ Original Secret Image

(OSI)

(b) OSI Edge Map

(c) ‘Lake’ Extracted Secret Image

(ESI)

(d) ESI Edge Map

Figure 7. Visual quality analysis between the ‘Lake’ original secret image and the

‘Lake’ extracted secret image (from the ‘Stream’ stego-image).

same dimension of this matrix as well, i.e., p3× p2. In reality, the guessed matrix size498

would be different from the original matrix size, which would make the extraction task499

of the eavesdropper more difficult.500

The algorithmic settings that we use will be completely unknown to the eavesdropper.501

These involve using few constants (α = 0.01, β = 0.1, γ = 1 and c = 6) and a set of502

cover image coefficients where secret image coefficients are embedded (using p1 and503

p4). While building wrong secret-keys, we take the common guess of one for all504

constants (i.e., α = 1, β = 1, γ = 1 and c = 1) without changing the rest of the settings505

(i.e., same p1 and p4). In reality, the eavesdropper would not be able to correctly guess506

these other settings as well resulting in a further challenges during extraction.507

We compare the average NAE values (between the original secret images and the508

corresponding extracted ones) for both these cases. These values are presented in Figure509

8. In this figure, we see that for correct secret-keys, the NAE values are close to 0, and510

the for wrong secret-keys, the NAE values are very high. Hence, in the SABMIS scheme,511

a change in secret-keys will lead to a shift in the accuracy between the original secret512
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Figure 8. Average NAE value between the four original secret images and their

corresponding extracted secret images when using correct and wrong secret-keys.

(a) ‘Lake’ extracted secret image

(using correct secret-keys)

(b) ‘Lake’ extracted secret image

(using wrong secret-keys)

Figure 9. Visual quality analysis between the ‘Lake’ extracted secret image using

correct and wrong secret-keys (from the ‘Stream’ stego-image).

images and their corresponding extracted ones, in turn, making our scheme secure.513

Moreover, in Figure 9 (a) and (b), we compare the ‘Lake’ secret image when extracted514

using correct and wrong secret-keys (from the ‘Stream’ stego-image), respectively.515

From this figure, we see that when using correct secret-keys, the visual distortion in516

the extracted secret image is negligible, and when using the wrong secret-keys, the517

distortion in the extracted secret image is very high (it is almost black).518

Performance Comparison519

We compare our SABMIS scheme with the existing steganography schemes (discussed520

in the Introduction section) for the embedding capacity, the quality of stego-images,521

and resistance to steganographic attacks. For the stego-image quality comparison, since522

most works have computed PSNR values only, we use only this metric for analysis.523

Further, resistance to steganographic attacks is not experimented by most of the past524
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Table 5. Performance comparison of our SABMIS scheme with various other

steganography schemes.

Numbers

of

secret

images

Steganography Scheme
Type of

secret image

Type of

cover images

Embedding

capacity

(in bpp)

PSNR

(in dB)

Resistant

to stegan-

ographic

attacks?

1
(Arunkumar et al., 2019b) Binary Grayscale 0.25 49.69 Yes

SABMIS Grayscale Grayscale 2 41.88 Yes

2
(Hemalatha et al., 2013) Grayscale Color 1.33 44.75 Yes

SABMIS Grayscale Grayscale 4 38.94 Yes

3
(Guttikonda et al., 2018) Binary Grayscale 2 46.36 No

SABMIS Grayscale Grayscale 6 37.31 Yes

4 SABMIS Grayscale Grayscale 8 35.92 Yes

works. Rather, they have just stated whether their scheme has such a property or not.525

Hence, we use this information for comparison. Finally, although we check the quality526

of the extracted secret images by comparing them with the corresponding original secret527

images (as earlier), this check is not common in the existing works. Hence, we do not528

perform this comparison.529

As mentioned in the introduction, because of the lack of past work of embedding530

grayscale secret images into a grayscale cover image, we compare with the cases of531

embedding binary images into a grayscale image or embedding grayscale images into a532

color image. Both these problems are easier than our problem.533

This comparison is given in Table 5. As evident from this table, our scheme outper-534

forms the competitive schemes in embedding capacity for the three cases of embedding535

one, two, and three secret images. We do have a slight loss in the quality of the stego-536

images. However, as earlier, this is considered acceptable because we are compromising537

very little in quality while gaining a lot more in embedding capacity. Moreover, PSNR538

values over 30 dB are considered good (Gutub and Shaarani, 2020; Zhang et al., 2013;539

Liu and Liao, 2008). Further, our scheme, like most of the other competitive schemes540

(not all; please see (Guttikonda et al., 2018)), is resistant to steganographic attacks.541

Finally, we are the first ones to embed four secret images in a cover image.542

CONCLUSIONS AND FUTURE WORK543

Securing secret information over Internet-based applications becomes important as544

illegitimate users try to access them. One way to secure this data is to hide them into545

an image as the cover media, known as image steganography. Here, the challenges546

are increasing the embedding capacity of the scheme, maintaining the quality of the547

stego-image, and ensuring that the scheme is resistant to steganographic attacks. We548

propose a blind multi-image steganography scheme for securing secret images in cover549

images to substantially overcome all the three challenges. All our images are grayscale,550

which is a hard problem.551

First, we perform sampling of the cover image to obtain four sub-images. Further,552

we sparsify (using DCT) each sub-image and obtain its sparse linear measurements using553

a random measurement matrix. Then, we embed DCT coefficients of the secret images554

into these linear measurements using our novel embedding rule. Second, we construct555
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the stego-image from these modified measurements by solving the resulting LASSO556

problem using ADMM. Third, using our proposed extraction rule, we extract the secret557

images from the stego-image. We call this scheme SABMIS (Sparse Approximation558

Blind Multi-Image Steganography). Using these components together helps us to embed559

up to four secret images into one cover image (instead of the common embedding of560

two secret images).561

We perform experiments on several standard grayscale images. We obtain embedding562

capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two,563

three, and four secret images, respectively. These embedding capacities are higher564

than all the embedding capacities obtained in the literature until now. Further, there565

is with very little deterioration in the quality of the stego-image as compared to its566

corresponding cover image (measured by the above metrics). The quality of the original567

secret images and their corresponding extracted secret images is also almost the same.568

Further, due to our algorithmic design, our scheme is resistant to steganographic attacks569

as well.570

Next, we discuss the future work in this context. First, since we embed secret images571

in images, in the future we plan to embed the secret data into text, audio, and video.572

Second, we plan to apply optimization techniques to improve the values of parameters573

α,β ,γ , etc. used in the embedding and the extraction algorithms of the SABMIS scheme.574

Third, we plan to extend this work to real-time applications such as hiding fingerprint575

data, iris data, medical information of patients, and personal signatures.576
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