
FCMpy: a python module for constructing
and analyzing fuzzy cognitive maps
Samvel Mkhitaryan1, Philippe Giabbanelli2, Maciej K Wozniak3,
Gonzalo Nápoles4, Nanne De Vries1 and Rik Crutzen1

1 Health Promotion, Maastricht University, Maastricht, Netherlands
2 Computer Science & Software Engineering, Miami University of Ohio, Oxford, Ohio,
United States

3Division of Robotics, Perception and Learning, KTH Royal Institute of Technology, Stockholm,
Sweden

4 Cognitive Sciences and Artificial Intelligence, Tilburg University, Tilburg, Netherlands

ABSTRACT
FCMpy is an open-source Python module for building and analyzing Fuzzy
Cognitive Maps (FCMs). The module provides tools for end-to-end projects
involving FCMs. It is able to derive fuzzy causal weights from qualitative data or
simulating the system behavior. Additionally, it includes machine learning
algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic
Algorithms, and Deterministic Learning) to adjust the FCM causal weight matrix and
to solve classification problems. Finally, users can easily implement scenario analysis
by simulating hypothetical interventions (i.e., analyzing what-if scenarios). FCMpy is
the first open-source module that contains all the functionalities necessary for FCM
oriented projects. This work aims to enable researchers from different areas, such as
psychology, cognitive science, or engineering, to easily and efficiently develop and
test their FCM models without the need for extensive programming knowledge.

Subjects Digital Libraries, Network Science and Online Social Networks, Scientific Computing and
Simulation, Social Computing, Programming Languages
Keywords Active Hebbian learning, FCM, Genetic algorithm, Nonlinear Hebbian learning, Python

INTRODUCTION
Fuzzy Cognitive Maps (FCMs) were introduced by Kosko (1986) as an extension to the
traditional cognitive maps and are used to model and analyze complex systems. FCMs are
applied in a variety of fields such as engineering (Stylios & Groumpos, 2004), health
sciences and medicine (Papakostas et al., 2011; Salmeron & Papageorgiou, 2012;
Giabbanelli, Torsney-Weir & Mago, 2012), environmental sciences (Kok, 2009;
Papageorgiou & Kontogianni, 2012), and political analysis (Andreou, Mateou &
Zombanakis, 2005; Giabbanelli, 2014).

An FCM represents a system as a directed signed graph where components are
represented as nodes and the causal relationships between these components are
represented by weighted directed edges. The dynamics of the system are examined by
simulating its behavior over discrete simulation steps. In general, FCMs can be constructed
based on the inputs of domain experts (i.e., expert-based FCMs), data collected about the
system (e.g., data-driven approaches) or the combination of the two (i.e., hybrid
approaches) (Mkhitaryan et al., 2020).

How to cite this articleMkhitaryan S, Giabbanelli P, Wozniak M, Nápoles G, De Vries N, Crutzen R. 2022. FCMpy: a python module for
constructing and analyzing fuzzy cognitive maps. PeerJ Comput. Sci. 8:e1078 DOI 10.7717/peerj-cs.1078

Submitted 2 May 2022
Accepted 8 August 2022
Published 23 September 2022

Corresponding author
Samvel Mkhitaryan,
s.mkhitaryan@
maastrichtuniversity.nl

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.1078

Copyright
2022 Mkhitaryan et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1078
mailto:s.�mkhitaryan@�maastrichtuniversity.�nl
mailto:s.�mkhitaryan@�maastrichtuniversity.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1078
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

The available solutions for constructing and analyzing FCMs come in the form of
dedicated software solutions (e.g., Mental Modeler, FCM Designer), open source libraries
(e.g., fcm package available in R, pfcm available in Python) and open source scripts
(Firmansyah et al., 2019; Nápoles et al., 2018). However, the available open source
solutions provide only partial coverage of the useful tools for building and analyzing
FCMs, lack generality for handling different use cases, or require modifying the source
code to incorporate specific features (Nápoles et al., 2018). For example, the fcm and pfcm
packages provide utilities for simulating FCMs but not for constructing them based on
qualitative (e.g., by applying fuzzy logic) or quantitative inputs. To our knowledge, none of
the available open source solutions (e.g., R and Python) implements learning algorithms
for FCMs (e.g., Non-Linear Hebbian Learning (NHL), Active Hebbian Learning (AHL),
Real-coded genetic algorithm (RCGA)). Although several software packages have
successfully implemented such algorithms (e.g., FCM Expert, FCMWizard), their reliance
on a graphical user interface prevents their integration in a data science workflow
articulated around a language such as Python (Nápoles et al., 2018).

The dedicated modules in our proposed FCMpy package provide utilities for (1)
constructing FCMs based on qualitative input data (by applying fuzzy logic), (2)
simulating the system behavior, (3) implementing learning algorithms (e.g., Nonlinear
Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic
Learning) to optimize the FCM causal weight matrix and model classification problems,
and (4) implementing scenario analysis by simulating hypothetical interventions (i.e.,
analyzing what-if scenarios). Table 1 gives a compact listing of all major capabilities
present in the FCMpy codebase.

CONSTRUCTING EXPERT-BASED FCMS
Expert-based FCMs are often constructed based on data collected from the domain experts
(e.g., by the means of surveys) where the domain experts first identify the factors relevant
to the problem domain and then express the causal relationships between these factors
with linguistic terms (e.g., very high, high, low). Fuzzy logic is subsequently applied to
convert linguistic ratings into numerical weights (i.e., crisp values). The conversion of
linguistic ratings to numerical weights includes the following four steps: (1) define fuzzy
membership functions for the linguistic terms, (2) apply fuzzy implication rule onto the

Table 1 FCMpy features and descriptions.

Feature (submodules) Description

Expert FCM (fcmpy.ExpertFcm) Methods for constructing expert based FCMs based on qualitative data.

Simulator (fcmpy.FcmSimulator) Methods for running simulations on top of a defined FCM.

ML (fcmpy.NHL, fcmpy.AHL Learning algorithms for training FCMs and model evaluation.

fcmpy.RCGA, fcmpy.ISE, fcmpy.OSE)

Classification (fcmpy.ml.classification.ELTCN Classification algorithms based on FCMs.

fcmpy.ml.classification.FCM_MP)

Intervention (fcmpy.Intervention) Methods for running scenario analysis.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 2/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

fuzzy membership functions based on the expert ratings, (3) combine the membership
functions resulting from the second step with an aggregation operation, and (4) defuzzify
the aggregated membership functions (Mkhitaryan et al., 2020;Mago et al., 2012, 2013). In
this section, we first describe methods for reading data from different file formats and then
describe the methods for constructing expert-based FCMs based on qualitative data
following the four steps described above.

Data handling
The available open source solutions for expert-based FCMs do not provide utilities for
working with different file types thus limiting their usability. Data on FCMs include the
edges (represented as pairs of source/target) and the associated linguistic ratings of the
survey participants. The ExpertFcm class provides a read_data method for reading data
from .csv, .xlsx, and .json files (see the code snippet below).

The corresponding files should satisfy certain requirements that are described in detail
in the PyPI documentation. Before using the read_data method we first need to define
the linguistic terms (explained in detail in the next section) used in the data. We can do
that by using the linguistic_termsmethod. The read_data requires the file path as an
argument. The additional arguments that depend on the file extension (e.g., csv, json, xlsx)
should be specified as keyword arguments. For the .xlsx and .json files, when the optional
check_consistency argument is set to True then the algorithm checks whether the
experts rated the causal impact of the edges (source-target pairs) consistently in terms of
the valence of the causal impact (positive or negative causality). If such inconsistencies are
identified, the method outputs a separate .xlsx file that documents such inconsistencies.

>>> from fcmpy import ExpertFcm

>>> fcm = ExpertFcm()

>>> fcm.linguistic_terms = {

’-vh’: [-1, -1, -0.75],
’-h’: [-1, -0.75, -0.50],
’-m’: [-0.75, -0.5, -0.25],
’-l’: [-0.5, -0.25, 0],

’-vl’: [-0.25, 0, 0],

’na’: [-0.001, 0, 0.001],

’+vl’: [0, 0, 0.25],

’+l’: [0, 0.25, 0.50],

’+m’: [0.25, 0.5, 0.75],

’+h’: [0.5, 0.75, 1],

’+vh’: [0.75, 1, 1]

}

>>> data = fcm.read_data (file_path = ’data_test.xlsx’,

check_consistency = False,

engine = ’openpyxl’)

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 3/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

The read_data method returns an ordered dictionary where the keys are the experts’
IDs (or the names of the excel sheets in the case of an excel file or the row index in case of a
csv file) and the values are pandas dataframes with the expert inputs.

It is often useful to check the extent to which the participants agree on their opinions
with respect to the causal relationships between the edges. This is often done by calculating
the information entropy (Kosko, 1996) expressed as:

R ¼ �
Xn
i¼1

pilog2ðpiÞ (1)

where pi is the proportion of the answers (per linguistic term) about the causal
relationship. The value of entropy is always greater than or equal to zero. If all the experts
give the same answer about a particular edge (e.g., from C1 to C3), the entropy score for
that connection will be 0. However, if experts disagree about the importance of a
connection (e.g., in the edge between C1 and C2), the entropy value would increase. The
entropy scores can be calculated with the entropy method (see the code snippet below).

>>> entropy = fcm.entropy (data)

From To Entropy

C1 C1 0.000000

C2 1.459148

C3 0.000000

C4 0.000000

C2 C1 1.459148

C2 0.000000

C3 0.000000

C4 0.000000

C3 C1 0.820802

C2 0.000000

C3 0.000000

C4 0.930827

C4 C1 0.000000

C2 0.000000

C3 0.000000

C4 0.000000

FOUR STEPS FOR OBTAINING CAUSAL WEIGHTS
To convert the qualitative ratings of the domain experts to numerical weights via fuzzy
logic, we must (1) define the fuzzy membership functions, (2) apply a fuzzy implication
rule, (3) combine the membership functions, and (4) defuzzify the aggregated membership
functions to derive the numerical causal weights. Table 2 gives a concise listing of the
methods for building expert based FCMs.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 4/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

Step 1: define fuzzy membership functions
Fuzzy membership functions are used to map the linguistic terms to a specified numerical
interval (i.e., universe of discourse). In FCMs, the universe of discourse is specified in the
[-1, 1] interval where the negative causality is possible or in the [0, 1] interval otherwise.
The universe of discourse can be specified with the universe setter (see the code snippet
below).

>>> import numpy as np

>>> fcm.universe = np.arange(-1, 1.001,.001)

To generate the fuzzy membership functions we need to decide on the geometric shape
that would best represent the linguistic terms. In many applications, a triangular
membership function is used (Zadeh, 1971). The triangular membership function specifies
the lower and the upper bounds of the triangle (i.e., where the meaning of the given
linguistic term is represented the least) and the center of the triangle (i.e., where the
meaning of the given linguistic term is fully expressed).

The linguistic_terms method sets the linguistic terms and the associated
parameters for the triangular membership function (see the code snippet below).

Table 2 FCMpy.ExpertFcm features and descriptions.

Feature Description

Linguistic terms A setter for specifying

(fcmpy.ExpertFcm.linguistic_terms) the linguistic terms the experts used.

Universe of discourse A setter for specifying the universe of discourse

(fcmpy.ExpertFcm.universe) for the fuzzy membership functions.

Read data A method for reading data

(fcmpy.ExpertFcm.read_data) from different file formats.

Entropy (fcmpy.ExpertFcm.entropy) A method for calculating entropy.

Generate membership functions A method for automatically

(fcmpy.ExpertFcm.automf) generating fuzzy membership functions.

Fuzzy implication A method for applying fuzzy implication rules

(fcmpy.ExpertFcm.fuzzy_implication) on the defined membership functions.

Fuzzy aggregation A method for applying fuzzy aggregation rules

(fcmpy.ExpertFcm.aggregate) on the activated membership functions.

Defuzzification Defuzzification methods for calculating crisp value

(fcmpy.ExpertFcm.defuzz) based on the aggregated membership functions.

Build A method for automatically building FCMs based on

(fcmpy.ExpertFcm.build) the qualitative input data.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 5/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

>>> fcm.linguistic_terms = {

’-VH’: [-1, -1, -0.75],
’-H’: [-1, -0.75, -0.50],
’-M’: [-0.75, -0.5, -0.25],
’-L’: [-0.5, -0.25, 0],

’-VL’: [-0.25, 0, 0],

’No Causality’: [-0.001, 0, 0.001],

’+VL’: [0, 0, 0.25],

’+L’: [0, 0.25, 0.50],

’+M’: [0.25, 0.5, 0.75],

’+H’: [0.5, 0.75, 1],

’+VH’: [0.75, 1, 1]

}

The keys in the above dictionary represent the linguistic terms and the values are lists
that contain the parameters for the triangular membership function (i.e., the lower bound,
the center and the upper bound) (see Fig. 1). After specifying the universe of discourse and
the linguistic terms with their respective parameters one can use use the automfmethod to
generate the membership functions (see the code snippet below).

>>> fcm.fuzzy_membership = fcm.automf(method = ’trimf’)

In addition to the triangular membership functions, the automf method also
implements gaussian membership functions (‘gaussmf’) and trapezoidal membership
functions (’trapmf’) (based on sci-kit fuzzy module in python).

Figure 1 Triangular membership functions. Full-size DOI: 10.7717/peerj-cs.1078/fig-1

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 6/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-1
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

Step 2: apply the fuzzy implication rule
To determine the level of endorsement of the linguistic terms for a given pair of concepts,
one must first identify the level of endorsement of the given terms by the participants. This
is done by calculating the proportion of the answers to each linguistic term for a given
edge. Consider a case where 50% of the participants (e.g., domain experts) rated the causal
impact of an antecedent on the consequent as Positive High, 33% rated it as Positive Very
High and the 16% rated it as Positive Medium. Subsequently, a fuzzy implication rule is
used to activate the corresponding membership functions. Two such rules are often used,
namely Mamdani’s minimum and Larsen’s product implication rule (Nandi, 2012).

The Mamdani minimum fuzzy implication rule is expressed as:

lRðx; yÞ ¼ min lAðxÞ;lBðyÞð Þ (2)

where lAðxÞ and lBðyÞ denote the membership value x to the linguistic term A and the
membership value y to the linguistic term B respectively.

The Mamdani rule cuts the membership function at the level of endorsement (see
Fig. 2A). In contrast, Larsen’s implication rule re-scales the membership function based on
the level of endorsement (see Fig. 2B) and is expressed as:

lRðx; yÞ ¼ lAðxÞ � lBðyÞ (3)

Figure 2 Fuzzy implication rules. FCMpy implements two types of fuzzy implication rules: the widely-used Mamdani minimum fuzzy implication
(A) and Larsen's product fuzzy implication (B) rules. Full-size DOI: 10.7717/peerj-cs.1078/fig-2

Table 3 Fuzzy implication rules.

Argument Option Description

Method ‘Mamdani’ Mamdani’s fuzzy implication rule

‘Larsen’ Larsen’s fuzzy implication rule

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 7/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-2
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

We can use fuzzy_implication method to apply the selected implication method
(see the available methods in Table 3 and the code snippet below).

>>> mfs = fcm.fuzzy_membership

>>> act_pvh = fcm.fuzzy_implication(mfs[’+vh’],
weight = 0.33, method = ’Mamdani’)

>>> act_pm = fcm.fuzzy_implication(mfs[’+m’],

weight = 0.16, method = ’Mamdani’)

>>> act_ph = fcm.fuzzy_implication(mfs[’+h’],

weight = 0.5, method = ’Mamdani’)

>>> activatedMamdani = {’+vh’: act_pvh,

’+h’: act_ph, ’+m’: act_pm}

Step 3: aggregate fuzzy membership functions
In the third step, we must aggregate the activated membership functions taken from the
previous step. This is commonly done by applying the family maximum aggregation
operation. Alternative methods for aggregating membership functions include the family
Algebraic Sum (see Eq. (4)), the family Einstein Sum (see Eq. (5)) and the family
Hamacher Sum (see Eq. (6)) (Piegat, 2001).

f ðx; yÞ ¼ x þ y � x � y (4)

f ðx; yÞ ¼ ðx þ yÞ
ð1þ x � yÞ (5)

f ðx; yÞ ¼ ðx þ y � 2 � x � yÞ
ð1� x � yÞ (6)

One can use the aggregate method to aggregate the activated membership functions
(see the available aggregation method in Table 4 and the code snippet below).

>>> import functools

>>> aggregated = functools.reduce(lambda x,y:

fcm.aggregate(x=x, y=y, method=’fMax’),
[activatedMamdani[i] for i in activatedMamdani.

keys()])

where x and y are the membership values of the linguistic terms involved in the problem
domain after the application of the implication rule presented in the previous step.

Table 4 Aggregation rules.

Argument Option Description

Method ‘fMax’ Family maximum

‘algSum’ Family Algebraic Sum

‘eSum’ Family Einstein Sum

‘hSum’ Family Hamacher Sum

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 8/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

Step 4: defuzzify the aggregated membership functions
The last step includes the calculation of the crisp value based on the aggregated
membership functions (a.k.a. defuzzification). Among the available defuzzification
methods (see the available defuzzification methods in Table 5) the most commonly used
method is the centroid method (a.k.a. center of gravity) (Stach et al., 2005).

We can apply the dedicated defuzzmethod to derive the crisp value (see Fig. 3 and the
code snippet below).

>>> dfuz = fcm.defuzz(x=fcm.universe,

mfx=aggregated, method=’centroid’)

The above mentioned four steps can either be done and controlled independently as we
have shown, or users can rely on a single build method that implements those steps to
calculate the numerical weights for all the concept pairs in the data (see the code snippet
below). The method returns a pandas dataframe with the calculated weights.

>>> weight_matrix = fcm.build(data=data,

implication_method = ’Mamdani’,
aggregation_method = ’fMax’,

defuzz_method=’centroid’)

Table 5 Defuzzification methods.

Argument Option Description

Method ‘centroid’ Centroid

‘mom’ Mean of maximum

‘som’ Min of max

‘lom’ Max of maximum

Figure 3 Defuzzification of the aggregated membership functions.
Full-size DOI: 10.7717/peerj-cs.1078/fig-3

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 9/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-3
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

C1 C2 C3 C4
C1 0.000000 0.702032 0.000000 0.000000
C2 0.607453 0.000000 0.000000 0.000000
C3 0.555914 0.000000 0.000000 0.172993
C4 0.000000 0.000000 0.000000 0.000000

In this section, we showed how the structure of the FCMs can be derived based on data
collected from the domain experts. In the subsequent section, we illustrate how the system
behavior can be simulated on top of the defined FCM structure.

SIMULATING THE SYSTEM BEHAVIOR WITH FCMS
The dynamics of the specified FCM are examined by simulating its behavior over discrete
simulation steps. In each simulation step, the concept values are updated according to a
defined inference method (Papageorgiou, 2011b). The FcmSimulatormodule implements
the following three types of inference methods (see the available options in Table 6):

� Kosko:

Aðtþ1Þ
i ¼ f ð

Xn
j¼1

AðtÞ
j � wjiÞ (7)

� Modified Kosko:

Aðtþ1Þ
i ¼ f ðAðtÞ

i þ
Xn
j¼1

AðtÞ
j � wjiÞ (8)

� Rescaled:

Aðtþ1Þ
i ¼ f ðð2AðtÞ

i � 1Þ þ
Xn
j¼1

ð2AðtÞ
j � 1Þ � wjiÞ (9)

where aðtÞj is the value of concept j at the simulation step t and wj;i is the causal impact of
concept j on concept i. Note that a (transfer) function f(x) is applied to the result. As shown
in the equations above, this function is necessary to keep values within a certain range (e.g.,

Table 6 Defuzzification methods.

Argument Option Description

Inference ‘kosko’ Kosko

‘mKosko’ Modified Kosko

‘rescaled’ Rescaled

Transfer ‘sigmoid’ Sigmoid

‘tanh’ Hyperbolic tangent

‘bivalent’ Bivalent

‘trivalent’ Trivalent

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 10/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

[0,1] for sigmoid function or [-1,1] for hyperbolic tangent). In the current version, four
such functions are implemented (see the available options in Table 6):

� Sigmoid:

f ðxÞ ¼ 1
1þ e�kx

; x 2 R; binds node values to ½0; 1� (10)

� Hyperbolic tangent:

f ðxÞ ¼ tanhðxÞ ¼ sinhðxÞ
coshðxÞ ¼

e2x � 1
e2x þ 1

; x 2 R; binds node values to ½�1; 1� (11)

� Bivalent:

f ðxÞ ¼ 1; x > 0
0; x � 0

�
; x 2 R; binds node values to f0; 1g (12)

� Trivalent:

f ðxÞ ¼
1 x > 0
0 x ¼ 0
�1 x < 0

8<
: ; x 2 R; binds node values to f�1; 0; 1g (13)

where, x is the value calculated by applying the above mentioned inference methods and
the � is a steepness parameter for the sigmoid function.

The simulation is run until either of two conditions is met: (1) some concepts of interest
have a difference lower than a given threshold between two consecutive steps (default value
0.001), or (2) a user-defined maximum number of iterations is reached. If we denote by S
the activation vector for a subset of concepts of interest (i.e., the outputs of the FCMs), then
the first condition can be stated as:

9t 2 1; 2; . . . ;T � 1 : jSðtþ1Þ � SðtÞj < threshold (14)

The simulate method takes the initial state vector and the FCM weight matrix (a.k.a.,
connection matrix) and applies one of the mentioned update functions over a number of
simulation steps (see the simulation results using different inference and transfer methods
in Figs. 4–6). One can specify the output concepts by supplying a list of these concepts to
the respective output_concepts argument. If the output_concepts argument is not
specified then all the concepts in the FCM are treated as output concepts and the
simulation stops when all the concepts change by less than the threshold between two
consecutive steps.

>>> import pandas as pd

>>> from fcmpy import FcmSimulator

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 11/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

>>> w = np.asarray([[0.0, 0.0, 0.6, 0.9, 0.0, 0.0, 0.0, 0.8],

[0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.5],

[0.0, 0.7, 0.0, 0.0, 0.9, 0.0, 0.4, 0.1],

[0.4, 0.0, 0.0, 0.0, 0.0, 0.9, 0.0, 0.0],

[0.0, 0.0, 0.0, 0.0, 0.0, -0.9, 0.0, 0.3],

[-0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

[0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.9],

[0.1, 0.0, 0.0, 0.0, 0.0, 0.1, 0.6, 0.0]])

Figure 4 FCM simulated with Kosko inference method and different transfer functions. FCMpy supports Sigmoid (A), Hyperbolic tangent (B),
Bivalent (C), and Trivalent (D) transfer methods. Full-size DOI: 10.7717/peerj-cs.1078/fig-4

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 12/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-4
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

>>> weight_matrix = pd.DataFrame(w,

columns=[’C1’,’C2’,’C3’,’C4’,
’C5’,’C6’,’C7’,’C8’])

>>> init_state = {’C1’: 1, ’C2’: 1, ’C3’: 0,
’C4’: 0, ’C5’: 0,
’’C6’: 0, ’C7’: 0, ’C8’: 0}

>>> sim = FcmSimulator()
>>> res = sim.simulate(initial_state = init_state,

weight_matrix = weight_matrix,
transfer=’sigmoid’, inference=’mKosko’, l=1,
thresh = 0.001, iterations = 50)

Figure 5 FCM simulated with modified Kosko inference method and different transfer functions. FCMpy supports Sigmoid (A), Hyperbolic
tangent (B), Bivalent (C), and Trivalent (D) transfer methods.

Full-size DOI: 10.7717/peerj-cs.1078/fig-5

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 13/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-5
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

The values converged in the 7 state (e <= 0.001)
C1 C2 … C5 C6 C7 C8

0 1.000000 1.000000 … 0.000000 0.000000 0.000000 0.000000
1 0.750260 0.731059 … 0.500000 0.500000 0.549834 0.785835
2 0.738141 0.765490 … 0.746700 0.769999 0.838315 0.921361
3 0.730236 0.784168 … 0.805531 0.829309 0.898379 0.950172
4 0.727059 0.789378 … 0.816974 0.838759 0.908173 0.954927
5 0.726125 0.790510 … 0.818986 0.839860 0.909707 0.955666
6 0.725885 0.790706 … 0.819294 0.839901 0.909940 0.955774

LEARNING ALGORITHMS FOR FCMS
As shown in the previous sections, FCMs are often constructed based on experts’
knowledge about the system. In certain domains of applications, modelers either optimize

Figure 6 FCM simulated with rescaled inference method and different transfer functions. FCMpy supports Sigmoid (A), Hyperbolic tangent (B),
Bivalent (C), and Trivalent (D) transfer methods. Full-size DOI: 10.7717/peerj-cs.1078/fig-6

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 14/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-6
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

the FCMs constructed by the experts and/or constructing FCMs entirely based on the data
collected about the systems. A set of machine learning algorithms were developed to meet
these tasks and have previously been applied to numerous fields such as the optimization
of industrial processes (Papageorgiou, Stylios & Groumpos, 2006; Stach, Kurgan & Pedrycz,
2008; Papageorgiou, 2011a), decision making (Poczeta, Papageorgiou & Gerogiannis,
2020), and classification (Nápoles et al., 2014; Nápoles, Jastrzębska & Salgueiro, 2021). In
the proposed library, we include three types of algorithms used for edge optimization,
FCM generation, and classification. We used the state-of-the-art methods (Nápoles,
Jastrzębska & Salgueiro, 2021; Nápoles et al., 2020) and the foundational ones that have
been widely adopted (Papageorgiou, Stylios & Groumpos, 2006; Stach, 2010). In the
following sections, we present examples of these algorithms. Additionally, we successfully
tested some of these learning methods on a case study about nutrition which included 257
participants. We refer readers to our work for more information and for an illustration of
the application of the presented library on a real-world use case (Wozniak, Mkhitaryan &
Giabbanelli, 2022).

Hebbian learning
One of the weaknesses of an FCM constructed by the experts is its potential convergence to
undesired regions. For example, given an intervention scenario, the model may predict
only extreme values such as 0 or 1 (Lavin et al., 2018). To overcome this weakness
Papageorgiou, Stylios & Groumpos (2006) proposed two learning strategies, namely the
Active Hebbian Learning (AHL) and the Non-Linear Hebbian Learning (NHL) algorithms
that are based on the Hebbian learning rule (Hebb, 2005). The task of the proposed
algorithms is to modify the initial FCM connection matrix constructed by the expert such
that the chosen nodes (called Desired Output Concepts DOCs) always converge within the
desired range. Both algorithms are similar to FCM simulation, with the main difference
being that concepts’ values and weights are updated at each time step, whereas during a
simulation, only the concepts values are changing.

In the NHL algorithm, the activation values and weights are simultaneously updated at
each time step. In AHL, nodes and weights are updated asynchronously based on a
sequence of activation patterns specified by the user. During each simulation time step, a
new node becomes an “activated node”; only this node and its incoming edges are updated,
while everything else remains unchanged. Along with optimizing existing edges, AHL
creates new connections between the concepts, which may be an undesirable behavior if
the modeler’s intent is to tweak the weights rather than create connections that have not
been endorsed by experts.

The learning process continues until two termination conditions are fulfilled. First, the
fitness function (F1) is calculated for each DOC as shown in Eq. (15). If value of F1 for each
DOC declines at each time step, and the DOCs values are within a desired range, the first
termination condition is fulfilled. Second, it is crucial to determine whether the values of
the DOCs are stable, i.e., if their values vary with each step more than a threshold e shown
in Eq. (16). This threshold should be determined experimentally, and it is recommended to

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 15/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

be set between 0.001 and 0.005 (Papageorgiou, Stylios & Groumpos, 2006). If the change is
lower than the threshold, the second termination condition is fulfilled.

F1 ¼
ffi
jDOCðkÞ

j � DOCmin
j � DOCmax

j

2
j2

s
(15)

F2 ¼ jDOCðkþ1Þ
j � DOCðkÞ

j j < e (16)

If the termination conditions are satisfied then the learning process may stop, otherwise,
it will continue until a maximum number of steps is reached (we set the default value to
100). In order to use these methods, the user has to provide the initial weight matrix, initial
concept values, and the DOCs. In addition, these variables are necessary, in most cases,
algorithms converge only for a specific combination of values of the hyperparameters:
learning rate (g), decay coefficient (c), and the slope of the sigmoid function. The sample
values used in several case studies are slope [0.9, 1.01], decay for NHL [0.99, 1.0], decay for
AHL [0.01, 0.1] and learning rate [0.001, 0.1]. The optimization of an FCM from a water
tank case study (Papageorgiou, Stylios & Groumpos, 2004; Ren, 2012; Papakostas et al.,
2011) using the algorithms above is demonstrated in the code snippet below.

>>> from fcmpy import NHL

>>> import numpy as np

initial values of weight matrix

>>> w_init_WT = np.asarray([[0,-0.4,-0.25,0,0.3],
[0.36,0,0,0,0],

[0.45,0,0,0,0],

[-0.9,0,0,0,0],
[0,0.6,0,0.3,0]])

>>> w_init_WT = pd.DataFrame(w_init_WT,

columns=[’C1’, ’C2’, ’C3’, ’C4’, ’C5’],
index = [’C1’, ’C2’, ’C3’, ’C4’, ’C5’])

initial values of the concepts
>>> init_states_WT = {’C1’: 0.40, ’C2’: 0.7077,

’C3’: 0.612, ’C4’: 0.717, ’C5’: 0.30}
DOCs
>>> doc_values_WT = {’C1’:[0.68,0.74], ’C5’:[0.74,0.8]}
NHL
>>> nhl = NHL(state_vector=init_states_WT,

weight_matrix=w_init_WT, doc_values=doc_values_WT)
>>> res_nhl = nhl.run(learning_rate = 0.01, l=.98, iterations=100)
The NHL learning process converged at step 63 with the
learning rate eta = 0.01 and decay = 1!

C1 C2 C3 C4 C5
C1 0.000000 -0.200310 -0.023806 0.000000 0.472687
C2 0.539068 0.000000 0.000000 0.000000 0.000000
C3 0.571531 0.000000 0.000000 0.000000 0.000000
C4 -0.832174 0.000000 0.000000 0.000000 0.000000
C5 0.000000 0.710523 0.000000 0.496934 0.000000

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 16/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

The AHL.run method has an additional auto_learn argument; if set to True then the
algorithm automatically updates the hyperparameters during the learning process.

AHL

>>> activation_pattern_WT = {0:[’C1’], 1:[’C2’, ’C3’],
2: [’C5’], 3: [’C4’]}

>>> ahl = AHL(state_vector=init_states_WT,

weight_matrix=w_init_WT,

activation_pattern=activation_pattern_WT,

doc_values=doc_values_WT)

>>> res_ahl = ahl.run(decay=0.03, learning_rate = 0.01, l=1,

iterations=100, transfer= ’sigmoid’,

thresh = 0.002, auto_learn=False,

b1=0.003, lbd1=0.1, b2=0.005, lbd2=1)

The AHL learning process converged at step 19 with

the learning rate eta = 0.01 and decay = 0.03!

C1 C2 C3 C4 C5

C1 0.000000 -0.128532 -0.060395 0.071200 0.218170

C2 0.245859 0.000000 0.068981 0.076592 0.074289

C3 0.288257 0.069457 0.000000 0.070342 0.068190

C4 -0.386349 0.073807 0.067187 0.000000 0.073991

C5 0.070113 0.368913 0.069145 0.223312 0.000000

If the learning process was successful (i.e., the algorithm converged), the run method
will return the optimized weight matrix as a dataframe. Successful outputs of NHL and
AHL algorithms are presented in Fig. 7.

Real-coded genetic algorithm (RCGA)
In certain domains of application, one has longitudinal data about the state variables
included in the FCM and wants to find an FCM connection matrix that generates data that
is close enough to the collected data (Khan, Khor & Chong, 2004; Poczeta, Yastrebov &
Papageorgiou, 2015). In this regards, Stach (2010) proposed a real coded genetic algorithm
for searching for an optimal FCM connection matrix. The proposed algorithm, named
RCGA, builds on genetic algorithms where the search process includes the following six
steps: (1) initialization, (2) evaluation, (3) selection, (4) recombination, (5) mutation, and
(6) replacement.

In the initialization step, the algorithm generates a population of random solutions, that
is a set of random weight matrices. Each solution is an n × n connection matrix. In the
evaluation step, each candidate solution in the population is evaluated based on a fitness
function shown in Eq. (17) and Table 7. We can observe how the fitness function is
calculated on a simple example, shown in Fig. 8.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 17/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

Table 7 Variables of fitness function used in RCGA algorithm.

Variable Description

a Normalization parameter

T Number of chromosomes (elements in the generation)

N Number of variables in the chromosome

C(t) Observed data at time t

ĈðtÞ State vector at step t

p Defines the type of norm (default 1)

a Defines the type of norm (default 100)

Figure 7 (A) Initial weight matrix, (B) weight matrix optimized by NHL, and (C) weight matrix optimized by AHL.
Full-size DOI: 10.7717/peerj-cs.1078/fig-7

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 18/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-7
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

Error ¼ a
XT�1

t¼1

XN�1

j¼1

jAjðtÞ � ÂjðtÞjp

Fitness ¼ 1
a � Error þ 1

(17)

In the selection step, candidate solutions are selected for mating (a.k.a., recombination).
In each step, the algorithm randomly selects between two selection mechanisms (roulette
wheel and tournament selection strategies). For the recombination step, the algorithm
implements the recommended one point crossover operation with a probability of
crossover specified by the user (p_recombination) (Stach, 2010). The crossover
operation creates new solutions based on the solutions selected in the previous step. Next,
the algorithm decides whether the new solutions produced in the previous step should
undergo mutations. In the mutation step, the algorithm chooses between random and
non-uniform mutation operations with a probability defined by the user (p_mutation).
The replacement step is determined by the evolutionary approach specified by the user.
The algorithm proposed by Stach (2010) is based on a generational approach where in each

Figure 8 Example of fitness values calculation. Full-size DOI: 10.7717/peerj-cs.1078/fig-8

Table 8 Variables of fitness function used in RCGA algorithm.

Argument Option Description

Normalization_type ‘L1’ L1 normalization

‘L2’ L2 normalization

‘LInf’ L infinity normalization

Inference ‘kosko’ Kosko

‘mKosko’ Modified kosko

‘rescaled’ Rescaled inference method

Transfer ‘sigmoid’ Sigmoid

‘bivalent’ Bivalent

‘trivalent’ Trivalent

‘tanh’ Hyperbolic tangent

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 19/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-8
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

step the new generation of solutions replace the old generation. Alternatively, the user
could choose a steady state approach (a.k.a., SSGA) where in each step only two new
solutions are produced and a decision is made whether the new chromosomes should be
inserted back into the population. The current implementation of the SSGA uses a
replacement strategy based on the concept of useful diversity (described in depth in
Lozano, Herrera & Cano (2008)). To use the RCGAmodule, one needs to initialize the RCGA
class by specifying the longitudinal data about the system, the population size, and the
genetic approach to use (i.e., generational or steady state). The additional parameters that
can be modified by the user are presented in Table 8. Other parameters that can be
modified by the user can be found in the documentation of the package available on PyPI.

The output of the learning process is the weight matrix with the highest fitness value
throughout the search process. An example of generating FCM by the RCGA using
historical data on water tank case study (Papageorgiou, Stylios & Groumpos, 2004)
presented in the previous section is demonstrated in the code snippet below. We give the
user an option to choose: population_size which is a number of weights matrices
generated at each time step and threshold that is a minimum fitness value of at least one
weight matrix in a generation, for the algorithm to succeed. To ensure the user does not get
stuck in an infinite loop, we define n_iterations after which algorithm will terminate if
the max fitness function of the n iterations −1 generation was less than a threshold.

Generate Longitudinal Data

>>> sim = FcmSimulator()

>>> data_WT = sim.simulate(initial_state=init_states_WT,

weight_matrix=w_init_WT, transfer=’sigmoid’,
inference=’mKosko’, thresh=0.001,
iterations=50, l=1)

Select two time points
>>> data_WT = data_WT.iloc[:3]
Generational Approach
>>> rcga = RCGA(data=data_WT, population_size=100,

ga_type=’generational’)
>>> rcga.run(n_iterations=30000, threshold=0.99)
Steady State Approach
>>> rcga = RCGA(data=data_WT, population_size=100,

ga_type=’ssga’)
>>> rcga.run(n_iterations=30000, threshold=0.99)
The RCGA solution and the associated fitness score can be accessed in the rcga.
solution and rcga.fitness fields.

>>> rcga.fitness
0.9790443073348711
>>> rcga.solution

C1 C2 C3 C4 C5
C1 0.851948 0.550687 0.045434 0.648337 0.077349
C2 -0.870796 -0.944261 -0.684952 -0.829811 0.660863
C3 0.807396 -0.075391 0.223011 0.299976 -0.442272
C4 -0.479566 0.724956 0.048086 0.352487 0.120083
C5 -0.030473 0.068480 0.330551 0.003072 -0.347919

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 20/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

The learned FCM connection matrix can be validated by calculating the in-sample and
out-sample errors by using the dedicated ISE and OSE modules (see the code snippet
below) (Stach, 2010).

>>> from fcmpy import ISE

>>> from fcmpy import OSE

>>> val_ise = ISE()

>>> val_ose = OSE()

>>> error_ise = val_ise.validate(initial_state=init_states_WT,

weight_matrix=rcga.solution, data=data_WT,

transfer=’sigmoid’, inference=’mKosko’, l=1)
>>> error_ose, std = val_ose.validate(weight_matrix=rcga.

solution,

data=data_WT, low=0, high=1,

k_validation=100, transfer=’sigmoid’,

inference=’mKosko’, l=1)

Classification algorithms
It is attractive for the researchers to choose FCMs for classification tasks, over other
popular tools such as neural networks. This is because FCMs are easily explainable, which
is a great advantage over black box models and, in many cases, equally accurate (Nápoles,
Jastrzębska & Salgueiro, 2021; Nápoles et al., 2020). We give user a choice of two methods:
Evolving Long-term Cognitive Networks (ELTCN) (Nápoles, Jastrzębska & Salgueiro,
2021) and deterministic learning (LTCN-MP)1 (Nápoles et al., 2020).

LTCN-MP and ELTCN use the same topology (a fully connected FCM containing
features nodes and class nodes) but the former produces numerical outputs (suitable for
regression) while the latter produces nominal outputs (suitable for classification). In
LTCN-MP and ELTCN algorithms (i) input variables are located in the inner layer and
output variables in the outer layer, (ii) weights connecting the inputs are computed in an
unsupervised way by solving a least squared problem, and (iii) weights connecting inputs
with outputs are computed using the Moore-Penrose pseudo-inverse. Overall, we can say
that LTCN-MP and ELTCN use the same topology but the former produces numerical
outputs while the latter produces nominal outputs (decision classes). Additionally, the
weights in the ELTCN model can change from one iteration to another.

An example of a model’s structure with three features and three classes is shown in Fig. 9.
The user has to provide the path to the directory where the data file (.arff format) is

located2. It is necessary that values of the features are normalized in the range between 0
and 1. Multiple data sets can be utilized and the results of each of them is saved in a
dictionary, using the filename as a key. After running the learning process, the output
consist of k weight matrices, where k is a number of validation folds (default 5) and the
weight matrix of the connections between classes and feature nodes. We also provide users
with automatically generated histograms showing values of the loss function and weights

1 LSTCNs are a variant of FCMS where
weights are not expected to be in the
[-1,1] interval or have a causal meaning.
We use regularization in order to keep
them within that range.

2 Currently, these two algorithms only
accept .arff files, we are planning to
accommodate more data files formats in
the future versions.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 21/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

for each fold. In our examples we are using the Iris data set, a popular data set containing
various measurements of iris flowers, such as sepal or petal length (Fisher, 1936).

>>> from fcmpy.ml.classification.eltcn import run

>>> path = ’data’
>>> results = run(path)

average of the feature weight matrices
>>> print(results[’irisnorm.arff’][’avgW’])

weight matrix connecting feature nodes with class nodes
>>> print(results[’irisnorm.arff’][’classW’])

[[0.4382333, -0.09812646, 0.79643613, 0.97163904],
[-0.2016794, 0.2925336, -0.21699643, 0.12452463],
[-0.0038293, -0.08575615, 0.47770625, 0.52030253],
[0.24917993, 0.21717176, 0.30113676, 0.34600133]]

[[-0.9135318, 0.15331155, 0.24873467],
[-1., 0.42972276, 0.17217618],
[-0.5610481, -0.58390266, 0.79575956],
[-0.60481995, -0.6718271, 0.72851056]]

LSTCN-MP focuses on discovering which and how features of the data set are
important for the classification task as well as finding the weights connecting the inputs
and outputs. Next, the LSTCN-MP algorithm outputs a 1-D array with values in the [-1,1]
range. The absolute values represent how important the features are for the classification
task. In order to use the algorithm, the user has to provide the path of data sets as list under
a key sources and then use that dictionary as an input to LSTCN-MP algorithm.

c1

c2

c3

c4

c5

c6

x1

x2

x3

y1

y2

y3

Figure 9 Neural model comprised of M = 3 input neurons (c1; c2; c3) and N = 3 output neurons
(c4; c5; c6). Overall, the network has P = M + N = 6 neurons. In this example, the input signal is deno-
ted as xi while output signal is denoted as yi. These two values correspond to að0Þi and aðTÞi , respectively.

Full-size DOI: 10.7717/peerj-cs.1078/fig-9

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 22/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-9
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

>>> sources = [‘datasets/iris.arff’,‘datasets/pima.arff’]
>>> params = {‘sources’:sources}

Various hyperparameters can be used. Their default values and description can be
found in Nápoles et al. (2020), our library documentation, or Table 9.

>>> import fcmpy.ml.classification.FCM_MP as mp

>>> import matplotlib.pylab as plt

>>> sources = [‘iris.arff’]
>>> params = {‘sources’:sources}
>>> out = mp.run(**params)
feature importance for classification purposes
>>> fig, ax = plt.subplots()
>>> ax.bar(range(len(out[0][’importance’].flatten())),

height=out[0][’importance’].flatten())
connections between features and class nodes
>> print(out[‘weights’])
[[0.46838854, -0.03855411, 1.],
[-0.04176139, 0.46838854, -0.48478635],
[0.16611878, -0.07434725, 0.46838854]]

Table 9 Keys and values of the input dictionary to the deterministic algorithm.

Keys Values Description Default value

‘M’ int Output variables 1

‘T’ int FCM Iterations 1

‘folds’ int Number of folds in a (stratified) K-Fold 10

‘output’ string Output csv file ‘./output.csv’

‘p’ array parameters of logit and expit functions {1.0, 1.0, 1.0, 1.0}

‘sources’ array array with path of the dataset files None

‘verbosity’ bool verbosity False

Figure 10 Features importance for Iris data set. Full-size DOI: 10.7717/peerj-cs.1078/fig-10

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 23/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-10
http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

The function returns a list of dictionaries (one dictionary for each input data set) with
keys representing hyperparameters used in the learning process, weight matrix, training
error and importance of the features, which is shown in Fig. 10. Note that in Iris dataset,
feature 0 is the most important feature whereas feature 1 is the least significant one in the
decision-making.

In this section, we presented various implementations of learning algorithms that can be
used to train FCMs based on expert inputs or quantitative data available about the system
and solve classification problems. In the next section, we illustrate how FCMs can be used
to analyze scenarios.

SCENARIO ANALYSIS WITH FCMS
Scenario analysis in an FCM framework is often implemented by either changing the
baseline values of the concepts (single shot interventions) or by introducing the proposed
scenario as a new factor in the defined FCM and specifying the causal impact the proposed
intervention has on the target concepts (continuous interventions). The single shot
interventions mimic interventions that stop when a desired change in the specific target
variables are achieved. In the continuous case, the intervention becomes part of the system
and continuously impacts the target variables (Giabbanelli & Crutzen, 2014). The
Intervention module provides the respective methods for analyzing different
intervention cases. The module is instantiated by passing a simulator object to the
constructor.

>>> from fcmpy import FcmSimulator, FcmIntervention

>>> inter = FcmIntervention(FcmSimulator)

Before specifying intervention cases and running simulations for each scenario, we need
to create the baseline for the comparison (i.e., run a simulation with baseline initial
conditions and take the final state vector). To do this one needs to call initialize
method. As in the FcmSimulator presented in the previous section, one can specify the
output concepts by supplying a list of these concepts to the respective output_concepts
argument. If the output_concepts argument is not specified then all the concepts in the
FCM are treated as output concepts and the simulation stops when all the concepts change
by less than the threshold between two consecutive steps.

>>> inter.initialize(initial_state=init_state,

weight_matrix=weight_matrix,

transfer=’sigmoid’, inference=’mKosko’,
thresh=0.001, iterations=50, l=1)

The values converged in the 7 state (e <= 0.001)

We can inspect the results of the initial simulation run (i.e., ‘baseline’) in the
test_results field as follows:

>>> inter.test_results[’baseline’]

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 24/30

http://dx.doi.org/10.7717/peerj-cs.1078
https://peerj.com/computer-science/

C1 C2 … C5 C6 C7 C8
0 1.000000 1.000000 … 0.000000 0.000000 0.000000 0.000000
1 0.750260 0.731059 … 0.500000 0.500000 0.549834 0.785835
2 0.738141 0.765490 … 0.746700 0.769999 0.838315 0.921361
3 0.730236 0.784168 … 0.805531 0.829309 0.898379 0.950172
4 0.727059 0.789378 … 0.816974 0.838759 0.908173 0.954927
5 0.726125 0.790510 … 0.818986 0.839860 0.909707 0.955666
6 0.725885 0.790706 … 0.819294 0.839901 0.909940 0.955774

We can use the add_intervention method to specify the intervention cases. To
specify a single shot intervention we must specify the name of the intervention and supply
new initial states for the concept values as a dictionary (see the code snippet below).

>>> inter.add_intervention(’intervention_1’, type=’single_shot’,
initial_state = {’C1’: 0.9, ’C2’: 0.4})

For continuous intervention cases we must specify the name of the intervention, the
concepts the intervention targets and the impact the intervention has on these concepts. In
some cases we might be interested in checking scenarios where the intervention fails to be
delivered to its fullest. For such cases we can specify the effectiveness of a given
intervention case by setting the (optional) effectiveness argument to a number in the [0,1]
interval (see the code snippet below). The effectiveness will decrease the expected causal
strength of the intervention: for example, if an intervention is expected to reduce stress by
0.5 but is only 20% effective, then its actual reduction will be 0.1.

>>> inter.add_intervention(’intervention_1’, type=’continuous’,
impact={’C1’:-.3, ’C2’:.5}, effectiveness=1)

>>> inter.add_intervention(’intervention_2’, type=’continuous’,
impact={’C4’:-.5}, effectiveness=1)

>>> inter.add_intervention(’intervention_3’, type=’continuous’,
impact={’C5’:-1}, effectiveness=1)

In the example above, we specify three intervention cases. The first intervention targets
concepts (nodes) C1 and C2. It negatively impacts concept C1 (-0.3) while positively
impacting the concept C2 (0.5). We consider a case where the intervention has maximum
effectiveness. The other two interventions follow the same logic but impact other nodes.

After specifying the proposed interventions, we can use the test_intervention
method to test the effect of each case. The method requires the name of the intervention to
be tested. Users also have the possibility of changing the number of iterations for the
simulation; its default value is the same as specified in the initialization (see the code
snippet below).

>>> inter.test_intervention(’intervention_1’, iterations=10)
>>> inter.test_intervention(’intervention_2’)
>>> inter.test_intervention(’intervention_3’)
The values converged in the 6 state (e <= 0.001)

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 25/30

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

The values converged in the 6 state (e <= 0.001)
The values converged in the 6 state (e <= 0.001)

The equilibrium states of the interventions can be inspected in the equilibriums field
(see Fig. 11 and the code snippet below).

1>>> inter.equilibriums

baseline intervention_1 intervention_2 intervention_3

C1 0.725885 0.644651 0.715704 0.723417

C2 0.790706 0.870060 0.790580 0.790708

C3 0.769451 0.758786 0.768132 0.769141

C4 0.812473 0.798947 0.699316 0.812073

C5 0.819294 0.817735 0.819160 0.563879

C6 0.839901 0.838350 0.823430 0.871834

C7 0.909940 0.911004 0.909917 0.909778

C8 0.955774 0.954652 0.955427 0.952199

Lastly, one can inspect the differences between the interventions in relative terms (i.e., %
increase or decrease) compared to the baseline (see the code snippet below).

>>> inter.comparison_table

baseline intervention_1 intervention_2 intervention_3

C1 0.0 -11.191083 -1.402511 -0.339981
C2 0.0 10.035821 -0.015968 0.000202

C3 0.0 -1.385998 -0.171325 -0.040271
C4 0.0 -1.664794 -13.927524 -0.049314
C5 0.0 -0.190233 -0.016379 -31.175022
C6 0.0 -0.184640 -1.960979 3.802010

C7 0.0 0.116873 -0.002543 -0.017806
C8 0.0 -0.117365 -0.036331 -0.374038

EXTENSIBILITY
Given the fact that new algorithms are continuously developed, the extensibility of the
package is of paramount importance. Each module in the package uses a defined interface
which ensures the scalability and cohesion of the package and their future extensions.
Furthermore, we separated the creation of the objects from their use, to ensure that the
future extensions do not cause major changes to the user code.

Let us examine how the package can be extended by considering a case where we want
to add a new feature that allows us to read.txt file format. First, in the reader.py file we
would need to define a new class called TXT which implements the ReadData interface.
The interface has an abstract method called read.

Subsequently, we would need to add this object to the file called methodsStore which
stores all the classes that support different file formats (e.g., CSV, XLSX, JSON). The

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 26/30

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

ReadStore class has a private attribute called __methods which is a dictionary that stores
the argument we want the user to call in the read_data method as a key and the value is
the Class we created for this particular file extension. The get method of the
ReaderStore class takes the file extension as an argument and returns the corresponding
object from the __methods dictionary. This ReaderStore.get method is called inside
the fcmpy.ExpertFcm.read_data method, during which the appropriate file reader is
supplied based on the user’s specification.

CONCLUSION
We hope that by providing researchers with such a tool we will promote using FCMs as
one of the potential methods for different engineering tasks. We showed that FCMPy is a
valuable tool for creating transparent and explainable behavioral models based on experts’
answers. We provided detailed examples of how to create and inspect the model using
different membership functions. Since one of the main purposes of FCMs is to monitor
how the values of the concepts change throughout time, we provided the users with all the
necessary options such as different inference methods and transfer functions. As a lot of
research in the FCM field focuses on machine learning, we added several algorithms for
weights optimization and data-driven model generation and made them easy to use.
Finally, our library allows researchers to effortlessly examine how different interventions
influence their model.

The FCMpy package provides a complete set of functions necessary to conduct projects
involving FCMs. We created a tool that is open-source, easy to use, and provides the
necessary functionality. The design and implementation of the tool results from a
collaboration with multiple experts from the field of FCMs. We believe that this tool will
facilitate research and encourage new students and scientists to involve FCMs in their
projects. We included both well-known algorithms as well as recently developed ones. We

Figure 11 Baseline and intervention scenarios. Full-size DOI: 10.7717/peerj-cs.1078/fig-11

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 27/30

http://dx.doi.org/10.7717/peerj-cs.1078/fig-11
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

are planning to constantly update our library and welcome all scientific community
contributions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Samvel Mkhitaryan conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Philippe Giabbanelli conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

� Maciej Wozniak conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Gonzalo Nápoles conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

� Nanne De Vries conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

� Rik Crutzen conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The replication script for the examples presented in the article and the data files for
running the replication scripts are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1078#supplemental-information.

REFERENCES
Andreou AS, Mateou NH, Zombanakis GA. 2005. Soft computing for crisis management and

political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Computing
9(3):194–210 DOI 10.1007/s00500-004-0344-0.

Firmansyah HS, Supangkat SH, Arman AA, Giabbanelli PJ. 2019. Identifying the components
and interrelationships of smart cities in Indonesia: supporting policymaking via fuzzy cognitive
systems. IEEE Access 7:46136–46151 DOI 10.1109/ACCESS.2019.2908622.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 28/30

http://dx.doi.org/10.7717/peerj-cs.1078#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1078#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1078#supplemental-information
http://dx.doi.org/10.1007/s00500-004-0344-0
http://dx.doi.org/10.1109/ACCESS.2019.2908622
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

Fisher RA. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics
7(2):179–188 DOI 10.1111/j.1469-1809.1936.tb02137.x.

Giabbanelli PJ. 2014.Modelling the spatial and social dynamics of insurgency. Security Informatics
3(1):1–15 DOI 10.1186/2190-8532-3-2.

Giabbanelli PJ, Crutzen R. 2014. Creating groups with similar expected behavioural response in
randomized controlled trials: a fuzzy cognitive map approach. BMC Medical Research
Methodology 14(1):1–19 DOI 10.1186/1471-2288-14-130.

Giabbanelli PJ, Torsney-Weir T, Mago VK. 2012. A fuzzy cognitive map of the psychosocial
determinants of obesity.Applied Soft Computing 12(12):3711–3724DOI 10.1016/j.asoc.2012.02.006.

Hebb DO. 2005. The organization of behavior: a neuropsychological theory. London: Psychology Press.

Khan MS, Khor S, Chong A. 2004. Fuzzy cognitive maps with genetic algorithm for goal-oriented
decision support. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
12(supp02):31–42 DOI 10.1142/S0218488504003028.

Kok K. 2009. The potential of fuzzy cognitive maps for semi-quantitative scenario development,
with an example from Brazil. Global Environmental Change 19(1):122–133
DOI 10.1016/j.gloenvcha.2008.08.003.

Kosko B. 1986. Fuzzy cognitive maps. International Journal of Man-Machine Studies 24(1):65–75
DOI 10.1016/S0020-7373(86)80040-2.

Kosko B. 1996. Fuzzy engineering. Hoboken: Prentice-Hall, Inc.

Lavin EA, Giabbanelli PJ, Stefanik AT, Gray SA, Arlinghaus R. 2018. Should we simulate mental
models to assess whether they agree? In: Proceedings of the Annual Simulation Symposium. 1–12.

Lozano M, Herrera F, Cano JR. 2008. Replacement strategies to preserve useful diversity in steady-
state genetic algorithms. Information Sciences 178(23):4421–4433 DOI 10.1016/j.ins.2008.07.031.

Mago VK, Mehta R, Woolrych R, Papageorgiou EI. 2012. Supporting meningitis diagnosis
amongst infants and children through the use of fuzzy cognitive mapping. BMC Medical
Informatics and Decision Making 12(1):1–12 DOI 10.1186/1472-6947-12-98.

Mago VK, Morden HK, Fritz C, Wu T, Namazi S, Geranmayeh P, Chattopadhyay R,
Dabbaghian V. 2013. Analyzing the impact of social factors on homelessness: a fuzzy cognitive
map approach. BMC Medical Informatics and Decision Making 13(1):1–19
DOI 10.1186/1472-6947-13-94.

Mkhitaryan S, Giabbanelli PJ, de Vries NK, Crutzen R. 2020. Dealing with complexity: how to
use a hybrid approach to incorporate complexity in health behavior interventions. Intelligence-
Based Medicine 3(10112):100008 DOI 10.1016/j.ibmed.2020.100008.

Nandi AK. 2012. GA-Fuzzy approaches: application to modeling of manufacturing process. In:
Statistical and Computational Techniques in Manufacturing. Cham: Springer, 145–185.

Nápoles G, Espinosa ML, Grau I, Vanhoof K. 2018. FCM Expert: software tool for scenario
analysis and pattern classification based on fuzzy cognitive maps. International Journal on
Artificial Intelligence Tools 27(7):1860010 DOI 10.1142/S0218213018600102.

Nápoles G, Grau I, Bello R, Grau R. 2014. Two-steps learning of Fuzzy Cognitive Maps for
prediction and knowledge discovery on the HIV-1 drug resistance. Expert Systems with
Applications 41(3):821–830 DOI 10.1016/j.eswa.2013.08.012.

Nápoles G, Jastrzebska A, Mosquera C, Vanhoof K, Homenda W. 2020. Deterministic learning
of hybrid Fuzzy Cognitive Maps and network reduction approaches. Neural Networks
124(6):258–268 DOI 10.1016/j.neunet.2020.01.019.

Nápoles G, Jastrzębska A, Salgueiro Y. 2021. Pattern classification with evolving long-term
cognitive networks. Information Sciences 548(5):461–478 DOI 10.1016/j.ins.2020.08.058.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 29/30

http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1186/2190-8532-3-2
http://dx.doi.org/10.1186/1471-2288-14-130
http://dx.doi.org/10.1016/j.asoc.2012.02.006
http://dx.doi.org/10.1142/S0218488504003028
http://dx.doi.org/10.1016/j.gloenvcha.2008.08.003
http://dx.doi.org/10.1016/S0020-7373(86)80040-2
http://dx.doi.org/10.1016/j.ins.2008.07.031
http://dx.doi.org/10.1186/1472-6947-12-98
http://dx.doi.org/10.1186/1472-6947-13-94
http://dx.doi.org/10.1016/j.ibmed.2020.100008
http://dx.doi.org/10.1142/S0218213018600102
http://dx.doi.org/10.1016/j.eswa.2013.08.012
http://dx.doi.org/10.1016/j.neunet.2020.01.019
http://dx.doi.org/10.1016/j.ins.2020.08.058
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

Papageorgiou EI. 2011a. Learning algorithms for fuzzy cognitive maps—review study. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42(2):150–
163 DOI 10.1109/TSMCC.2011.2138694.

Papageorgiou EI. 2011b. A new methodology for decisions in medical informatics using fuzzy
cognitive maps based on fuzzy rule-extraction techniques. Applied Soft Computing 11(1):500–
513 DOI 10.1016/j.asoc.2009.12.010.

Papageorgiou E, Kontogianni A. 2012. Using fuzzy cognitive mapping in environmental decision
making and management: a methodological primer and an application. In: International
Perspectives on Global Environmental Change. 427–450.

Papageorgiou E, Stylios CD, Groumpos PP. 2004. Active Hebbian learning algorithm to train
fuzzy cognitive maps. International Journal of Approximate Reasoning 37(3):219–249
DOI 10.1016/j.ijar.2004.01.001.

Papageorgiou EI, Stylios C, Groumpos PP. 2006. Unsupervised learning techniques for fine-
tuning fuzzy cognitive map causal links. International Journal of Human-Computer Studies
64(8):727–743 DOI 10.1016/j.ijhcs.2006.02.009.

Papakostas GA, Polydoros AS, Koulouriotis DE, Tourassis VD. 2011. Training fuzzy cognitive
maps by using hebbian learning algorithms: a comparative study. In: 2011 IEEE international
conference on fuzzy systems (FUZZ-IEEE 2011). Piscataway: IEEE, 851–858.

Piegat A. 2001. Fuzzy modeling and control. Vol. 69. Berlin: Springer-Verlag.

Poczeta K, Papageorgiou EI, Gerogiannis VC. 2020. Fuzzy cognitive maps optimization for
decision making and prediction. Mathematics 8(11):2059 DOI 10.3390/math8112059.

Poczeta K, Yastrebov A, Papageorgiou EI. 2015. Learning fuzzy cognitive maps using structure
optimization genetic algorithm. In: 2015 Federated Conference on Computer Science and
Information Systems (FedCSIS). Piscataway: IEEE, 547–554.

Ren Z. 2012. Learning fuzzy cognitive maps by a hybrid method using nonlinear Hebbian learning
and extended great Deluge algorithm. In: MAICS. 159–163.

Salmeron JL, Papageorgiou EI. 2012. A fuzzy grey cognitive maps-based decision support system
for radiotherapy treatment planning. Knowledge-Based Systems 30(8):151–160
DOI 10.1016/j.knosys.2012.01.008.

Stach WJ. 2010. Learning and aggregation of fuzzy cognitive maps-an evolutionary approach.
University of Alberta.

Stach W, Kurgan L, Pedrycz W. 2008. Data-driven nonlinear Hebbian learning method for fuzzy
cognitive maps. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress
on Computational Intelligence). Piscataway: IEEE, 1975–1981.

Stach W, Kurgan L, Pedrycz W, Reformat M. 2005. Genetic learning of fuzzy cognitive maps.
Fuzzy Sets and Systems 153(3):371–401 DOI 10.1016/j.fss.2005.01.009.

Stylios CD, Groumpos PP. 2004. Modeling complex systems using fuzzy cognitive maps. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 34(1):155–162
DOI 10.1109/TSMCA.2003.818878.

Wozniak MK, Mkhitaryan S, Giabbanelli PJ. 2022. Automatic generation of individual fuzzy
cognitive maps from longitudinal data. In: International Conference on Computational Science.
Springer, 312–325.

Zadeh LA. 1971. Quantitative fuzzy semantics. Information Sciences 3(2):159–176
DOI 10.1016/S0020-0255(71)80004-X.

Mkhitaryan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1078 30/30

http://dx.doi.org/10.1109/TSMCC.2011.2138694
http://dx.doi.org/10.1016/j.asoc.2009.12.010
http://dx.doi.org/10.1016/j.ijar.2004.01.001
http://dx.doi.org/10.1016/j.ijhcs.2006.02.009
http://dx.doi.org/10.3390/math8112059
http://dx.doi.org/10.1016/j.knosys.2012.01.008
http://dx.doi.org/10.1016/j.fss.2005.01.009
http://dx.doi.org/10.1109/TSMCA.2003.818878
http://dx.doi.org/10.1016/S0020-0255(71)80004-X
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1078

	FCMpy: a python module for constructing and analyzing fuzzy cognitive maps
	Introduction
	Constructing expert-based fcms
	Four steps for obtaining causal weights
	Simulating the system behavior with fcms
	Learning algorithms for fcms
	Scenario analysis with fcms
	Extensibility
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

