
MF-Storm: a maximum flow-based job
scheduler for stream processing engines on
computational clusters to increase
throughput
Asif Muhammad and Muhammad Abdul Qadir

Department of Computer Science, Capital University of Science & Technology, Islamabad,
Punjab, Pakistan

ABSTRACT
Background: A scheduling algorithm tries to schedule multiple computational tasks
on a cluster of multiple computing nodes to maximize throughput with optimal
utilization of computational and communicational resources. A Stream Processing
Engine (SPE) is deployed to run streaming applications (computational tasks) on a
computational cluster which helps execution and coordination of these applications.
It is observed that there is a gap in the optimal mapping of a computational and
communicational load of a streaming application on the underlying computational
and communication power of the resources (cluster). Frequently communicated
tasks are scheduled at different processing nodes with relatively slow communicating
links. This increases network latency with a decrease in resource utilization. Hence,
reduces the achieved throughput of the cluster significantly.
Methods:MF-Storm, a max-flowmin-cut based job scheduler is presented to achieve
a near-optimum schedule to maximize throughput. It schedules a streaming
application by considering the processing, communication demands, available
computational and communicational resources in a heterogeneous cluster,
dynamically with minimized scheduling cost. To keep the scheduling cost minimum,
the scheduler is built in a pipeline with two major stages: in the first stage, the
application’s tasks graph is partitioned using the max-flow min-cut algorithm to
minimize inter-partition traffic, and in the second stage, these partitions are assigned
to computing nodes according to the computational power of the cluster’s nodes.
Results: Extensive experiments were done to evaluate the performance of MF-Storm
using different topologies with multiple scenarios on a physical cluster
implementation. Results showed on average 148% improvement in throughput with
30% less computational resources as compared to different state-of-the-art
schedulers.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Distributed and Parallel
Computing
Keywords Stream processing engines, Resource-aware, Heterogeneous cluster, Job scheduler,
APACHE storm

INTRODUCTION
A data stream is a continuous flow of data that needs to be processed by computing
applications. This data might be sensor data, network data, stock prices, postings on social

How to cite this article Muhammad A, Abdul Qadir M. 2022. MF-Storm: a maximum flow-based job scheduler for stream processing
engines on computational clusters to increase throughput. PeerJ Comput. Sci. 8:e1077 DOI 10.7717/peerj-cs.1077

Submitted 20 May 2022
Accepted 8 August 2022
Published 26 September 2022

Corresponding author
Asif Muhammad,
masifqadri2000@yahoo.com

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1077

Copyright
2022 Muhammad and Abdul Qadir

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1077
mailto:masifqadri2000@�yahoo.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1077
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

networks, etc. Processing these data streams in real-time demands ever-increasing
processing power. Multiple machines combined in a distributed fashion to process the data
is an economical way to solve the problem. In a cluster of distributed computing elements,
Stream Processing Engines (SPEs) (Liu & Buyya, 2020) have been formulated to process
such data streams in real-time. To address the ever-increasing needs of the industry, SPEs
have rapidly evolved in the last two decades with several SPE prototypes being adopted by
the industry, for example, Apache Storm (Storm A, 2014), Apache Spark Streaming
(Foundation AS, 2018), Apache Flink (Foundation AS, Apache Software Foundation, 2015),
and Apache Heron (Twitter, 2014), etc. One of the important research issues for SPE is
how to schedule the processing tasks on processing nodes to process the streams with near-
optimum use of the available resources with maximized throughput. The scheduling policy
of SPEs on clusters of multiple machines decides how tasks are distributed in the stream
processing system. Typically, SPEs are assessed based on communication latency or system
throughput (Falt & Yaghob, 2011). In the context of SPEs, throughput refers to the average
number of jobs per time unit (Tantalaki, Souravlas & Roumeliotis, 2020). In contrast,
latency refers to the elapsed time from job submission to receiving the first response after
processing the job (Tantalaki, Souravlas & Roumeliotis, 2020). Stream processing
consumes multiple resources e.g., CPU cycles, memory, network bandwidth, disk I/O, etc.
An efficient scheduler assigns the tasks in a manner that minimizes task completion time
and increases the utilization of resources (Tantalaki, Souravlas & Roumeliotis, 2020).

A data stream application can be modeled as Directed Acyclic Graph (DAG) which
represents the processing tasks and communication between these tasks required to
complete the DSP application (Kamburugamuve & Fox, 2016). This abstraction layer helps
a scheduler to understand how to place these tasks on multiple processing elements to
achieve the objectives (Cardellini et al., 2018). To schedule these tasks optimally, graph
partitioning algorithms are being used in research (Fischer & Bernstein, 2015; Sun et al.,
2015; Eskandari, Huang & Eyers, 2016; Ghaderi, Shakkottai & Srikant, 2016; Li & Zhang,
2017; Eskandari et al., 2018a, 2018b; Ullah et al., 2019; Gulzar Ahmad et al., 2020) to place
frequently communicating components of the DAG closer to each other to reduce latency
which may improve overall throughput, too. But most of them (Fischer & Bernstein, 2015;
Liu, 2017; Liu et al., 2017; Qian et al., 2017; Tahir et al., 2019; Gulzar Ahmad et al., 2020)
are either resource-unaware or non-adaptive. As a result, it is difficult to decide on the
power of cluster resources. Similarly, some techniques (Fischer & Bernstein, 2015; Smirnov,
Melnik & Nasonov, 2017; Weng et al., 2017; Gulzar Ahmad et al., 2020; Elahi et al., 2022)
are proposed for homogenous clusters only and are unable to assign workload according to
the node's computing power (heterogeneity). In recent years, resource-aware schedulers
(Peng et al., 2015; Xue et al., 2015; Weng et al., 2017; Liu & Buyya, 2018; Eskandari et al.,
2018b; Al-Sinayyid & Zhu, 2020;Muhammad & Aleem, 2021;Muhammad, Aleem & Islam,
2021; Farooq et al., 2022) are also proposed which are either non-adaptive or static in
nature and cannot accommodate real-time (dynamic) changes. Moreover, CPU, Memory,
and bandwidth are considered a resource by existing resource-aware schedulers, however,
they do not truly represent the computation power of a node (“FLOPS (Floating Point
Operations Per Second) Definition”, https://techterms.com/definition/flops).

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 2/23

https://techterms.com/definition/flops
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

To address these questions, we present MF-Storm—A maximum flow-based job
scheduler for stream processing engine (Apache Storm) which assigns frequently
communicating DAG components closer to each other such that minimum nodes are
employed for job execution.

The main contribution of this article is the following:

� MF-Storm–An adaptive scheduler that employs the topology mapping using max-flow
min-cut algorithm (“Max-flow min-cut theorem—Wikipedia”, https://en.wikipedia.org/
wiki/Max-flow_min-cut_theorem) such that frequently communicating executors are
placed closely to maximize throughput;

� MF-Storm is also a resource-aware scheduler that assigns components to machines
based on their computational power;

� Performance assessment with state-of-the-art schedulers showed that MF-Storm
increases average throughput up to 148% while using 30% less computational resources.

The rest of the article is organized as follows: “Literature review” consists of the
research work done in this domain with their limitations. “MF-Storm scheduler”
explains MF-Storm with the methodology adopted to do experimentation. “Experimental
evaluation” defines the experimental setup used followed by performance evaluation.
Results are compared with the latest schedulers and are also debated in this section.
“Conclusions and future work” concludes the article with future directions.

LITERATURE REVIEW
To improve the throughput and resource utilization of SPEs, different researchers have
presented their work in this domain. In 2014, Xu et al. (2014) proposed a traffic-aware
scheduler (called T-Storm) which uses runtime states to accelerate data processing for
dynamic task allocation. This minimizes inter-process traffic in a load-balancing fashion.
T-Storm was implemented using Storm 0.8.2. Experiments show up to 84% improvement
in average throughput with 30% less computing nodes as compared to the default
scheduler. However, the proposed work faces the cold start problem which means that
initially some data is needed for this type of scheduler to run.

van der Veen et al. (2015) have also proposed a scheduler for Apache Storm with a
different methodology. First, resource over-provisioning or under-provisioning is
detected. The automatic addition or removal of nodes is performed for under-provisioned
or over-provisioning of the resources. The major drawback of this work is that it ignores
network structure while assigning tasks to a cluster. Due to this, equal tasks assignment is
performed despite their physical distance which may introduce latency. The proposed
methodology is compared with Storm version 0.9.2 and experiments are carried out on a
cluster of one master node, one zookeeper node, and several processing nodes.

Due to heterogeneous clusters, increasing the number of nodes for a job execution does
not guarantee the overall performance improvement. This problem is addressed by Xue
et al. (2015) in two different scenarios. For systems using a hash-based partition method, a
greedy approach is used to select suitable workers for job execution. For systems that allow

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 3/23

https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

arbitrary graph partition, a heterogeneity-aware graph partitioning model is presented that
assigns workload at a fine-grained level. The proposed framework reduced the execution
time by 55% and 44% for the university’s cluster and Amazon EC2 cluster, respectively.
Social network graphs were employed in the experiments and comparison was performed
with PageRank, random walk, shortest path, etc.

How to distribute workload to available machines strongly affects the overall
performance of the stream processing system. To answer this question, Fischer & Bernstein
(2015) presented a workload scheduler based on a graph partitioning algorithm. The
proposed scheduler collects the communication behaviour of running applications and
creates the schedules by partitioning the resulting communication graph using the METIS
graph partitioning software. The proposed scheduler showed better performance with
decreases of network bandwidth up to 88% and increased throughput values of 56%,
respectively. The major limitation of the proposed approach is that it ignores the
computational resources while scheduling. Experimental evaluation was performed on a
cluster of 80 machines and a comparison was made with default Storm 0.9.0.1 and Aniello,
Baldoni & Querzoni (2013) schedulers using OpenGov, Parallel, Payload, and Reference
topologies.

The Storm scheduler is a resource-unaware scheduler. In 2015, Peng et al. (2015)
proposed a resource-aware scheduler (R-Storm) within the Storm. R-Storm satisfies
resource constraints such as CPU, memory, bandwidth, and node physical distance while
scheduling. Due to the static scheduling, it is unaware of the runtime workload and
remains unchanged during job execution. PageLoad and processing topologies are used for
experimentation on a cluster of 13 machines. Results showed a 50% higher throughput and
350% better CPU utilization when compared to the Storm scheduler.

In Apache Storm, the topology configuration cannot be changed during execution. This
stagnant configuration is also unaware of data stream properties like transfer rate etc. If the
data arrival rate surpasses the system processing capacity then this limitation can degrade
the throughput of the system. Madsen & Zhou (2015) addressed this issue by over-
provisioning of resources. This over-provisioning result in high resource cost which is not
used during execution most of the time. Experiments were carried out on Amazon EC2 (25
instances) using Airline On-Time dataset which reduced latency by 20% as compared to
the default scheduler.

In general, communication between a topology’s components influences the overall
performance of a topology. While scheduling topology, managing inter-node, and inter-
slot communication trade-off has become a challenging task. Fan, Chen & Hu (2016)
proposed a scheduler based on runtime statistics as well as cluster workload. 67%
improvement in throughput is obtained using 3% extra resources with respect to the Storm
scheduler (version 0.9.3) using the SOL benchmark. The cluster employed for evaluation
consisted of five blade servers.

The default scheduler equally distributes the executors to the computing nodes having
two drawbacks. First, it ignores the communication traffic which results in high latency.
Secondly, it engages all the nodes, which may increase inter-executor traffic. Eskandari,
Huang & Eyers (2016) proposed P-Scheduler, to address these problems. P-Scheduler first

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 4/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

calculates the required resources for topology execution to reduce inter-node traffic. Then,
the cluster is consolidated after workload estimation. Finally, it enhanced traffic by placing
frequently communicating tasks closely. Experiments were performed using 10 computing
nodes resulting in 50% less latency to default Storm 0.9.5. In-house, test throughput and
top trending topics topologies were employed in these experiments.

In 2017, Zhang et al. (2017) and Li & Zhang (2017) presented a traffic-aware scheduler
based on the node’s workload. First, it assigns tasks to slots according to topology structure
and inter-component communication. Second, it picks the least loaded node and assigns
slots that require maximum resources. The allocation considers memory, and CPU
utilization also. This scheduler is compared with default scheduler 0.8.2, R-Storm, and
topology-based schedulers using linear, star, and diamond topologies. The evaluation
carried out with 8 nodes showed a 91% improvement in throughput and a 50% reduction
in latency.

The SPEs work on continuous real-time data. Smirnov, Melnik & Nasonov (2017)
proposed a genetic algorithm-based scheduler for real-time SPEs. The problem is to assign
tasks to the best-fit node which minimizes traffic and maximizes resource utilization. The
proposed methodology is compared with the default and R-Storm schedulers showed a
40% improvement in throughput.

Weng et al. (2017) presented AdaStorm to solve the static topology configuration issue
of the default scheduler. With the help of a machine learning algorithm, AdaStorm
dynamically adjusts the topology configuration according to the communication traffic. In
this way, the static configuration issue has been solved but it does not consider network
structure while scheduling, which may affect the overall throughput. AdaStorm was
compared with R-Storm using a cluster of 10 nodes. The GeoLife GPS Trajectories dataset
was used in these experiments. Results showed that AdaStorm reduces CPU and memory
usage by about 15% and 60% respectively.

The Storm scheduler assigns tasks in a round-robin manner. The cluster heterogeneity
introduces a performance bottleneck due to an imbalanced task distribution. To address
this issue, Liu (2017) proposed a topology-based scheduler (TOSS). TOSS improves
performance by reducing the communication overhead. First, TOSS examines topology
structure and partition executors to minimize communication. Then, it utilizes the
historical workload to estimate the current workload. TOSS was compared with default
Storm scheduler version 0.8.2 which resulted in a 24% boost for throughput and a 20%
reduction in latency for SOL and Rolling WordCount topology. A small cluster of five
machines was used for experiments.

Apache Storm’s state management is achieved by a checkpointing framework, which
commits states regularly. This requires a data store for storage and retrieval of state,
resulting in performance overhead. A state management system (E-Storm) is proposed
(Liu et al., 2017) to address this issue that maintains multiple backups on different nodes.
E-Storm recovery operates at the thread level and is integrated into Storm’s execution flow.
The replication of the state allows multiple transfers to occur concurrently. E-storm beats
the existing checkpointing technique in application performance, obtaining nine times
better throughput while reducing the latency down to 9.8%. These results are achieved

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 5/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

using 12 nodes cluster at the expense of storage space for multiple backups and processing
required to restore the lost state from a checkpoint. A comparison of E-Storm was made
with Apache Storm version 1.0.2.

The default scheduler ignores the dependency relationship among workers. As a result,
the load-imbalancing problem may occur either the topology run failed or new nodes are
added to the cluster. To address this issue, a slot-aware scheduler (named as S-Storm) is
proposed (Qian et al., 2017). First, S-Storm evenly allocates slots for multiple topologies in
a load-balancing manner. Second, when load-imbalancing happens, S-Storm distributes
workers to slots among light-load computing nodes. S-Storm achieved 18.7% speedup on
the average processing time and 1.25 times improvement on throughput for Word count
and Throughput test topologies as compared to Storm version 0.10.0.

SPEs cannot adapt the scheduling plan according to the resource consumption of the
topologies. To deal with this issue, Liu & Buyya (2018) presented D-Storm which observes
executing applications to obtain resource utilization and communication history. To
reduce inter-node traffic, run-time decisions are made to schedule tasks closer to each
other. In case of resource contention, a new scheduling plan is generated automatically.
Despite these features, D-Storm is suffered from a cold start problem. Similarly, D-Storm is
20 times slower in generating an execution plan as compared to the default scheduler 1.0.2.
Performance evaluation was performed on Nectar Cloud (using 19 nodes) with the default
scheduler and R-Storm. D-Storm achieved a 16.25% improvement on throughput for
Tweet sentiment topology.

Eskandari et al. (2018b) proposed T3-Scheduler based on Apache Storm 1.1.1, which
finds frequently communicating tasks and allocates them closer while making sure that
each node is fully utilized. First, it divides topology based on communication patterns into
multiple parts. Inter-node communication is reduced by placing highly communicating
tasks together. After that, T3-Scheduler places frequently communicating tasks in the same
slot. As a result, the communication between the slots is reduced. T3-Scheduler is
compared with Online Scheduler and R-Storm and results show that T3-Scheduler
increases throughput by 32% for the two real-world applications on a 10-nodes cluster.

A basic problem in a stream processing system is the scheduling problem to minimize
tuple processing time. To achieve this goal, Li et al. (2018) developed a model-free
approach that learns from its experience. Deep Reinforcement Learning is introduced for
model-free control which minimizes tuple processing time by learning the system
environment using runtime statistics and making decisions under Deep Neural Networks.
Extensive experiments show that the proposed framework reduces tuple processing by
33.5%. The proposed system is built on historical data; therefore, it suffers from a cold start
problem. This work was compared with Actor-critic-based method, default scheduler,
model-based method, and Deep Q Network-based method using three topologies on a
cluster of 11 computing nodes.

Selecting suitable executors followed by an appropriate mapping between executors to
nodes affects overall throughput and resource utilization. To overcome this effect, a
heterogeneity-aware scheduler is proposed (Nasiri et al., 2020) that finds the proper
number of executors and maps them to the most suitable node. The proposed algorithm

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 6/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

scales up the topology’s DAG over a given cluster by increasing the topology input rate and
generating new tasks from bottlenecked executors until an optimal solution is reached.
When compared to the default scheduler of Storm (version 0.9.5), the proposed scheduler
provides up to 44% throughput enhancement. A brute-force algorithm is used for
scheduling which takes 18 hours for producing results which is a major drawback of this
work. Some production applications like PageLoad topology, processing topology, and
network monitoring topology are used to evaluate this work on a small network of four
computing nodes.

The execution performance in Storm is strongly affected by the strategy of scheduling
the topology’s components. Gulzar Ahmad et al. (2020) also proposed a two-phase strategy
for scheduling Storm topologies. First phase partitions the topology’s DAG to minimize
communication between partitions. The second phase allocates each partition on a single
node which reduces the computational cost of inter-task communication of a partition to
zero. Moreover, partial task duplication is also implemented to further reduce the
execution time. Results have shown 20% improvement in average execution time as
compared to the default scheduler. The major limitation of this work is that each partition
is mapped to a single node. If available nodes are less than the required number then this
scheduler will not work. Moreover, partial task duplication is overprovisioning which is
also an overhead. Performance comparison of this work was made with default scheduler,
R-Storm, and GA using EURExpressII workflow on a five nodes cluster.

Recently, Al-Sinayyid & Zhu (2020) proposed MT-Scheduler for stream processing
which aims to maximize throughput on a heterogeneous cluster. It minimizes data
communication and processing time to achieve the fastest frame rate for streaming
applications. Dynamic programming is used to map the topology based on computing and
communication requirements in a resource-aware fashion. First, the topology’s DAG is
linearized using topological sort. Next, the critical path is identified using the polynomial
longest path algorithm. Then, the mapping schema is determined for the topological tasks
in the critical path. The non-CP tasks are mapped using a simple layer-oriented (greedy)
method. The MT-Scheduler decreases latencies by 46% and improves throughput by 54%
as compared to the storm scheduler in polynomial-time. The MT-Scheduler is
implemented in Apache Storm (version 0.9.7) with a cluster of eight heterogeneous nodes
and a comparison was made with the default storm and adaptive scheduler (Aniello,
Baldoni & Querzoni, 2013).

Table 1 describes a summary of the literature review. The default storm scheduler makes
executor’s assignment without considering communication traffic, which makes a
significant impact on the performance (Xu et al., 2014). It also engages maximum nodes,
regardless of workload (van der Veen et al., 2015). This over-provisioning may cause low
resource utilization and higher communication cost. In addition, the application’s
computational requirement is overlooked which reduces throughput (Madsen & Zhou,
2015; Peng et al., 2015; Eskandari, Huang & Eyers, 2016; Weng et al., 2017). The default
Storm is designed for the homogeneous cluster which may introduce performance
bottleneck problem (Liu, 2017; Smirnov, Melnik & Nasonov, 2017; Zhang et al., 2017).

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 7/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

According to Table 2, nine times better throughput and 350% better CPU utilization have
been achieved so far.

After a detailed critical analysis of the existing research work done in this domain, it is
desirable to have a dynamic resource-aware scheduler that can distribute jobs among
heterogeneous cluster to improve resource utilization. Moreover, it can assign workload
based on data communication to achieve maximum throughput and reduce data
communication between components in a network-aware fashion.

MF-STORM SCHEDULER
The MF-Storm scheduler maps Storm topology (weighted acyclic graph of computation)
on a heterogeneous cluster with improved resource utilization and increased throughput.
MF-Storm maps computational requirements (processing and communication
requirements) of topology on the available network of workers (with a given processing
and communication power) in an optimal way to maximize the average throughput per
node of the cluster against the given topology.

Table 1 Summary of literature review algorithms.

Reference Scheduling aspects

D
yn

am
ic

T
ra
ffi
c-
aw

ar
e

T
op

ol
og

y-
aw

ar
e

H
et
er
og

en
eo
us

Se
lf
-a
da
pt
iv
e

R
es
ou

rc
e-
aw

ar
e

N
et
w
or
k-
aw

ar
e

(Gulzar Ahmad et al., 2020)

✗

✗ ✓
✗ ✗ ✗ ✗

(Al-Sinayyid & Zhu, 2020) ✓ ✗ ✓ ✓

(Weng et al., 2017)

✓

✗ ✗ ✓ ✓ ✗

(Liu, 2017)
✓ ✓

✗ ✗ ✗

(Xue et al., 2015) ✓ ✓ ✗

(Peng et al., 2015)

✓

✗

✗ ✓ ✗ ✗ ✓

(Qian et al., 2017)

✓

✗ ✗ ✗ ✗

(Nasiri et al., 2020)
✓ ✓

✗ ✗

(Muhammad, Aleem & Islam, 2021) ✓ ✗

(Fan, Chen & Hu, 2016)

✓

✗

✗ ✓ ✗ ✗
(Li et al., 2018)

(Aniello, Baldoni & Querzoni, 2013)

✓ ✓
✗ ✗

(Xu et al., 2014)

(Liu & Buyya, 2018) ✓ ✗

(Fischer & Bernstein, 2015)

✓

✗
✗ ✗ ✗

(Liu et al., 2017)

(Eskandari, Huang & Eyers, 2016) ✓ ✗ ✗

(Eskandari et al., 2018b)

✓

✗ ✓ ✗

(Li & Zhang, 2017)
✓

✗ ✗

(Muhammad & Aleem, 2021) ✓ ✗

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 8/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

MF-Storm schedule the jobs in two phases. The first phase, termed Graph Partitioning,
formulates a weighted directed acyclic graph (W-DAG) from the topology with intra-
executor (spout and bolt) computation requirements and inter-executor communication
requirements. The graph is then processed by the max-flowmin-cut algorithm which gives
us limiting communication links in the network and maximum flow which can be achieved
with the limiting links. The limiting links can then be used to distribute the group of
executors between different workers of the cluster. Groups of frequently communicating
executors are assigned to the nearby workers to decrease inter-worker communication.

The second phase, Physical Mapping, intelligently maps to a pool of workers by
assigning all the group of executors to a worker based on the worker’s computation power
and reduced communication need as per the modeled W-DAG. A group with maximum
processing requirement can be assigned to a worker with higher computational power.

The Algorithm 1 is a driver program for the proposed MF-Storm scheduler. The
algorithm gets unassigned jobs as input and produces the physical map for scheduling.
Initially, with the help of the topology’s code, the topology’s DAG is retrieved which
contains the connectivity between the executors. The MF-Storm needs inter-executor
connectivity as well as inter-executor traffic to generate an execution plan. Therefore,
Inter-executor traffic is retrieved from the traffic log to generate modeled DAG (line 3) as

Table 2 Performance metric used in literature.

Reference Performance metric

Resource utilization Throughput Latency

(Liu & Buyya, 2018) - +16.25% -

(Gulzar Ahmad et al., 2020) +21% -

(Liu, 2017) +24% −20%

(Aniello, Baldoni & Querzoni, 2013) +30% -

(Eskandari et al., 2018b) +32% -

(Li et al., 2018) +33.50% -

(Smirnov, Melnik & Nasonov, 2017) +40% -

(Nasiri et al., 2020) +44% -

(Al-Sinayyid & Zhu, 2020) +54% −46%

(Fischer & Bernstein, 2015) +56% -

(Xu et al., 2014) +84% -

(Li & Zhang, 2017) +91% −50%

(Qian et al., 2017) +1.25 times −18.70%

(Liu et al., 2017) +9 times −9.80%

(Madsen & Zhou, 2015) - −20%

(Eskandari, Huang & Eyers, 2016) −50%

(Xue et al., 2015) −55.90%

(Weng et al., 2017) +15% CPU
+60% Memory

- -

(Fan, Chen & Hu, 2016) −3% extra resources used +67%

(Peng et al., 2015) +350% CPU utilization +50%

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 9/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

W-DAG. Once we have the executor’s connectivity as well as traffic the next step is to
partition the graph into sub-graphs. These sub-graphs are created to have maximum intra-
graph communication and minimum inter-graph communication to enhance throughput.
To achieve this goal, a Graph partitioning algorithm is used known as Max-flow_Min-cut
(line 4). Finally, for physical mapping of partitions to workers,
Map_Partitions_To_Workers is invoked (line 5).

Once executors are partitioned into groups, the next step is to map partitions to
workers in a resource-aware manner. First, Map_Partitions_To_Workers (as shown in
Algorithm 2) calculates the computation power in Floating Point Operations Per Second
(FLOPs) for each node applying Eq. (1) (lines 2–6). All machines are positioned in terms of
FLOPs to handle heterogeneity (Khalid et al., 2018). FLOPs represent the number of

Algorithm 1 MF-Storm Scheduler

Input: Unassigned Topologies (T[])

Output: Topologies to Cluster Nodes Physical Mapping

1 while all t in T[] are not assigned do

2 DAG ← get_Topology_DAG(t)

3 W_DAG ← get_Modeled_DAG(DAG)

4 Graph_Partitions ← max-Flow_Min-Cut(W_DAG)

5 Physical_Mapping ← map_Partitions_To_Workers(Graph_Partitions)

6 return Physical_Mapping

Algorithm 2 Map_Partitions_To_Workers

Input: Graph_Partitions

Output: Physical_Mapping

1 ClusterNode Nodes ← ClusterInfo.getNodes()

2 foreach n ∈ Nodes do

3 cores ← n.getCores()

4 frequency ← n.getFrequency()

5 flops ← n.getFLOPs()

6 n.GFLOPS ← cores x frequency x flops

7 Nodes ← Nodes.Sort(‘Desc’)

8 Graph_Partitions ← Graph_Partitions.Sort(‘Desc’)

9 foreach p ∈ Graph_Partitions do

10 if n.FreeSlots equals to 0 then

11 n = Nodes.getNextNode()

12 Physical_Mapping.add(p, n)

13 decrement n.FreeSlots to 1

14 return Physical_Mapping

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 10/23

http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

calculations a processor can perform in a second (“FLOPS (Floating Point Operations Per
Second) Definition”, https://techterms.com/definition/flops).

ProcessingSpeed ¼ NumberOfCores � cycle
second

� flops
cycle

(1)

After FLOPs calculation, the nodes are sorted in descending order with respect to their
computing capacity (line 7). Also, graph partitions are sorted in descending order with
respect to their inter-executor communication (line 8). Lastly, the partition with the
highest communication traffic is allocated to the most powerful worker. Partitions are
distributed to workers once all workers are used then the next machine is occupied (lines
9–13). With this approach, minimum machines are used, and inter-machine
communication is also decreased.

EXPERIMENTAL EVALUATION
A heterogeneous cluster is designed with one nimbus node along with ZooKeeper, and
four supervisors to assess the proposed MF-Storm scheduling scheme. Ubuntu version
19.04 is installed on each node along Storm 2.0.1 (https://github.com/apache/storm)
coordinated by Zookeeper 3.4.13, with zeromq, JZMQ, and Python. To achieve
heterogeneity, the system configuration has high-computational nodes equipped with
eight cores whereas the low-capacity nodes have four and two cores. Table 3 contains
configurations of the cluster used for experiments.

Performance evaluation
The Apache storm ships with multiple schedulers (“Apache Storm Scheduler”,
http://storm.apache.org/releases/2.0.0/Storm-Scheduler.html) e.g. Default Scheduler,
Isolation Scheduler, Resource-aware Scheduler, and Multitenant Scheduler. The first
three follow single-tenant architecture while the last one uses multitenant architecture.
MF-Storm is derived from Default Scheduler which is based upon single-tenant

Table 3 Hardware configurations of the cluster used for experiments.

Machine name Processor
configuration

FLOPs/
cycle

GFLOPs GFLOPs
index

Nimbus-Server
Zookeeper-Server

Intel Core i7
3.40 GHz × 8

6816 185395 1

Node-D Intel Core i7
3.40 GHz × 8

6816 185395 1

Node-C Intel Core i7
3.40 GHz × 6
(2 Cores are disabled)

6816 139046 2

Node-A Intel Core i7
3.40 GHz × 4
(4 Cores are disabled)

6816 92698 3

Node-B Intel Core i5
3.20 GHz × 4

6385 81728 4

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 11/23

https://techterms.com/definition/flops
https://github.com/apache/storm
http://storm.apache.org/releases/2.0.0/Storm-Scheduler.html
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

architecture. Therefore, MF-Storm is compared with the first three single-tenancy
schedulers.

� The default scheduler (Liu, 2017)

� R-Storm (Peng et al., 2015)

� Isolation scheduler (GitHub, 2014)

The Storm has various types of topology structures e.g., linear, diamond, star etc. The
performance of the MF-Storm is assessed with the help of four linear topologies. We have
selected topologies that can process data and make a decision. In this context, the
topologies which are shipped with Apache Storm suit (“Example Storm Topologies”,
https://github.com/apache/storm/tree/master/examples/storm-starter) and used by
researchers as a benchmark are the following:

� Word Count Topology (“Storm Topology Explained using Word Count Topology
Example | CoreJavaGuru”, http://www.corejavaguru.com/bigdata/storm/word-count-
topology)

� Exclamation Topology (Karanth, 2014; GitHub, 2019)

Two more topologies are developed by modifying the above topologies which are as
follows:

� Tweet Word Count Topology that breaks 5,000 tweets into words and then counts the
number of occurrences of each word. The actual Word Count Topology is generating
words with a 100-millisecond delay which is reduced to 50 to see the impact;

� Tweet Exclamation Topology that emits a random word from the collection of 2,500
words and then appends three exclamation marks (!!!) to the words. The actual
Exclamation Topology is generating words with a 100-millisecond delay which is
reduced to 50 to see the impact.

Evaluation metrics
In the literature, similar nature of work is being evaluated using throughput, latency,
and/or resource utilization. In this article, throughput and resource utilization are used for
evaluation.

� Throughput: represents the number of tuples processed per unit time

� Resource utilization represents the number of supervisor nodes used for job execution.
For example, a supervisor node has five workers, and even if a single worker is being
used in topology execution then in this work, it will be considered a used resource.

We think that only throughput does not truly represents the efficiency of a scheduler.
To depict the impact of both measures, an evaluation matrix named as average throughput
per node (Eq. (3)) is used in this work.

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 12/23

https://github.com/apache/storm/tree/master/examples/storm-starter
http://www.corejavaguru.com/bigdata/storm/word-count-topology
http://www.corejavaguru.com/bigdata/storm/word-count-topology
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

AverageThroughput ¼ TotalTuplesProcessed � TotalTimeTaken (2)

AverageThroughputPerNode ¼ AverageThroughput � TotalNodesUsed (3)

Result assessment
The assessment of the MF-Storm using four topologies with three state-of-the-art
schedulers is presented in this section. All four topologies were executed with the three
selected schedulers under different scenarios with a varying number of required worker
processes (slots). Likewise, the available worker process for each machine varied, and
measurements were taken to analyze the effect on throughput in all the scenarios as shown
in the following Table 4.

We have used different scenarios for experiments. Scenario 1 says that we have one slot
per node and we have four nodes in the cluster. So, we have four (1 slot × 4 nodes) slots
available for topology execution. If one slot is required then one slot from these four slots
will be selected by the scheduler. This slot’s choice will vary from the scheduler to the
scheduler based on their algorithm. For a reasonable comparison, each experiment is run
for 20–25 min while reading is recorded at a 60-s interval.

Table 4 Different scenarios for the experiments.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Supervisor nodes 4

Available slots per node 1 2 3

Total available slots for
topology execution

4
(4 nodes × 1 slot)

8
(4 nodes × 2 slots)

12
(4 nodes × 3 slots)

Slots required for topology execution 1 2 3 2 3 3

Figure 1 Average throughput calculated using Eq. (2) for word count topology.
Full-size DOI: 10.7717/peerj-cs.1077/fig-1

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 13/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-1
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

Comparison with other schedulers
Word count topology
Figure 1 shows the average throughput produced using scenarios 1 to 6 with the y-axis
standing for average tuples processed in 20–25 min (throughput). Experiments run for
hours, however, the performance after around 5 min stays the same.

In Fig. 2, the total number of nodes used by each scheduling algorithm is presented. The
average throughput per node for word count topology under scenarios 1 to 6 is calculated
using Eq. (3) (see Fig. 3). Here, MF-Storm gains a maximum of 201% on average

Figure 2 The number of nodes used for word count and tweet word count topology by scheduling
algorithms. Full-size DOI: 10.7717/peerj-cs.1077/fig-2

Figure 3 Average throughput per node for word count topology calculated using Eq. (3).
Full-size DOI: 10.7717/peerj-cs.1077/fig-3

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 14/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-2
http://dx.doi.org/10.7717/peerj-cs.1077/fig-3
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

throughput per node with respect to the default scheduler and 205% as compared to the
Isolation scheduler for scenario 6.

Exclamation topology
Similar experiments have been performed for exclamation topology as well. Figure 4 shows
the average throughput calculated using Eq. (2) of the state-of-the-art algorithms for

Figure 4 Average throughput calculated using Eq. (2) of the scheduling algorithms for exclamation
topology. Full-size DOI: 10.7717/peerj-cs.1077/fig-4

Figure 5 Average throughput per node for exclamation topology calculated using Eq. (3).
Full-size DOI: 10.7717/peerj-cs.1077/fig-5

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 15/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-4
http://dx.doi.org/10.7717/peerj-cs.1077/fig-5
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

exclamation topology for different scenarios. With the help of Eq. (3), the average
throughput per node for MF-Storm and baseline scheduling algorithms are calculated as
shown in Fig. 5. Improvement in average throughput per node is obtained 200% and 205%
for MF-Storm to the default scheduler and isolation scheduler. MF-Storm achieves these
results with 33% of resources concerning the other schedulers which acquire three nodes
for execution (see Fig. 6). The reason is that MF-Storm consumes all available slots of a
machine and then uses the next machine. Conversely, the default Storm uses a round-
robin approach.

Tweet word count topology

The same procedure is repeated for tweet word count topology. Figure 7 shows
communication traffic produced using scenarios 1 to 6. MF-Storm attained a maximum of
194% and 205% improvement in average throughput per node (Fig. 8) for scenario 6 as
compared to the default Storm and isolation scheduler with 66% fewer resources (see
Fig. 2).

Tweet exclamation topology
The comparison of MF-Storm with other schedulers for tweet exclamation topology under
scenarios 1 to 6 is shown in Fig. 9. MF-Storm achieved 206%, 198%, and 2% improvement
when compared to the default, isolation, and resource-aware schedulers. MF-Storm
achieves this improved throughput with 66% less computational resources as compared to
the others that employ 100% available resources (Fig. 6).

Figure 6 The number of nodes used for exclamation and tweet exclamation topology by scheduling
algorithms. Full-size DOI: 10.7717/peerj-cs.1077/fig-6

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 16/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-6
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

Result discussion
From the results, it is clear that MF-Storm performs well in average throughput per node
and resource usage when compared to the other scheduling algorithms. It will be difficult
to achieve these results if either communication between executors or available resources
are ignored. The default Apache Storm scheduler uses a round-robin approach which may
increase inter-node communication; hence resulting in decreased throughput. Similarly, it
occupies maximum computing nodes in the cluster. Conversely, MF-Storm consumes all
available slots of a node then it moves to the next node. In this way, a compact slots
assignment is achieved which is directly proportional to higher throughput. For

Figure 7 Average throughput calculated using Eq. (2) for tweet word count topology.
Full-size DOI: 10.7717/peerj-cs.1077/fig-7

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 17/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-7
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

configurations where fewer resources are employed, the difference in average throughput is
also minimal and vice versa.

The Isolation scheduler executes topologies in isolation on a dedicated cluster. The
isolation scheduler generates a different execution plan as compared to the default
scheduler. The focus of this scheduler is to maximize cluster usage which increases inter-
node communication and adversely affects throughput. It has been shown (in Figs. 1–10)
that the isolation scheduler performed worst for cluster configurations (see Table 3).

R-Storm (Peng et al., 2015) increases throughput by maximizing resource utilization but
the major weakness of R-Storm is that it overlooks the required number of slots given by

Figure 8 Average throughput per node for tweet word count topology calculated using Eq. (3).
Full-size DOI: 10.7717/peerj-cs.1077/fig-8

Figure 9 Average throughput calculated using Eq. (2) of the scheduling algorithms for tweet
exclamation topology. Full-size DOI: 10.7717/peerj-cs.1077/fig-9

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 18/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-8
http://dx.doi.org/10.7717/peerj-cs.1077/fig-9
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

the user at the time of topology submission. Secondly, If the required number of slots is not
available, then R-Storm does not run the job. Similarly, the user cannot direct R-Storm to
use slots other than calculated by R-Storm. That is why we do not have results for word
count and tweet word count topologies for R-Storm because three slots are needed for
topology execution and R-Storm executes these topologies in five slots.

Table 2 shows the results generated by different schedulers proposed in this domain.
Weng et al. (2017) considered CPU and Memory while scheduling. Only 15%
improvement in CPU use is achieved; however, MF-Storm saved up to 66% computational
resources of the cluster. Similarly, with the help of over-provisioning (Fan, Chen & Hu,
2016); reached 67% better throughput. Comparatively, MF-Storm with one-third of
computational resources made up to 206% enhancement in average throughput per node
with respect to the default scheduler.

As mentioned in the “Experimental evaluation” section, we have performed
experiments using three state-of-the-art schedulers under six different scenarios. If we
calculate the average percentage improvement obtained by word count topology for the
default scheduler, then it will be 159%. Similarly, 157% average percentage improvement is
recorded for the isolation scheduler. On average, 158% (Fig. 3) improvement factor is
achieved by MF-Storm for word count topology as compared to both schedulers.
Moreover, 138% (Fig. 5), 158% (Fig. 8), and 138% (Fig. 10) are scored for exclamation,
tweet word count, and tweet exclamation topology, respectively. Therefore, the average
improvement factor for all topologies for MF-Storm is 148% using 30% fewer
computational resources.

Figure 10 Average throughput per node for tweet exclamation topology calculated using Eq. (3).
Full-size DOI: 10.7717/peerj-cs.1077/fig-10

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 19/23

http://dx.doi.org/10.7717/peerj-cs.1077/fig-10
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

CONCLUSIONS AND FUTURE WORK
In this article, we presented a Storm scheduler using topology’s traffic and cluster
computation power. First, with the help of a graph algorithm, the topology’s DAG was
partitioned. After that, these partitions were sorted in descending order according to their
communication pattern. Then partitions were assigned to the most powerful machine with
respect to the machine’s FLOPs in the heterogeneous cluster and so on. In this way,
powerful machines were utilized first resulting in improved throughput. The compact
scheduling strategy adopted by MF-Storm enhanced resource utilization with reduced
inter-task communication. As a result, the average improvement factor for all topologies
for MF-Storm was 148% using 30% fewer computational resources. In this article, we
considered four different jobs for scheduling. For evaluation, we used linear topologies and
in future work, we intend to experiment using other extensive topology types to gauge the
scheduling capabilities of the MF-Storm.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Asif Muhammad conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Muhammad Abdul Qadir conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1077#supplemental-information.

REFERENCES
Al-Sinayyid A, Zhu M. 2020. Job scheduler for streaming applications in heterogeneous

distributed processing systems. Journal of Supercomputing 76(12):9609–9628
DOI 10.1007/s11227-020-03223-z.

Aniello L, Baldoni R, Querzoni L. 2013. Adaptive online scheduling in storm. In: DEBS, 2013 –

Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems. ACM.
207–218.

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 20/23

http://dx.doi.org/10.7717/peerj-cs.1077#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1077#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1077#supplemental-information
http://dx.doi.org/10.1007/s11227-020-03223-z
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

Cardellini V, Lo Presti F, Nardelli M, Russo Russo G. 2018. Optimal operator deployment and
replication for elastic distributed data stream processing. Concurrency Computation 30(9):e4334
DOI 10.1002/cpe.4334.

Elahi I, Ali H, Asif M, Iqbal K, Ghadi Y, Alabdulkreem E. 2022. An evolutionary algorithm for
multi-objective optimization of freshwater consumption in textile dyeing industry. PeerJ
Computer Science 8(9):e932 DOI 10.7717/peerj-cs.932.

Eskandari L, Huang Z, Eyers D. 2016. P-scheduler: adaptive hierarchical scheduling in Apache
Storm. In: ACM International Conference Proceeding Series. New York: ACM, 1–10.

Eskandari L, Mair J, Huang Z, Eyers D. 2018a. Poster: iterative scheduling for distributed stream
processing systems. In: DEBS, 2018 – Proceedings of the 12th ACM International Conference on
Distributed and Event-Based Systems. New York: ACM Press, 234–237.

Eskandari L, Mair J, Huang Z, Eyers D. 2018b. T3-Scheduler: a topology and Traffic aware two-
level Scheduler for stream processing systems in a heterogeneous cluster. Future Generation
Computer Systems 89(8):617–632 DOI 10.1016/j.future.2018.07.011.

Falt Z, Yaghob J. 2011. Task scheduling in data stream processing. Available at https://www.
researchgate.net/profile/Jakub-Yaghob/publication/220827260_Task_Scheduling_in_Data_
Stream_Processing/links/02e7e53394bdcae93d000000/Task-Scheduling-in-Data-Stream-
Processing.pdf.

Fan J, Chen H, Hu F. 2016. Adaptive task scheduling in storm. In: Proceedings of 2015 4th
International Conference on Computer Science and Network Technology, ICCSNT 2015.
Piscataway: IEEE, 309–314.

Farooq MU, Zeeshan M, Jahangir MT, Asif M. 2022. A novel cooperative micro-caching
algorithm based on fuzzy inference through NFV in ultra-dense IoT networks. Journal of
Network and Systems Management 30(1):183 DOI 10.1007/s10922-021-09632-6.

Fischer L, Bernstein A. 2015. Workload scheduling in distributed stream processors using graph
partitioning. In: Proceedings – 2015 IEEE International Conference on Big Data, IEEE Big Data.
2015:124–133.

Foundation AS. 2018. Apache SparkTM – Unified analytics engine for big data. Available at https://
spark.apache.org/ (accessed 19 March 2020).

Foundation AS, Apache Software Foundation. 2015. Apache Flink: stateful computations over
data streams. Available at https://flink.apache.org/ (accessed 22 April 2020).

Ghaderi J, Shakkottai S, Srikant R. 2016. Scheduling storms and streams in the cloud. ACM
Transactions on Modeling and Performance Evaluation of Computing Systems 1(4):1–28
DOI 10.1145/2904080.

GitHub. 2014. Storm isolation scheduler. Available at https://storm.incubator.apache.org/2013/01/
11/storm082-released.html (accessed 19 March 2020).

GitHub. 2019. Exclamation topology. Available at https://github.com/apache/storm/blob/master/
examples/storm-starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java (accessed
19 March 2020).

Gulzar Ahmad S, Ullah Khan H, Ijaz S, Ullah Munir E. 2020. Use case-based evaluation of
workflow optimization strategy in real-time computation system. Journal of Supercomputing
76(1):708–725 DOI 10.1007/s11227-019-03060-9.

Kamburugamuve S, Fox G. 2016. Survey of distributed stream processing. Bloomington: Indiana
University.

Karanth S. 2014. Mastering hadoop. Available at https://books.google.com.pk/books?id=IdEGB
gAAQBAJ&pg=PT374&lpg=PT374&dq=Exclamation+Topology&source=bl&ots=lVJVSSfjyR&
sig=ACfU3U3AEcjALh6n1V8XaQqheeZ0teZ_IQ&hl=en&sa=X&ved=2ahUKEwiolfDIyKHoA

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 21/23

http://dx.doi.org/10.1002/cpe.4334
http://dx.doi.org/10.7717/peerj-cs.932
http://dx.doi.org/10.1016/j.future.2018.07.011
https://www.researchgate.net/profile/Jakub-Yaghob/publication/220827260_Task_Scheduling_in_Data_Stream_Processing/links/02e7e53394bdcae93d000000/Task-Scheduling-in-Data-Stream-Processing.pdf
https://www.researchgate.net/profile/Jakub-Yaghob/publication/220827260_Task_Scheduling_in_Data_Stream_Processing/links/02e7e53394bdcae93d000000/Task-Scheduling-in-Data-Stream-Processing.pdf
https://www.researchgate.net/profile/Jakub-Yaghob/publication/220827260_Task_Scheduling_in_Data_Stream_Processing/links/02e7e53394bdcae93d000000/Task-Scheduling-in-Data-Stream-Processing.pdf
https://www.researchgate.net/profile/Jakub-Yaghob/publication/220827260_Task_Scheduling_in_Data_Stream_Processing/links/02e7e53394bdcae93d000000/Task-Scheduling-in-Data-Stream-Processing.pdf
http://dx.doi.org/10.1007/s10922-021-09632-6
https://spark.apache.org/
https://spark.apache.org/
https://flink.apache.org/
http://dx.doi.org/10.1145/2904080
https://storm.incubator.apache.org/2013/01/11/storm082-released.html
https://storm.incubator.apache.org/2013/01/11/storm082-released.html
https://github.com/apache/storm/blob/master/examples/storm-starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java
https://github.com/apache/storm/blob/master/examples/storm-starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java
http://dx.doi.org/10.1007/s11227-019-03060-9
https://books.google.com.pk/books?id=IdEGBgAAQBAJ&pg=PT374&lpg=PT374&dq=Exclamation+Topology&source=bl&ots=lVJVSSfjyR&sig=ACfU3U3AEcjALh6n1V8XaQqheeZ0teZ_IQ&hl=en&sa=X&ved=2ahUKEwiolfDIyKHoAhUvSRUIHRyQAQwQ6AEwCXoECC8QAQ#v=onepage&q=ExclamationTopology&f=
https://books.google.com.pk/books?id=IdEGBgAAQBAJ&pg=PT374&lpg=PT374&dq=Exclamation+Topology&source=bl&ots=lVJVSSfjyR&sig=ACfU3U3AEcjALh6n1V8XaQqheeZ0teZ_IQ&hl=en&sa=X&ved=2ahUKEwiolfDIyKHoAhUvSRUIHRyQAQwQ6AEwCXoECC8QAQ#v=onepage&q=ExclamationTopology&f=
https://books.google.com.pk/books?id=IdEGBgAAQBAJ&pg=PT374&lpg=PT374&dq=Exclamation+Topology&source=bl&ots=lVJVSSfjyR&sig=ACfU3U3AEcjALh6n1V8XaQqheeZ0teZ_IQ&hl=en&sa=X&ved=2ahUKEwiolfDIyKHoAhUvSRUIHRyQAQwQ6AEwCXoECC8QAQ#v=onepage&q=ExclamationTopology&f=
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

hUvSRUIHRyQAQwQ6AEwCXoECC8QAQ#v=onepage&q=Exclamation Topology&f=
(accessed 19 March 2020).

Khalid YN, Aleem M, Prodan R, Iqbal MA, Islam MA. 2018. E-OSched: a load balancing
scheduler for heterogeneous multicores. Journal of Supercomputing 74(10):5399–5431
DOI 10.1007/s11227-018-2435-1.

Li T, Xu Z, Tang J, Wang Y. 2018.Model-free control for distributed stream data processing using
deep reinforcement learning. Proceedings of the VLDB Endowment 11(6):705–718
DOI 10.14778/3184470.3184474.

Li C, Zhang J. 2017. Real-time scheduling based on optimized topology and communication traffic
in distributed real-time computation platform of storm. Journal of Network and Computer
Applications 87(12):100–115 DOI 10.1016/j.jnca.2017.03.007.

Liu Y. 2017. Energy usage proling and topology-based scheduling for clusters. Available at http://
etd.auburn.edu/handle/10415/6022.

Liu X, Buyya R. 2018. D-Storm: dynamic resource-efficient scheduling of stream processing
applications. In: Proceedings of the International Conference on Parallel and Distributed Systems
– ICPADS. Piscataway: IEEE, 485–492.

Liu X, Buyya R. 2020. Resource management and scheduling in distributed stream processing
systems: a taxonomy, review, and future directions. ACM Computing Surveys 53(3):1–41
DOI 10.1145/3355399.

Liu X, Harwood A, Karunasekera S, Rubinstein B, Buyya R. 2017. E-Storm: replication-based
state management in distributed stream processing systems. In: 2017 46th International
Conference on Parallel Processing (ICPP). 571–580.

Madsen KGS, Zhou Y. 2015. Dynamic resource management in a massively parallel stream
processing engine. In: International Conference on Information and Knowledge Management,
Proceedings. New York: ACM, 13–22.

Muhammad A, AleemM. 2021. A3-Storm: topology-, traffic-, and resource-aware storm scheduler
for heterogeneous clusters. Journal of Supercomputing 77(2):1059–1093
DOI 10.1007/s11227-020-03289-9.

Muhammad A, Aleem M, Islam MA. 2021. TOP-Storm: a topology-based resource-aware
scheduler for stream processing engine. Cluster Computing 24(1):417–431
DOI 10.1007/s10586-020-03117-y.

Nasiri H, Nasehi S, Divband A, Goudarzi M. 2020. A scheduling algorithm to maximize storm
throughput in heterogeneous cluster. Available at https://arxiv.org/abs/2001.10308.

Peng B, Hosseini M, Hong Z, Farivar R, Campbell R. 2015. R-storm: resource-aware scheduling
in storm. In: Middleware 2015 – Proceedings of the 16th Annual Middleware Conference.
New York: ACM, 149–161.

Qian W, Shen Q, Qin J, Yang D, Yang Y, Wu Z. 2017. S-Storm: a slot-aware scheduling strategy
for even scheduler in storm. In: Proceedings – 18th IEEE International Conference on High
Performance Computing and Communications, 14th IEEE International Conference on Smart
City and 2nd IEEE International Conference on Data Science and Systems, HPCC/SmartCity/
DSS. Piscataway: IEEE, 2016:623–630.

Smirnov P, Melnik M, Nasonov D. 2017. Performance-aware scheduling of streaming
applications using genetic algorithm. Procedia Computer Science 108:2240–2249
DOI 10.1016/j.procs.2017.05.249.

Storm A. 2014. Storm documentation. Available at https://storm.incubator.apache.org/
documentation/Home.html (accessed 19 March 2020).

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 22/23

https://books.google.com.pk/books?id=IdEGBgAAQBAJ&pg=PT374&lpg=PT374&dq=Exclamation+Topology&source=bl&ots=lVJVSSfjyR&sig=ACfU3U3AEcjALh6n1V8XaQqheeZ0teZ_IQ&hl=en&sa=X&ved=2ahUKEwiolfDIyKHoAhUvSRUIHRyQAQwQ6AEwCXoECC8QAQ#v=onepage&q=ExclamationTopology&f=
http://dx.doi.org/10.1007/s11227-018-2435-1
http://dx.doi.org/10.14778/3184470.3184474
http://dx.doi.org/10.1016/j.jnca.2017.03.007
http://etd.auburn.edu/handle/10415/6022
http://etd.auburn.edu/handle/10415/6022
http://dx.doi.org/10.1145/3355399
http://dx.doi.org/10.1007/s11227-020-03289-9
http://dx.doi.org/10.1007/s10586-020-03117-y
https://arxiv.org/abs/2001.10308
http://dx.doi.org/10.1016/j.procs.2017.05.249
https://storm.incubator.apache.org/documentation/Home.html
https://storm.incubator.apache.org/documentation/Home.html
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

Sun D, Zhang G, Yang S, Zheng W, Khan SU, Li K. 2015. Re-Stream: real-time and energy-
efficient resource scheduling in big data stream computing environments. Information Sciences
319(1):92–112 DOI 10.1016/j.ins.2015.03.027.

Tahir N, Hassan A, Asif M, Ahmad S. 2019. MCD: mutually connected community detection
using clustering coefficient approach in social networks. In: 2019 2nd International Conference
on Communication, Computing and Digital Systems, C-CODE. 2019:160–165.

Tantalaki N, Souravlas S, Roumeliotis M. 2020. A review on big data real-time stream processing
and its scheduling techniques. International Journal of Parallel, Emergent and Distributed
Systems 35(5):571–601 DOI 10.1080/17445760.2019.1585848.

Twitter. 2014. Apache Heron. Available at https://heron.incubator.apache.org/ (accessed 22 April
2020).

Ullah Z, Ahmed I, Khan FA, Asif M, Nawaz M, Ali T, Khalid M, Niaz F. 2019. Energy-efficient
harvested-aware clustering and cooperative routing protocol for WBAN (E-HARP). IEEE Access
7:100036–100050 DOI 10.1109/ACCESS.2019.2930652.

van der Veen JS, van der Waaij B, Lazovik E, Wijbrandi W, Meijer RJ. 2015.Dynamically scaling
apache storm for the analysis of streaming data. In: Proceedings – 2015 IEEE 1st International
Conference on Big Data Computing Service and Applications, BigDataService 2015. Piscataway:
IEEE, 154–161.

Weng Z, Guo Q, Wang C, Meng X, He B. 2017. AdaStorm: Resource efficient storm with adaptive
configuration. In: Proceedings – International Conference on Data Engineering. Piscataway:
IEEE, 1363–1364.

Xu J, Chen Z, Tang J, Su S. 2014. T-storm: traffic-aware online scheduling in storm. In:
Proceedings – International Conference on Distributed Computing Systems. Piscataway: IEEE,
535–544.

Xue J, Yang Z, Hou S, Dai Y. 2015. When computing meets heterogeneous cluster: workload
assignment in graph computation. In: Proceedings – 2015 IEEE International Conference on Big
Data, IEEE Big Data. 2015:154–163.

Zhang J, Li C, Zhu L, Liu Y. 2017. The real-time scheduling strategy based on traffic and load
balancing in storm. In: Proceedings – 18th IEEE International Conference on High Performance
Computing and Communications, 14th IEEE International Conference on Smart City and 2nd
IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016.
Piscataway: IEEE, 372–379.

Muhammad and Abdul Qadir (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1077 23/23

http://dx.doi.org/10.1016/j.ins.2015.03.027
http://dx.doi.org/10.1080/17445760.2019.1585848
https://heron.incubator.apache.org/
http://dx.doi.org/10.1109/ACCESS.2019.2930652
http://dx.doi.org/10.7717/peerj-cs.1077
https://peerj.com/computer-science/

	MF-Storm: a maximum flow-based job scheduler for stream processing engines on computational clusters to increase throughput
	Introduction
	Literature review
	Mf-storm scheduler
	Experimental evaluation
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

