
The improved dynamic slicing for
spectrum-based fault localization
Heling Cao1,2, Fei Wang1, Miaolei Deng1,3 and Lei Li1,2

1 College of Information Science and Engineering, Henan University of Technology, ZhengZhou,
HeNan, China

2 Henan International Joint Laboratory of Grain Information Processing, Henan University of
Technology, ZhengZhou, HeNan, China

3 Key Laboratory of Grain Information Processing and Control, Ministry of Education,
ZhengZhou, HeNan, China

ABSTRACT
Background: Spectrum-based Fault localization have proven to be useful in the
process of software testing and debugging. However, how to improve the
effectiveness of software fault localization has always been a research hot spot in the
field of software engineering. Dynamic slicing can extract program dependencies
under certain conditions. Thus, this technology is expected to benefit for locating
fault.
Methods: We propose an improved dynamic slicing for spectrum-based fault
localization under a general framework. We first obtain the dynamic slice of program
execution. Secondly, we construct a mixed slice spectrum matrix from the dynamic
slice of each test case and the corresponding test results. Finally, we compute the
suspiciousness value of each statement in the mixed-slice spectram matrix.
Results: To verify the performance of our method, we conduct an empirical study on
15 widely used open-source programs. Experimental results show that our approach
achieves significant improvement than the compared techniques.
Conclusions: Our approach can reduce approximately 1% to 17.79% of the average
cost of code examined significantly.

Subjects Algorithms and Analysis of Algorithms, Software Engineering
Keywords Software debugging, Fault localization, Dynamic slicing, Debugging cost

INTRODUCTION
With the development of the software, locating fault is becoming more and more
challenging. Fault localization is a part of software maintenance, which is estimated to cost
50–70% of program debugging (Jones & Harrold, 2005). Due to the expensive cost, the
increase efficiency of fault localization can drastically decrease the cost of program
debugging. Software fault localization mainly improve the efficiency through reducing the
range of the search (Santelices et al., 2009; Agrawal & Horgan, 1990; Abreu, Zoeteweij &
Van Gemund, 2006; Korel & Yalamanchili, 1994). Early the programmers set breakpoints
by debugging tools to narrow down to search the range of the faults, but the manual
debugging is low efficiency. Delta debugging techniques constantly exchange the memory
state of success run and failure run to narrow the range of locating faults by the iteration of
running programs (Santelices et al., 2009), but the cost of iterative search is larger.
Dynamic slicing techniques removed non-related faulty statements to narrow the range of

How to cite this article Cao H, Wang F, Deng M, Li L. 2022. The improved dynamic slicing for spectrum-based fault localization. PeerJ
Comput. Sci. 8:e1071 DOI 10.7717/peerj-cs.1071

Submitted 11 May 2022
Accepted 28 July 2022
Published 7 September 2022

Corresponding author
Miaolei Deng,
dengmiaolei@haut.edu.cn

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.1071

Copyright
2022 Cao et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1071
mailto:dengmiaolei@�haut.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1071
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

the search (Agrawal & Horgan, 1990). Soremekun et al. (2021) compared the effectiveness
of spectrum fault localization against dynamic slicing. For single faults, dynamic slicing
was eight percentage points more effective than the best performing spectrum fault
localization; for 66% of the faults, dynamic slicing finds the fault earlier than the best
performing spectrum fault localization. However, the calculation of dynamic slices less
considers actual reference variables when the variable is defined. This leads that some
irrelevant variable slices are contained among them, causing the results of slices is
redundancy. To overcome this problem, we present an improved dynamic slicing
approach based on defining variables influence set. When calculating the dynamic slicing,
the current variables are found out when defining the actual reference, eliminating non-
reference variables. Therefore, more precise dynamic slices are obtained.

Dynamic slicing technology narrows the scope of fault localization to a certain extent.
However, the program after slicing is the statement set and the elements in the set are
treated equally. The programmers need to check all statements in the dynamic slices to
fault localization. In order to address this problem, we try to give the priority order of a
slice element to reduce the statement number of fault localization being checked by
programmers, and further improve the accuracy of fault localization. In this article, we
present the fault localization using the improved dynamic slicing. First, we capture the
dynamic slice information of program execution. Second, we construct a mixed slice
spectrum matrix from the dynamic slice information of each test case execution and the
corresponding test results. Finally, we compute the suspiciousness of entities in the mixed
slice spectrummatrix to generate a fault localization report. Experimental results show that
our method reduces almost 1% to 17.79% of the average cost of code examined
significantly than the compared methods.

The main contributions of this article can be summarized as follows:

� We propose a novel approach using the improved dynamic slicing to spectrum-based
fault localization.

� We improve dynamic slicing approach based on define variables influence set.

The rest of this article is organized as follows. “Background” presents the background
on statistical fault localization and dynamic slicing. “Motivation” gives an example to show
our approach. “Our approach” shows the framework and the exhibition of our approach.
“Empirical study” describes our empirical study. “Related work” summarizes the related
work of fault localization. Finally, “Conclusions and future work” concludes this article.

BACKGROUND
Statistical fault localization
Statistical fault localization technology locates faults by calculating the suspiciousness of
program statements. Jones & Harrold (2005) proposed the Tarantula technique, which
computes the suspiciousness of statements and ranks them according to the
suspiciousness. Similarly, Abreu, Zoeteweij & Van Gemund (2006) proposed another
statistical fault localization technique, Ochiai, which finds the location of the fault by

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 2/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

calculating the percentage of passing and failing tests of the executed statement.
Specifically, fault program executes test cases. According to the result of the run, it further
divides test cases into failed test cases and passed test cases. Finally, collecting the coverage
information of test cases.

Suppose a program S = {s1, s2,…,sn} with n statements. The corresponding test suite
T = {t1, t2,…,tm} consists ofm test cases. After the test cases T are executed by the program
S, we can obtain the program execution traces and the execution results. Finally, we use the
execution traces and the execution results conveniently to get a program coverage matrix
of m × n. There are a lot of approaches to statistical fault localization using the calculation
formula of suspiciousness, among which the representative ones are Tarantula (Jones,
Harrold & Stasko, 2002), Ochiai (Abreu, Zoeteweij & Van Gemund, 2007), etc.

Although there are great differences in the form of SBFL methods, the specific
construction of SBFL methods is based on some common assumptions (Steimann, Frenkel
& Abreu, 2013).

� Faulty statements may be covered by failing test cases and may be covered by passing
test cases.

� Every failed test case executes at least one fault whose execution causes the failure.

� The distribution of faults in a program cannot be predicted. The prior probability
distribution of faultiness is unknown.

� For the purpose of measuring the performance of a fault locator, we assume that upon
inspection, a programmer always recognizes a faulty statement as such.

Xie et al. (2013) summarized additional assumptions when they theoretically analyzed
the fault localization method:

� The fault localization method knows in advance how the test cases will perform in the
program.

� The test case will always produce the same running result on the program regardless of
the environment settings.

� The defective program can be 100% covered by the selected set of test cases, and contains
at least one pass test case and one failing test case available.

The research and analysis of fault localization in this article are also based on the above
assumptions.

Program slicing
Program slicing is an important program analysis and understanding technology, which
mainly analyze the data dependencies and control dependencies of the program to obtain
the relevant features inside the program (Korel & Yalamanchili, 1994). Then
understanding the entire program by analyzing the sliced program. At the same time,
program slicing can be used to remove statements unrelated to program faults to narrow
the scope of bug search, thereby reducing the cost of fault localization. Program slicing is
widely used in software fault localization research.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 3/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Control Flow Graph: Control Flow Graph (CFG) is a directed graph, represented by
CFG (N, E, Entry, Exit), where N is the set of nodes, representing program statements; E is
a set of edges that represent the control flow relationship between nodes; Entry and Exit
represent the entry and exit nodes of the program, respectively.

Program Dependence Graph: Program Dependence Graph (PDG) is a directed graph
formed by removing the control flow edge from the control flow graph CFG and adding
the control dependency and data dependency edges, which is expressed in the form of a
two-tuple PDG (S, E). Where S is the node set of CFG, E is the set of edges, and edges
represent the data dependency or control dependency between two nodes.

System Dependence Graph: System Dependence Graph (SDG), SDG = {GPDGs,
EInterpro} of multi-process program P is a directed graph. Where GPDGs is the PDG set,
and each process is represented as a PDG; EInterpro is the set of inter-procedure calling
edges and dependent edges. Data-dependent edges represent data flow between actual and
formal parameters.

The Static Slicing: Given a slicing criterion C ¼ , s;V. , where s is the interesting
points in the program and V is the set of variables. A static slice of a program P is the set of
all statements affecting the set of variables V in a point of interest s (a statement or block of
statements).

The Dynamic Slicing: Given a slicing criterion C ¼ , I; s;V. , where I is the input to
the program, the s is the interest in the program, and V is the set of variables. Based on the
input I, a dynamic slice is the set of all statements of the program P that affect the variable
set V in the point of interest s (a statement or block of statements) in this execution.

The concept of program slicing was first proposed byWeiser in his doctoral dissertation
in 1979 (Weiser, 1979). Subsequently,Weiser (1984) proposed a program slicing algorithm
based on the control flow graph equation by analyzing the data flow in the program, which
provided theoretical support for the development of program slicing technology.
Subsequently, many researchers began to pay attention to the study of program slicing
technology, and achieved some important research results. The researchers found it
difficult to establish data flow equations for multiple processes using Weiser’s method.

To solve this issue, Ottenstein & Ottenstein (1984) mapped the program statements to
the nodes of the directed graph when analyzing the dependencies between the program
statements, and added the edges of the directed graph if there were dependencies between
the statements, and finally abstracted the source program. is the program dependency
graph. Ferrante, Ottenstein & Warren (1987) implemented single-process program slicing
and proposed a graph reach ability slicing algorithm that uses program dependency graphs
to represent programs. Horwitz, Reps & Binkley (1990) implemented program slicing for
multiple processes on the basis of (Ferrante, Ottenstein & Warren, 1987), and proposed a
two-stage graph reach ability slicing algorithm using a system dependency graph.

At present, the typical program slicing algorithm is based on the data flow equation and
the graph reach ability algorithm, and other algorithms are extended or improved from
these two types of algorithms. The following briefly introduces the program slicing
algorithm based on data flow and the program slicing algorithm based on graph reach
ability.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 4/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

� Dataflow-based program slicing algorithm. The basic idea is to first calculate the control
dependencies in the program, and then according to the data flow transfer in the control
flow analysis program, iteratively construct slices by calculating the statements of the
direct and indirect dependencies of the variables. The first program slice proposed by
Weiser (1982) belongs to static backward slice, which is obtained based on the control
flow graph and through two-layer iterative data flow analysis. The first layer calculates
data dependencies, and calculates the variables that directly and indirectly depend on
the variables in the slicing criterion; the second layer calculates control dependencies, by
tracking the transferable data flow, calculating its control dependent statements,
iteratively analyzing the newly obtained statement set; finally, the desired slice is
obtained.

� Graphreach-based program slicing algorithm. The basic idea is to obtain program slices
by traversing the constructed Program Dependency Graph (PDG) or System
Dependency Graph (SDG), and finding other nodes that the program can reach from
the slicing criterion according to the dependencies. For example,Ottenstein & Ottenstein
(1984) solved intra-procedural slices using a graph reach ability algorithm with the help
of a constructed program dependency graph. Horwitz, Reps & Binkley (1990)
constructed a system dependency graph, and also implemented program slicing between
procedures on SDG using a graph reach ability algorithm.

By program slicing, all statements can be classified into correct set of statements and
suspicious set of statements. Therefore, most of the slicing-based fault location techniques
use different slices (Zhang, Gupta & Zhang, 2004), execution slices (Xu et al., 2011) to
locate faults in order to minimize the scope of suspicious statements. Singh & Mohapatra
(2018) presented a context-sensitive dynamic slicing technique for concurrent programs.
To effectively represent the concurrent aspect-oriented programs, Singh & Mohapatra
(2018) proposed an intermediate graph called the multithreaded aspect-oriented
dependence graph. Li & Orso (2020) presented a technique that computes memory-
address dependence and represents them on standard dynamic dependence graphs for
better supporting software debugging. Zhang (2021) attempted to study a light-weight
approach of static program slicing, which works as a dataflow analysis on low-level virtual
machine.

MOTIVATION
Software fault localization has a problem that the search domain is too large and the
accuracy is not high. Fault localization approaches often use dynamic slicing techniques to
narrow down the scope of the fault. However, the existing forward computing dynamic
slicing approaches (Zhang, Gupta & Zhang, 2004; Xu et al., 2011) calculate the slicing of
variables defined by the statement. These approaches take into account the slicing of all
referenced variables in the statement, rather than the slicing of the defined variable. Which
results in the redundancy of slicing results. For this reason, this article analyzes the impact
set of the defined variables, and considers the slice results of the actual reference variables
when the variables are defined, thus improving the original dynamic slicing approach (Xu

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 5/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

et al., 2011). The dynamic slicing technology reduces the scope of fault localization to a
certain extent, but the post-slice program is a collection of statements, and the elements in
the collection have no order. The tester needs to check all the statements in the slice to
locate the fault. For this purpose, our approach combined with the proposed association
analysis and sorting strategy is used to determine the priority order of statements checking,
which is used to improve the accuracy of the fault localization. The motivation for this
approach is illustrated by the following program in Fig. 1A (The fault is in s10). The
program of control flow graph follow as Fig. 1B.

For the example program in Fig. 1, we design the following eight test cases: t1(5,2,5),
t2(4,1,4), t3(−4,2,−2), t4(1,4,1), t5(1,0,−1), t6(−2,-4,1), t7(0,4,1) and t8(0,0,−1). We collect
the coverage information of their execution respectively, (original/improved) dynamic
slice information (, I, s17, r . is the slice criterion). The fault localization effect of the
Tarantula (Jones & Harrold, 2005; Jones, Harrold & Stasko, 2002) approach on coverage
information, original dynamic slice (Xu et al., 2011) and improved dynamic slice is shown
in Table 1 (“•” indicates that the statement is covered, and “○” indicates that the statement
is not covered). Column 1 is the statement number, and column 2 lists the override
information and the statement sort result calculated on the Tarantula. The fault program is
checked by the rank from small to large. Column 3 is the original dynamic slice and the
result of the statement on which Tarantula is calculated. Column 4 is the improved

Figure 1 This is a buggy program and it’s control flow graph.
Full-size DOI: 10.7717/peerj-cs.1071/fig-1

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 6/26

http://dx.doi.org/10.7717/peerj-cs.1071/fig-1
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

dynamic slice and the result of the statement on which Tarantula is calculated. T/F at the
second line from the bottom indicates that the program execution result is true (T) or
failed (F). The last line “Fault. Rank” indicates that the two approaches locate the number
of statements that need to be checked for faults. For example, “4–14” means that four
statements is examined to locate fault at the best case, and 14 statements is examined to
locate fault at the worst case.

However, the existing forward-calculated dynamic slice side (Zhang, Gupta & Zhang,
2004; Xu et al., 2011) calculates the dynamic slice of the variable m defined in the statement
s9, and contains the dynamic slice of the reference variable y, and the result is redundant.
The dynamic slice obtained by the approach in this study is more accurate, which makes
the fault localization more accurate.

As can be seen from columns 2 and 3 of Table 1, the original dynamic slice is smaller
than the scale of coverage information. For example, when t1 executes, the dynamic slice
removes irrelevant statements s11, s12 and s17. The Tarantula approach locates faults on the
original dynamic slice and improved dynamic slice, and the number of statements to check
is “3–10” and “3–9”, respectively. It can be seen that dynamic slicing improves the accuracy
of fault localization. As can be seen from the third and fourth columns, the improved
dynamic slice is smaller than the original dynamic slice size. For example, when t1 is
executed, the improved dynamic slice removes the irrelevant statement s7. The reason for
this is that the actual reference variable of the defined variable is considered, and the slice

Table 1 Ranking results between original dynamic slicing and improved dynamic slicing.

Statement Original dynamic slice Improved dynamic slice

t1 t2 t3 t4 t5 t6 t7 t8 Tarantula t1 t2 t3 t4 t5 t6 t7 t8 Tarantula

s1 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s2 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s3 ∙ ∙ ∘ ∙ ∘ ∙ ∙ ∘ 2 ∙ ∙ ∘ ∙ ∘ ∙ ∙ ∘ 2

s4 ∘ ∘ ∙ ∘ ∙ ∘ ∘ ∙ 11 ∘ ∘ ∙ ∘ ∙ ∘ ∘ ∙ 10

s6 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s7 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∘ ∘ ∙ ∘ ∙ ∘ ∘ ∙ 10

s8 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s9 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s10(f) ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s11 ∘ ∘ ∙ ∘ ∙ ∙ ∘ ∙ 12 ∘ ∘ ∙ ∘ ∙ ∙ ∘ ∙ 12

s12 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
s13 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
s14 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 3

s15 ∙ ∙ ∘ ∙ ∘ ∘ ∙ ∘ 1 ∙ ∙ ∘ ∙ ∘ ∘ ∙ ∘ 1

s16 ∘ ∘ ∙ ∘ ∙ ∙ ∘ ∙ 12 ∘ ∘ ∙ ∘ ∙ ∙ ∘ ∙ 12

s17 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
T/F F F F T T T T T F F F T T T T T

Fault.Rank 3–10 3–9

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 7/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

of the unrelated variable y is removed to reduce the slice size. The Tarantula approach
needs to check “3–9” statements to locate faults on the improved dynamic slice, which
shows that the improved dynamic slice further improves the accuracy of fault localization
compared with the original dynamic slice.

OUR APPROACH
In this section, we present an improved dynamic slicing for fault localization. Our
approach collects the dynamic slice information of program execution. Next, we construct
a mixed slice spectrum matrix from the dynamic slice information of each test case
execution and the corresponding test results. Finally, we compute the suspiciousness
ranking of each statement in the mixed slice spectrum matrix. The framework of our
approach is shown in Fig. 2.

The improved dynamic slicing
Dynamic slicing is an effective debugging technique, which has been widely used in fault
localization. When program execution results in a fault output or exception, the debugger
usually wants to quickly ascertain the range of possible fault statements. By calculating the
backward dynamic slice of the fault output statement, the dynamic slice can narrow the
range of fault localization. Compared with the backward calculation, after the occurrence
of the fault, the forward approach can generate a dynamic slice, which is according to the
direct dynamic dependency of bug output statement. The forward approach does not need
to traverse the dynamic dependency in the back, so it can calculate the dynamic slice result
more quickly when a program runs incorrectly.

Dynamic slicing technology (Korel & Yalamanchili, 1994) reduces the fault search scope
by removing statements that are not related to program faults. However, less consideration
is given to variables actually referenced in variable definition during dynamic slice
calculation, which results in the inclusion of slices of some unrelated variables and the
redundancy of slice results. Therefore, we propose a dynamic slicing approach, which is
based on the defined variable influence set. When calculating dynamic slicing, this
approach finds out the variables actually referenced by the current variable at the time of
definition and excludes the unreferenced variables, in order to get more accurate dynamic
slicing.

Figure 2 The framework of our approach. Full-size DOI: 10.7717/peerj-cs.1071/fig-2

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 8/26

http://dx.doi.org/10.7717/peerj-cs.1071/fig-2
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Therefore, the forward calculation approach is used to calculate the program’s dynamic
slicing, and the influence set analysis of the defined variables is carried out to improve the
slicing accuracy, and the obtained dynamic slicing results are used for fault localization.
The forward calculation method obtains the dynamic slice of interest points in the
program through the direct dynamic dependencies of the interest points in the program.
This method needs to maintain the slice results of each execution instance of the program
(Korel & Yalamanchili, 1994; Zhang, Gupta & Zhang, 2004). The forward calculation
method can generate a dynamic slice of the fault output statement according to the direct
dynamic dependency of the fault output statement after an error occurs, and does not need
to traverse the dynamic dependency backward. When the program fails so the dynamic
slice result can be calculated more quickly. The following are the relevant definitions.

Definition1. Influence set Influence[v]. For a given statement s, the variable v 2 De f ½s�,
the influence set Influence[v]= {v′| The v′ is the variabl e actually referenced when v is
defined, v0 2 U se½s�}. Where, the definition set Def[s] is the set of variables defined in
statement s, and the reference set Use[s] is the set of variables referenced in statement s.

In this section, the influence set analysis is performed on the defined variables to remove
irrelevant variables in order to reduce the redundancy of the slicing results.

Definition2. Hybrid Slicing Spectrum Matrix (HSSM). For a program P consisting of n
statements s and a given m test cases, each execution of the test case yields a dynamic slice
(slice) and the corresponding execution result. The mixed slice spectrum matrix is a two-
dimensional matrix composed of multiple dynamic slices and execution results.

HSSM ¼ Mm�nNm�1½ � 8aij 2 Mm�n; 8bij 2 Nm�1 (1)

aij ¼ 1 s 2 slice
0 s =2 slice

1 � i � m; 1 � j � n

�
(2)

bij ¼ T true
F failed

1 � i � m; j ¼ nþ 1

�
(3)

This hybrid slice spectrum matrix uses the program dynamic slice information to
extend the program coverage information and combines it with the corresponding
program execution results to generate the hybrid slice spectrum matrix.

Program slicing can extract a set of statements from a program according to a certain
slicing criterion, we use the fault-related criteria of failed runs by program slicing to collect
the slices. Our approach computes the slices according to the Program Dependence Graph
(PDG) and the slice of statements with a forward computing algorithm. Algorithm 1
describes the forward computing dynamic slicing algorithm based on the influence set of
defined variables. Algorithm 1 takes as input the current execution instance si, current
execution method call statement (call), dynamic control dependency of si (dynCD si½ �),
dynamic data dependence of si (dynDD si½ �) and slice of predicate pre (slicePred). The final
output is the statement s refers to the dynamic slice of the variable use and the statement s
defines the dynamic slice of the variable def. Lines 1–3 calculate the dynamic slice[use] of
the variable use in the reference set Use[s] of statement s. dynDD si½ � obtains a dynamic slice
[use] of the referenced variable based on the dynamic data dependency of the current

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 9/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

execution instance si. Lines 4–10 calculate the influence set of the defined variable def
according to definition 1: Influence[def]. Lines 11–18 compute the dynamic slice[def] of the
variable def in the definition set of Def[s]. Line 11 executes the dynamic control
dependency dynCD si½ � of the instance si to get the slicePred of the control dependent
predicate pred. Lines 12–18 calculate the dynamic slice slice[def] of the defined variable,
which is consist of four parts: the current execution statement s, the call statement call, the
control dependent predicate slice slicePred, and the slice of the variables influence in the
defined variable influence set Influence[def].

Fault localization
Dynamic slicing of programs can narrow the search for software fault localization by
obtaining statements related to the slicing criterion. Then, we compute the suspiciousness
of entities in the dynamic slice by the formulas of fault localization to generate a fault

Algorithm 1 Dynamic slicing algorithm based on the influence set of defined variables.

Require: si // Current execution instance

call // Current execution method call statement

dynCD½si� // Dynamic control dependency of si

dynDD½si� // Dynamic data dependency of si

slicePred // Slice of predicate Pred

Ensure: slice[use] // The statement s refers to the dynamic slice of the variable use

slice[def] // Statement s defines the dynamic slice of the variable def

1: for each use 2 Use[s] do

2: find slice[use] by dynDD½si�;
3: end for

4: for each def 2 Def [s] do

5: Influence[def] = {};

6: for each use 2 Use[s] do

7: if use affect the value of def

8: then add use to Influence[def]

9: end for

10: end for

11: find slicePred by dynCD½si�;
12: for each def ∈ Def [s] do

13: slice_T = { s, call } [slicePred;

14: for each influence ∈ Influence[def] do

15: slice_T = { s, call } [slice[influence];

16: end for

17: slice[def] = slice_T;

18: end for

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 10/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

localization report. For passed tests and failed tests, more uncovered entities with passing
executions and covered entities with failed executions should be assigned a higher degree
of suspiciousness. Moreover, the covered entities by more passed executions and the
uncovered entities by the failed executions should be assigned a lower suspiciousness.
Therefore, the number of covered entities should have more weight than the number of
uncovered entities in the suspiciousness calculation. Over the past few decades, dozens of
doubtful formulas have been proposed and evaluated through empirical research. In our
approach, we apply Tarantula (Jones & Harrold, 2005; Jones, Harrold & Stasko, 2002),
Naish1 (Naish, Lee & Ramamohanarao, 2011), GP02 (Yoo, 2012), Ochiai (Abreu,
Zoeteweij & Van Gemund, 2007), Jaccard (Chen et al., 2002) and GP13 (Yoo, 2012) to
generate statement checking ranking based on coverage information. The suspiciousness
value formulas of Tarantula, Naish1, GP02, Ochiai, Jaccard and GP13 as follows.

TarantulaðsÞ ¼ nef ðsÞ=nf
nef ðsÞ=nf þ nepðsÞ=np (4)

Naish1ðsÞ ¼ �1 nef ðsÞ, nf
np � nepðsÞ nef ðsÞ ¼ nf

�
(5)

GP02ðsÞ ¼ 2 nef ðsÞ þ ffiffiffiffiffi
np

p þ
ffiffiffiffiffiffiffiffiffiffi
nepðs

q� ��
(6)

OchiaiðsÞ ¼ nef ðsÞffi
nf � nef ðsÞ þ nepðsÞ

� �q (7)

JaccardðsÞ ¼ nef ðsÞ
nf þ nepðsÞ (8)

GP13ðsÞ ¼ nef ðsÞ � 1þ 1
2nef ðsÞ þ 2nepðsÞ

� 	
(9)

where, nf and np denote the number of failed and passed test cases respectively. nnf ðsÞ and
nnpðsÞ denote the number of failed and passed test cases that are not covered entities. nef ðsÞ
and nepðsÞ denote the number of failed and passed test cases that are covered entities.
The coverage information of the entity, we can get the corresponding suspiciousness of the
entity through the suspiciousness formula.

EMPIRICAL STUDY
To verify the effectiveness of our approach, we compare our approach with both the
original dynamic slice and ADBS on the fault localization. Lyle (1985) proposed the debug
based on program slicing. The data and/or control dependencies of program entities have
been obtained by program slicing, which has been used to improve the effectiveness of fault
localization. The approximate dynamic backward slicing (ADBS) approach has been
presented by Lei et al. (2012). The ADBS approach computes the statements in the
intersection of the static backward slice and the set of execution slices to improve the
effectiveness of fault localization. In this experiment, we employ six formulas (i.e.,
Tarantula, Naish1, GP02, Ochiai, Jaccard, and GP13) and compare our approach and
other approaches using the same evaluation formula, respectively. For example, Tarantula

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 11/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

is applied to the original dynamic slice for locating faults, which is denoted as D-Tarantula;
Tarantula is applied to the improved dynamic slice to locate faults, which is denoted as
DS-Tarantula. Whereas, Tarantula is applied to ADBS to locate faults, which is denoted as
ADBS-Tarantula.

Experiment subjects
In this Section, 15 Java programs are selected as the benchmark for testing, and the detailed
description is shown in Table 2. Where columns 1–3 are the program name, description
and lines of code (excluding blank lines and comment lines), and columns 4 and 5 are the
number of fault versions and test cases used in the experiment. The first six programs in
the table are the Siemens Test Suite. Siemens Suite (except jtcas) is a program that converts
a C version to a Java version by Santelices et al. Jtcas, Nanoxml, and XML-security with the
corresponding test cases are all derived from SIR (Do, Elbaum & Rothermel, 2005). The
latter three projects JFreeChar, Joda-Time and Mockito are from the Defects4J library
(Just, Jalali & Ernst, 2014). The numbers of executable lines of all the subjects are ranging
from hundreds of lines to tens of thousands of lines. This allows us to evaluate across a very
broad spectrum of programs and allows us to have more confidence in the ability to
generalize our results.

Our approach applied to single-bug version programs to locate fault. We removed two
versions with no test case execution failure and eight versions with multiple faults from the
41 fault versions of jtcas, and selected the remaining 31 versions for testing. We randomly
selected 10 of the 23 incorrect versions of the tot info program for testing, and selected
nine fault versions of schedule. Selected 8 of the 10 fault versions of Schedule2 to test,
removed the v4 version (fault is to remove the comment statement at 350 lines) and the v6
version with multiple faults. Test with seven fault versions of print tokens and five fault

Table 2 Subject programs.

Procedure Description Lines of code Number of versions Number of test cases Fault type

jtcas Collision avoidance procedure 165 31 1,608 seeded

tot_info Data statistics program 283 10 1,052 seeded

schedule Priority scheduler 290 9 2,650 seeded

schedule2 Priority scheduler 317 8 2,710 seeded

print_tokens Lexical analyzer 478 7 4,130 seeded

print_tokens2 Lexical analyzer 410 5 4,115 seeded

NanoXML v1 XML parser 3,497 7 214 real

NanoXML v2 XML parser 4,009 6 214 real

NanoXML v3 XML parser 4,608 8 216 real

NanoXML v5 XML parser 4,782 7 216 real

XML-sec v1 XML encryptor 21,613 7 92 real

XML-sec v2 XML encryptor 22,318 5 94 real

JFreeChart Chart library 96,300 26 2,205 real

Joda-time Time library 28,400 25 4,130 real

Mockito Unit test framework 23,000 36 1,366 real

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 12/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

versions of print tokens2. In addition, a total of 28 fault versions of NanoXML and 12 fault
versions of XML-security (abbreviated XML-sec) were selected for testing. In Defects4J,
the part of the fault version of the program does not output a fault. We removed the v2 and
v19 version of Time, and selected the remaining 25 versions for testing. We removed the v6
and v10 version of Mockito, and selected the remaining 36 versions for testing. Finally, we
tested 197 single-fault versions of programs.

As shown in fourth column of Table 2, in the first six programs, all the faults were
manually seeded by other researchers and the considered fault types include predicate
based fault and assignment based fault. All creation faults are semantic bugs that do not
incur crashes. These creation faults have been shown to simulate realistic faults well and
provide reliable, trustworthy results. The latter nine projects have the real faults. Also
packaged with each of these programs was a set of test cases and faulty versions. For all of
our subject programs, any faulty versions that did not lead to at least one test case failure in
our execution environment were excluded. In this way, we assure that each fault examined
would be revealed by at least one test case.

Evaluation metrics
In order to evaluate the effectiveness of various fault localization approaches, we use the
following four criteria to evaluate the effectiveness from different perspectives.

Cumulative Number of Statements Examined: The number of cumulative examined
statements for each program is the number of total statements that need to be checked
when m faults are located in m fault versions. For m fault versions of any given program, M
(i) and N(i) represent the number of statements that need to be checked when approach M

and approach N locate a fault. If
Pn
i¼1

MðiÞ < Pn
i¼1

NðiÞ, it indicates that the approach M is

more effective than the approach N.
Cost Score: Cost criterion is to evaluate the effectiveness of fault localization from the

perspective of relative index, which was first proposed by Renieres & Reiss (2003). Cost is
the ratio of the percentage of the number of statements (Rank of faults) that need be
examined to the total number of all executable statements when finding errors in the
program version in, as shown in Eq. (10).

cost ¼ Rank of faults
Number of executable statements

� 100% (10)

Because the faulty statement may share the same suspiciousness with others, the
programmer might need to examine only one of these statements fortunately (best cases)
or to examine all these statements to locate the real fault unfortunately (worst cases) (Jones
& Harrold, 2005). In the experiments, we obtain the average fault-localization costs per
subject by the best fault-localization costs per subject and the worst fault-localization costs
per subject. Finally, we use the average fault-localization costs as an evaluation indicator.

EXAM Score: To more intuitively compare the effectiveness of different approaches, we
also use EXAM indicators for evaluation. The EXAM indicator is the ratio of the fault

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 13/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

detection rate (% of faults located) to the code examined rate (% of code examined)
(Renieres & Reiss, 2003), as shown in Eq. (11).

EXAM ¼ % of fault located
% of code examined

(11)

In the early research, Renieres & Reiss (2003) used the test score EXAM to evaluate the
efficiency of fault localization. Jones, Harrold & Stasko (2002) also used this benchmark to
compare the efficiency of the fault localization approaches. In the effectiveness of the
evaluation in locating fault, the higher the suspicious score is, the better effectiveness fault
localization is.

Recall at Top-N: This dependent variable measures the number of faults with at least
one faulty element within Top-N in the ranked list. This metric emphasizes earlier fault
detection and has been widely used in fault localization work (Le, Oentaryo & Lo, 2015).
Kochhar et al. (2016) reported that developers usually only inspect top-ranked program
elements during fault localization. Therefore, following prior work, we use Top-N (N = 5,
10, 20, 30) in our experimental study.

DATA ANALYSIS
Experiments using the cumulative number of statements examined
We can observe the cumulative number of statements examined between our technique
and the original dynamic slice in Table 3. The improved dynamic slices contributed to the
improvement of the accuracy in locating faults. From the comparison of Table 3, for each
program, the cumulative number of statements examined by the improved dynamic slice is
smaller than the original dynamic slice on five techniques (Tarantula, Nasish1, GP02,

Table 3 The cumulative number of statements examined between improved and original dynamic slicing.

Subject Tarantula Naish1 GP02 Ochiai Jaccard GP13

D DS ADBS D DS ADBS D DS ADBS D DS ADBS D DS ADBS D DS ADBS

jtcas 555 490 538 483 382 423 550 425 467 526 460 501 531 465 505 552 446 486

tot_info 450 260 323 450 276 349 480 280 363 399 202 295 407 208 291 499 279 362

schedule 165 150 205 145 140 295 200 162 318 136 119 274 222 205 359 203 173 327

schedule2 597 159 321 501 210 272 525 216 288 601 165 227 651 222 274 538 221 273

print_tokens 404 182 195 289 159 176 320 129 143 352 133 146 316 126 138 331 143 155

print_tokens2 400 211 395 421 216 405 408 184 378 376 184 358 212 158 342 419 192 366

NanoXML v1 1,560 1,350 1,670 1,250 1,101 1,491 1,501 1,208 1,529 1,473 1,269 1,579 1,527 1,323 1,634 1,512 1,309 1,619

NanoXML v2 990 820 1,247 810 762 1,139 880 792 1,229 898 729 1,166 888 719 1,166 881 802 1,239

NanoXML v3 2,221 1,906 1,990 1,561 1,401 1,475 1,800 1,445 1,539 2,002 1,687 1,770 1,641 1,425 1,509 1,811 1,603 1,686

NanoXML v5 2,632 2,100 2,358 2,128 1,629 1,867 2,100 1,922 2,181 2,473 1,946 2,194 2,353 1,826 2,084 2,104 2,006 2,254

XML-sec v1 3,101 2,200 2,539 2,601 2,400 2,739 2,100 1,901 2,250 2,914 2,015 2,353 2,752 1,953 2,292 2,103 2,038 2,376

XML-sec v2 2,150 1,702 2,055 2,201 1,938 2,292 2,108 2,015 2,368 2,057 1,609 1,952 1,974 1,626 1,979 2,112 2,010 2,353

JFreeChart 43,622 43,219 44,497 42,094 41,903 41,869 42,085 41,954 42,013 42,816 42,413 43,497 43,061 42,567 42,161 42,107 42,065 42,095

Joda-Time 25,156 24,934 24,952 23,052 22,831 22,930 25,114 24,959 24,851 24,363 24,143 24,063 25,024 24,917 24,524 25,139 25,060 25,117

Mockito 11,236 10,970 11,141 10,373 10,186 10,247 11,001 10,843 15,673 11,007 10,736 11,001 10,391 10,220 10,410 11,092 10,954 11,461

Cumulative 95,239 90,653 94,426 88,359 85,534 87,969 91,172 88,435 95,590 92,393 87,810 91,376 91,950 87,960 89,668 91,403 89,301 92,169

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 14/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Ochiai, Jaccard, and GP13). For example, on the most popular Ochiai the number of
examined statements by the improved dynamic slices to locate faults for jtcas program was
reduced by 66 than the original dynamic slice, similarly, the number of examined
statements for tot info programs was reduced by 197. In the last row of Table 3, Total
Cumulatives, the total number of statements for the overall topic that each method needs
to examine is stated. We can also observe that DS-Naish1 performs best and has only
85,534 total check statements, which is much less expensive than all the comparison
techniques over 15,000 lines.

Furthermore, we can observe the cumulative number of statements examined between
our technique and ADBS in Table 3. The improved dynamic slices better than ADBS in
locating faults. From the comparison of Table 3, for each program, the cumulative number
of statements examined by the improved dynamic slice is smaller than ADBS on six
techniques (Tarantula, Nasish1, GP02, Ochiai, Jaccard, and GP13). For example, on the
most popular Ochiai the number of examined statements by the improved dynamic slices
to locate faults for jtcas program was reduced by 41 than ADBS, similarly, the number of
examined statements for tot info programs was reduced by 93. In the last row of Table 3,
Total Cumulatives, we can also observe that our approach performs better than ADBS in
all formula. Therefore, it is clear that our proposed technique improves the effectiveness of
fault localization.

Experiments using the average cost metric
As shown in Table 4, we compare the average cost of fault localization our method and the
original dynamic slice on each topic. From Table 4, we can observe that for all subjects, the
average cost of fault localization of our method is much smaller than that of the original
dynamic slice. The last row of Table 4 illustrates the average cost across all topics for each
technique. It shows that, for all subjects, the average cost of our improved dynamic slice is
less than that of original dynamic slice on Tarantula, Naish1, GP02, Ochiai, Jaccard and
GP13 which are 5.09%, 4.79%, 4.87%, 4.53%, 4.76% and 5.08%, respectively. Furthermore,
the cost of DS-Tarantula is much smaller than that of D-Tarantula on schedule2, which is
6.27%, whereas the cost of DS-GP02 is much smaller than that of D-GP02 on schedule2,
which is 8.52%.

Than, we compare the average cost of fault localization our method and ADBS on each
topic, as shown in Table 4. The last row of Table illustrates the average cost across all topics
for each technique. From Table 4, we can observe that for all subjects, the average cost of
fault localization of our method is smaller than that of ADBS. Furthermore, the cost of DS-
Tarantula is smaller than that of ADBS-Tarantula on JFreeChart, which is 1.73%, whereas
the cost of DS-Ochiai is smaller than that of ADBS-Ochiai on JFreeChart, which is 1.17%.
That is to say, our approach is actually more effective than the original dynamic slice and
ADBS in the experiments.

Experiments using EXAM metric
Additionally, to more intuitively show the improvement of our approach over the
compared techniques, we use the Exam metric to evaluate the effectiveness. As shown in

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 15/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Fig. 3, the horizontal coordinate indicates the code examined rate and the vertical
coordinate indicates faults located rate. For the same code examined rate, a higher
percentage of faults located rate means more effective. In Fig. 3, shows that the line of the
improved dynamic slice technique is always beyond the line of the original dynamic slice
and ADBS techniques, which indicates that DS-Tarantula, DS-Naish1, DS-GP02, DS-
Ochiai, DS-Jaccard and DS-GP13 outperform the original and ADBS approaches in the
effectiveness of fault localization. Jones & Harrold (2005); Jones, Harrold & Stasko (2002)
concluded that the lower code examined rates better reflects the effectiveness of fault
localization approaches. In this article, we compare the percentage of faults located by
different approaches with 20% code examined rate. The faults located rate of DS-Tarantula
is 85.26% compared to 68.98% of D-Tarantula and 64.06% of ADBS-Tarantula. DS-Naish1
is 88.24% compared to 61.73% of D-Naish1 and 63.70% of ADBS-Naish1. DS-GP02 is
87.10% compared to 50.12% of D-GP02 and 62.12% of ADBS-GP02. DS-Ochiai is
85.19% compared to 68.21% of D-Ochiai and 69.20% of ADBS-Ochiai. DS-Jaccard is
81.53% compared to 67.94% of D-Jaccard and 67.19% of ADBS-Jaccard. DS-GP13 is
86.26% compared to 66.97% of D-GP13 and 69.61% of ADBS-GP13. This improvement in
the accuracy of fault localization is mainly due to the improved dynamic slice to narrow
down the range of fault localization. It can be obviously seen that our technique has
improved the accuracy of fault localization than these compared techniques.

Experiments using Top-N metric
As shown in Table 5, Five metrics (Top-5, Top-10, Top-20, Top-30) are used to verify the
accuracy and effectiveness of the D-SBFL, DS-SBFL, and ADBS-SBFL approaches.

Table 4 Average cost comparison between improved and original dynamic slicing.

Subject Tarantula Naish1 GP02 Ochiai Jaccard GP13

D
(%)

DS
(%)

ADBS
(%)

D
(%)

DS
(%)

ADBS
(%)

D
(%)

DS
(%)

ADBS
(%)

D
(%)

DS
(%)

ADBS
(%)

D
(%)

DS
(%)

ADBS
(%)

D
(%)

DS
(%)

ADBS
(%)

jtcas 10.85 9.58 10.52 9.44 7.47 8.27 10.75 8.31 9.13 10.28 8.99 9.79 10.38 9.09 9.87 10.79 8.72 9.50

tot_info 15.90 9.19 11.41 15.90 9.75 12.33 16.96 9.89 12.83 14.10 7.14 10.42 14.38 7.35 10.28 17.63 9.86 12.79

schedule 6.32 5.75 7.85 5.56 5.36 11.30 7.66 6.21 12.18 5.21 4.56 10.50 8.51 7.85 13.75 7.78 6.63 12.53

schedule2 23.54 6.27 12.66 19.76 8.28 10.73 20.70 8.52 11.36 23.70 6.51 8.95 25.67 8.75 10.80 21.21 8.71 10.76

print_tokens 12.07 5.44 5.83 8.64 4.75 5.26 9.56 3.86 4.27 10.50 3.97 4.36 9.44 2.36 4.12 9.89 4.27 4.63

print_tokens2 19.51 10.29 19.27 20.54 10.54 19.76 19.90 8.98 18.44 18.34 8.98 17.46 10.34 7.31 16.68 2.04 9.37 17.85

NanoXML v1 6.37 5.51 6.82 5.11 4.50 6.09 6.13 4.93 6.25 6.02 5.18 6.45 6.24 5.42 6.68 6.18 5.35 6.61

NanoXML v2 4.12 3.41 5.18 3.37 3.17 4.74 3.66 3.29 5.11 3.73 3.03 4.85 3.69 3.16 4.85 3.66 3.33 5.15

NanoXML v3 6.02 5.17 5.40 4.23 3.80 4.00 4.88 3.92 4.17 5.43 4.58 4.80 4.45 4.32 4.09 4.91 4.35 4.57

NanoXML v5 7.86 6.27 7.04 6.36 4.87 5.58 6.27 5.74 6.52 7.39 5.81 6.55 7.03 5.80 6.23 6.29 5.99 6.73

XML-sec v1 2.05 1.45 1.68 1.72 1.59 1.81 1.39 1.26 1.49 1.93 1.33 1.56 1.82 1.35 1.51 1.39 1.34 1.57

XML-sec v2 1.80 1.43 1.84 1.84 1.62 2.05 1.77 1.69 2.12 1.84 1.44 1.75 1.77 1.30 1.77 1.89 1.80 2.11

JFreeChart 1.74 1.73 1.78 1.68 1.67 1.67 1.68 1.67 1.68 1.71 1.17 1.74 1.72 1.92 1.68 1.68 1.68 1.68

Joda-Time 3.54 3.51 3.51 3.25 3.21 3.23 3.54 3.52 3.50 3.43 3.40 3.39 3.52 3.28 3.45 3.54 3.53 3.54

Mockito 1.36 1.32 1.35 1.25 1.23 1.24 1.33 1.31 1.89 1.32 1.30 1.33 1.25 1.29 1.26 1.34 1.32 1.38

Average cost 8.20 5.09 6.81 7.24 4.79 6.54 7.75 4.87 6.73 7.66 4.53 6.26 7.35 4.76 6.47 7.91 5.08 6.76

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 16/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Specifically, there are 24 programs that DS-Tarantula succeeds in locating all faults by
considering only the top five positions in ranked lists. When considering only the top five
positions in the ranking list, DS-Naish1, DS-GP02, DS-Ochiai, DS-Jaccard13, and
DS-GP13 locate 21, 9, 19, 5, and 19 programs, respectively. Moreover, the number of
programs in which all faults are successfully located by DS-SBFL is always more than the
others when using the other three Top- N metrics. Figure 4 shows that DS-SBFL

Figure 3 EXAM score-based comparison between original, improved and ADBS dynamic slicing.
Full-size DOI: 10.7717/peerj-cs.1071/fig-3

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 17/26

http://dx.doi.org/10.7717/peerj-cs.1071/fig-3
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

outperforms other baseline approaches in locating all faults when using four Top-N
metrics in a more intuitive way.

The comparison of time cost
In this section, we evaluate the time cost of the improved slice, the ADBS slice, and the
original slice fault localization using the tarantula formula. As shown in Table 6, the time

Table 5 Number of programs that all faults are successfully located.

Techniques Top-5 Top-10 Top-20 Top-30

Tarantula D 16 29 41 60

DS 24 33 53 71

ADBS 19 27 46 64

Naish1 D 11 17 30 45

DS 21 29 41 63

ADBS 14 20 39 55

GP02 D 4 13 29 49

DS 9 17 35 57

ADBS 6 14 30 51

Ochiai D 13 23 32 57

DS 19 26 42 59

ADBS 15 21 36 53

Jaccard D 2 10 18 35

DS 5 13 21 47

ADBS 3 14 21 40

GP13 D 15 28 29 51

DS 19 31 47 66

ADBS 17 29 34 63

Figure 4 Experiments of locating all faults. Five metrics (Top-5, Top-10, Top-20, Top-30) are used to
test the three slicing approaches. Full-size DOI: 10.7717/peerj-cs.1071/fig-4

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 18/26

http://dx.doi.org/10.7717/peerj-cs.1071/fig-4
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

comparison between the improved slice, the ADBS slice, and the original slice fault
localization method when running all fault versions on each test program. Column 2
“Collecting slice” represents the time to build slice information and collect coverage
information on all test cases, the unit is second (s); Column 3 “Computing suspiciousness”
represents The time of the calculation of suspiciousness; Column 4 “Total” represents the
total time cost. From the data in column 2, the time of the computing slice based on the
original slice is slightly longer than that of the improved slice. As can be seen from the last
column of Table 6, the total time of improved slice-based fault localization is shorter than
the original slice-based fault localization methods, and the difference between the
improved slice and the ADBS slice is small in time overhead.

Threats to validity
In this subsection, we discuss the potential threats to the validity of our empirical study.

Threats to external validity are about whether the observed experimental results can be
generalized to other subjects. To guarantee the representativeness, we choose a large
number of programs from the widely used Simens, Linux, and Defects4J suites. Our
experiments consider both C and Java programs and include both seeded and real bugs.
We realize that there is no perfect empirical study and there must be some tricky programs
and bugs not considered in our experiments. We plan to enlarge our subjects in our future
work.

The internal validity of this work lies in the accuracy of the slicing result computed by
our approach. To avoid faults in our tool implementation, we prepared our data carefully
and tested our approach with simple programs.

Table 6 The comparison of time cost.

Subject Collecting slice Computing suspiciousness Total time

D.(s) DS.(s) ADBS.(S) D.(s) DS.(s) ADBS.(S) D.(s) DS.(s) ADBS.(S)

jtcas 5,110.94 4,800.02 4,813.56 146.56 125.03 141.57 5,257.5 4,925.05 4,955.13

tot_info 2,220.83 1,425.68 1,450.22 95.14 86.09 100.63 2,315.97 1,511.77 1,550.85

schedule 9,468.51 8,345.56 8,135.97 513.45 406.68 425.22 9,981.96 8,752.24 8,561.19

schedule2 26,944.5 24,350.5 24,360 2,655.59 2,531.24 2,550.78 29,600.08 26,881.7 26,910.77

print_tokens 26,491.7 26,355.3 26,377 1,510.36 1,236.16 1,224.62 28,002.04 27,591.5 27,601.63

print_tokens2 53,241.4 52,194.2 52,220.8 3,619.67 3,100.45 3,126.99 56,861.05 55,294.7 55,347.76

NanoXML v1 3,492.15 2,528.91 2,575.92 92.03 90.08 127.09 3,584.18 2,618.99 2,703.01

NanoXML v2 3,146.44 2,304.12 2,358.76 103.52 101.09 125.73 3,249.96 2,405.21 2,484.49

NanoXML v3 2,943.91 2,297.41 2,335.8 97.75 96.05 134.53 3,041.66 2,393.46 2,470.33

NanoXML v5 3,377.48 2,460.32 2,391.5 99.47 99.1 106.77 3,476.95 2,559.42 2,498.27

XML-sec v1 5,504.21 4,402.19 4,430.57 194.35 189.12 175.93 5,698.56 4,591.31 4,606.5

XML-sec v2 5,948.46 4,607.22 4,517.89 202.29 195.02 205.69 6,150.75 4,802.24 4,723.58

JFreeChart 2,864.79 2,102.08 1,924.31 133.92 127.58 149.81 2,998.71 2,229.66 2,074.12

Joda-time 9,132.39 8,423.33 8,417.83 472.34 458.19 474.52 9,604.73 8,881.52 8,892.35

Mockito 8,537.62 7,429.6 7,462.94 591.53 589.6 622.94 9,129.15 8,019.2 8,085.88

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 19/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Threats to construct validity are about whether the performance metrics used in the
empirical studies reflect the real-world situation. In the experiment, we used the
cumulative number of statements examined, Cost, EXAM, and Top-N other indicators.
We realize some indicators were not considered in our experiments. Therefore, using more
widely metrics is our future work.

RELATED WORK
Slicing-based fault localization techniques
After Weiser (1982) first proposed program slicing for fault localization. Researchers have
proposed various fault localization methods based on program slicing methods. The first
type of method is that the program slicing results are directly used for fault localization.
For example, Zhang et al. (2005) proposed a dynamic slicing-based fault localization
method, which used forward computation to calculate and compare the fault localization
effects of data slicing, full slicing and correlation slicing, and experimentally proved that
the fault localization effects of full slicing and correlation slicing are better. Jiang et al.
(2012) used the application slicing technique to locate null pointer exceptions by
combining real-time stack information and performing null pointer and alias analysis on
sliced programs. The second type of method is the combination of program slicing and
program spectrum methods for fault localization. For example, Wen et al. (2011) used
dynamic slicing to extract dependencies between program elements, reduce program
execution traces, and then constructed a Tarantula-like formula to count statement
suspiciousness on statement spectrum information. Alves et al. (2011) used dynamic slicing
and modification impact analysis to improve the efficiency of Tarantula’s fault localization.
In contrast to the literature (Wen et al., 2011; Alves et al., 2011), this article uses an
improved dynamic slicing technique to improve the dynamic slicing. Yu et al. (2011) used
the Tarantula formula to generate the priority order of suspiciousness statements based on
coverage information and static control flow graphs. Yu et al. (2011) constructed the
execution flow graph based on coverage information and static control flow graphs to
obtain semi-dynamic slicing. Lei et al. (2012) used the intersection of static backward
slicing and execution slicing to form an approximated dynamic slice, and then counted the
suspiciousness of the statements. Ghosh & Singh (2021a) presented using context-sensitive
slicing to reduce time and be more precise for spectrum fault localization.

Spectrum-based fault localization approaches
Spectrum-based tuning is one of the most popular tuning techniques in the automated
tuning process. The spectral information of program execution is used to calculate the
suspiciousness of each statement (Yoo, 2012), Ochiai (Abreu, Zoeteweij & Van Gemund,
2007), Jaccard (Chen et al., 2002). The goal of all these methods is to assign the flawed
statement the highest possible suspect value and the correct one the lowest possible suspect
value. Suspiciousness ranking can help programmers save debugging time (Naish, Lee &
Ramamohanarao, 2011). Renieres & Reiss (2003) proposed the nearest neighbor query

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 20/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

error localization method. The method assumes that there is one failed run and multiple
successful runs, and uses the distance metric method to count the most similar program
spectrum from the successful run to the failed run, compare the differences, remove the
statements executed by both failed and successful runs, and generate error locations
Report. By constructing N-length execution sequences, Nessa et al. (2008) used statistical
information association to mine the association between N-length execution subsequences
and execution results, and then proposed an error localization method combining N-
length sequences and association rules. Ribeiro et al. (2018) proposed a spectrum-based
Java program fault location tool JAGUAR. It relies on data flow strategies for fault location
and visualization of suspicious statement lists. Zhang et al. (2017) proposed a PageRank-
based fault location, which uses the PageRank algorithm to improve the technique of
spectrum-based fault location. Wong et al. (2013) proposed DStar, a technique that
computes a suspiciousness score for each program statement. DStar is a well-known
statistical formula used in SBFL techniques to reveal problematic statements. Xiaobo et al.
(2021) proposed an entropy-based framework Efilter to filter unlabeled test cases,
constructing a sentence-based entropy and a test-suite-based entropy to measure the
localization uncertainty of a given test suite. To improve the effectiveness of fault
localization, Wang, Wu & Liu (2021) used a clustering-based technique to identify
coincidentally correct test cases from passed test suites and empirically quantified the
accuracy of identifying coincidentally correct test cases to assess its effectiveness. A
framework for fault localization using a multivariate logistic regression model that
combines static and dynamic features collected from the program being debugged by Ju
et al. (2020). Ghosh & Singh (2021b) proposed an automated framework using chaos-based
genetic algorithm for multi-fault localization based on SBFL technique.

In SBFL, ranking is based solely on the suspiciousness score of each element. Elements
with high scores are placed at the beginning of the list, and elements with low scores are
placed at the bottom. Heiden et al. (2019) argue that the SBFL technique only exploits the
program spectrum as an abstraction for program execution without considering any other
useful contextual information. Vancsics et al. (2021) addresses this problem by using
method call frequency. He refines the standard SBFL formula with the frequency with
which the investigated method appears in call stack instances. Zou et al. (2019) considered
the execution time of different techniques and thus combined different techniques. He
proposes a combined technique, CombineFL, which can be configured according to time
cost, and CombineFL significantly outperforms independent techniques. Furthermore, in
their work, they obtain fault localization reports on program coverage information, but we
propose an improved dynamic slicing that can narrow the fault scope to improve the
effectiveness of fault localization.

To enhance the impact of failed test cases on fault localization, Xie et al. (2022) used a
universal data augmentation method that generates synthesized failing test cases from
reduced feature space for improving fault localization. Zeng et al. (2022) introduced a
probabilistic approach to model program semantics and utilize information from static
analysis and dynamic execution traces for fault localization, which balance could be
reached between effectiveness and scalability. Wang et al. (2022) investigated the

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 21/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

performance of Mutation-based fault localization with First-Order-Mutants and Higher-
Order-Mutants on single-fault localization and multiple-fault localization.

CONCLUSIONS AND FUTURE WORK
In this article, we have proposed the improved dynamic slices to improve the effectiveness
of fault localization. In details, we collect the dynamic slice information of program
execution. Secondly, we use dynamic slices and execution results to build a hybrid
spectrum. Last, a fault localization report is finally obtained by computing the
suspiciousness of each statement in the hybrid slice spectrum. In the empirical study, our
approach is compared with three fault localization approaches. Experimental results
indicate that our approach outperforms other compared approaches. Furthermore, it can
reduce approximately 1% to 17.27% of the average cost of examined code significantly. In
the future, we will continue to verify the performance of our proposed technique on more
subjects and further improve the accuracy of fault localization.

In the future, we want to further consider the following issues. Firstly, we plan to apply
our approach to locate multiple faults. Secondly, we want to use the methods like deep
learning to deal with the massive information of slice computing, so that we can improve
our method to locate faults in more large-scale and real-world applications. Last but not
least, we want to apply our approach to more subjects written by other programming
languages such as C++, Python and conduct more detailed empirical studies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Cultivation Program for Young Backbone Teachers in Henan
University of Technology, Key scientific research project of colleges and universities in
Henan Province (No. 22A520024), Major Public Welfare Project of Henan Province
(No. 201300311200) National Natural Science Foundation of China (Nos. 61602154,
61340037) and Natural Science Project of the Henan Science and Technology Department
(No.212102210148). There was no additional external funding received for this study. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Cultivation Program for Young Backbone Teachers in Henan University of Technology.
Key Scientific Research Project of Colleges and Universities in Henan Province:
22A520024.
Major Public Welfare Project of Henan Province: 201300311200.
National Natural Science Foundation of China: 61602154, 61340037.
Natural Science Project of the Henan Science and Technology Department:
212102210148.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 22/26

http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Heling Cao conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Fei Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Miaolei Deng conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Lei Li conceived and designed the experiments, performed the experiments, analyzed the
data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and source code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1071#supplemental-information.

REFERENCES
Abreu R, Zoeteweij P, Van Gemund AJ. 2006. An evaluation of similarity coefficients for software

fault localization. In: 2006 12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06). Piscataway: IEEE, 39–46.

Abreu R, Zoeteweij P, Van Gemund AJ. 2007. On the accuracy of spectrum-based fault
localization. In: Testing: academic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007). Piscataway: IEEE, 89–98.

Agrawal H, Horgan JR. 1990. Dynamic program slicing. ACM SIGPlan Notices 25(6):246–256
DOI 10.1145/93548.93576.

Alves E, Gligoric M, Jagannath V, d’Amorim M. 2011. Fault-localization using dynamic slicing
and change impact analysis. In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). Piscataway: IEEE, 520–523.

Chen MY, Kiciman E, Fratkin E, Fox A, Brewer E. 2002. Pinpoint: problem determination in
large, dynamic internet services. In: Proceedings International Conference on Dependable Systems
and Networks. Piscataway: IEEE, 595–604.

Do H, Elbaum S, Rothermel G. 2005. Supporting controlled experimentation with testing
techniques: an infrastructure and its potential impact. Empirical Software Engineering
10(4):405–435 DOI 10.1007/s10664-005-3861-2.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 23/26

http://dx.doi.org/10.7717/peerj-cs.1071#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1071#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1071#supplemental-information
http://dx.doi.org/10.1145/93548.93576
http://dx.doi.org/10.1007/s10664-005-3861-2
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Ferrante J, Ottenstein KJ, Warren JD. 1987. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems (TOPLAS) 9(3):319–
349 DOI 10.1145/24039.24041.

Ghosh D, Singh J. 2021a. A dynamic slicing-based approach for effective SBFL technique.
International Journal of Computational Science and Engineering 24(1):98–107
DOI 10.1504/IJCSE.2021.113657.

Ghosh D, Singh J. 2021b. Spectrum-based multi-fault localization using chaotic genetic algorithm.
Information and Software Technology 133(6):106512 DOI 10.1016/j.infsof.2021.106512.

Heiden S, Grunske L, Kehrer T, Keller F, Van Hoorn A, Filieri A, Lo D. 2019. An evaluation of
pure spectrum-based fault localization techniques for large-scale software systems. Software:
Practice and Experience 49(8):1197–1224 DOI 10.1002/spe.2703.

Horwitz S, Reps T, Binkley D. 1990. Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS) 12(1):26–60
DOI 10.1145/77606.77608.

Jiang S, Li W, Li H, Zhang Y, Zhang H, Liu Y. 2012. Fault localization for null pointer exception
based on stack trace and program slicing. In: 2012 12th International Conference on Quality
Software. Piscataway: IEEE, 9–12.

Jones JA, Harrold MJ. 2005. Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering. 273–282.

Jones JA, Harrold MJ, Stasko J. 2002. Visualization of test information to assist fault localization.
In: Proceedings of the 24th International Conference on Software Engineering. ICSE 2002.
Piscataway: IEEE, 467–477.

Ju X, Qian J, Chen Z, Zhao C, Qian J. 2020. Mulr4FL: effective fault localization of evolution
software based on multivariate logistic regression model. IEEE Access 8:207858–207870
DOI 10.1109/ACCESS.2020.3037235.

Just R, Jalali D, Ernst MD. 2014.Defects4J: a database of existing faults to enable controlled testing
studies for java programs. In: Proceedings of the 2014 International Symposium on Software
Testing and Analysis. 437–440.

Kochhar PS, Xia X, Lo D, Li S. 2016. Practitioners’ expectations on automated fault localization.
In: Proceedings of the 25th International Symposium on Software Testing and Analysis. 165–176.

Korel B, Yalamanchili S. 1994. Forward computation of dynamic program slices. In: Proceedings
of the 1994 ACM SIGSOFT International Symposium on Software Testing and Analysis. 66–79.

Le T-DB, Oentaryo RJ, Lo D. 2015. Information retrieval and spectrum based bug localization:
better together. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 579–590.

Lei Y, Mao X, Dai Z, Wang C. 2012. Effective statistical fault localization using program slices. In:
2012 IEEE 36th Annual Computer Software and Applications Conference. Piscataway: IEEE, 1–
10.

Li X, Orso A. 2020. More accurate dynamic slicing for better supporting software debugging. In:
2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST). Piscataway: IEEE, 28–38.

Lyle JR. 1985. Evaluating variations on program slicing for debugging. Dissertation Abstracts
International Part B: Science and Engineering [DISS. ABST. INT. PT. B-SCI. & ENG.], 46(5).

Naish L, Lee HJ, Ramamohanarao K. 2011. A model for spectra-based software diagnosis. ACM
Transactions on Software Engineering and Methodology (TOSEM) 20(3):1–32
DOI 10.1145/2000791.2000795.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 24/26

http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1504/IJCSE.2021.113657
http://dx.doi.org/10.1016/j.infsof.2021.106512
http://dx.doi.org/10.1002/spe.2703
http://dx.doi.org/10.1145/77606.77608
http://dx.doi.org/10.1109/ACCESS.2020.3037235
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Nessa S, Abedin M, Wong WE, Khan L, Qi Y. 2008. Software fault localization using n-gram
analysis. In: International Conference on Wireless Algorithms, Systems, and Applications. New
York: Springer, 548–559.

Ottenstein KJ, Ottenstein LM. 1984. The program dependence graph in a software development
environment. ACM SIGPLAN Notices 19(5):177–184 DOI 10.1145/390011.808263.

Renieres M, Reiss SP. 2003. Fault localization with nearest neighbor queries. In: 18th IEEE
International Conference on Automated Software Engineering, 2003. Proceedings. Piscataway:
IEEE, 30–39.

Ribeiro HL, de Araujo RP, ChaimML, de Souza HA, Kon F. 2018. Jaguar: a spectrum-based fault
localization tool for real-world software. In: 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). Piscataway: IEEE, 404–409.

Santelices R, Jones JA, Yu Y, Harrold MJ. 2009. Lightweight fault-localization using multiple
coverage types. In: 2009 IEEE 31st International Conference on Software Engineering. Piscataway:
IEEE, 56–66.

Singh J, Mohapatra DP. 2018. Dynamic slicing of concurrent aspectJ programs: an explicit
context-sensitive approach. Software: Practice and Experience 48(1):233–260
DOI 10.1002/spe.2520.

Soremekun E, Kirschner L, Böhme M, Zeller A. 2021. Locating faults with program slicing: an
empirical analysis. Empirical Software Engineering 26(3):1–45
DOI 10.1007/s10664-020-09931-7.

Steimann F, Frenkel M, Abreu R. 2013. Threats to the validity and value of empirical assessments
of the accuracy of coverage-based fault locators. In: Proceedings of the 2013 International
Symposium on Software Testing and Analysis. 314–324.

Vancsics B, Horváth F, Szatmári A, Beszédes Á. 2021. Call frequency-based fault localization. In:
2021 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). Piscataway: IEEE, 365–376.

Wang H, Li Z, Liu Y, Chen X. 2022. An empirical study on higher-order mutation-based fault
localization. International Journal of Software Engineering and Knowledge Engineering 32(1):1–
35 DOI 10.1142/S0218194022500012.

Wang W, Wu Y, Liu Y. 2021. A passed test case cluster method to improve fault localization.
Journal of Circuits, Systems and Computers 30(3):2150053 DOI 10.1142/S0218126621500535.

Weiser MD. 1979. Program slices: formal, psychological, and practical investigations of an
automatic program abstraction method. Ann Arbor: University of Michigan.

Weiser M. 1982. Programmers use slices when debugging. Communications of the ACM
25(7):446–452 DOI 10.1145/358557.358577.

Weiser M. 1984. Program slicing. IEEE Transactions on Software Engineering 4(4):352–357
DOI 10.1109/TSE.1984.5010248.

Wen W, Li B, Sun X, Li J. 2011. Program slicing spectrum-based software fault localization. In:
SEKE. 213–218.

Wong WE, Debroy V, Gao R, Li Y. 2013. The DStar method for effective software fault
localization. IEEE Transactions on Reliability 63(1):290–308 DOI 10.1109/TR.2013.2285319.

Xiaobo Y, Bin L, Shihai W, Dong A, Feng Z, Yelin Y. 2021. Efilter: an effective fault localization
based on information entropy with unlabelled test cases. Information and Software Technology
134(8):106543 DOI 10.1016/j.infsof.2021.106543.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 25/26

http://dx.doi.org/10.1145/390011.808263
http://dx.doi.org/10.1002/spe.2520
http://dx.doi.org/10.1007/s10664-020-09931-7
http://dx.doi.org/10.1142/S0218194022500012
http://dx.doi.org/10.1142/S0218126621500535
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/TR.2013.2285319
http://dx.doi.org/10.1016/j.infsof.2021.106543
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

Xie X, Chen TY, Kuo F-C, Xu B. 2013. A theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22(4):1–40 DOI 10.1145/2522920.2522924.

Xie H, Lei Y, Yan M, Yu Y, Xia X, Mao X. 2022. A universal data augmentation approach for fault
localization. In: International Conference on Software Engineering (ICSE’22).

Xu J, Chan W, Zhang Z, Tse T, Li S. 2011. A dynamic fault localization technique with noise
reduction for java programs. In: 2011 11th International Conference on Quality Software.
Piscataway: IEEE, 11–20.

Yoo S. 2012. Evolving human competitive spectra-based fault localisation techniques. In:
International Symposium on Search Based Software Engineering. New York: Springer, 244–258.

Yu R, Zhao L, Wang L, Yin X. 2011. Statistical fault localization via semi-dynamic program
slicing. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing
and Communications. Piscataway: IEEE, 695–700.

Zeng M, Wu Y, Ye Z, Xiong Y, Zhang X, Zhang L. 2022. Fault localization via efficient
probabilistic modeling of program semantics. In: 44th International Conference on Software
Engineering (ICSE’22).

Zhang Y-Z. 2021. SymPas: symbolic program slicing. Journal of Computer Science and Technology
36(2):397–418 DOI 10.1007/s11390-020-9754-4.

Zhang X, Gupta R, Zhang Y. 2004. Efficient forward computation of dynamic slices using reduced
ordered binary decision diagrams. In: Proceedings of the 26th International Conference on
Software Engineering. Piscataway: IEEE, 502–511.

Zhang X, He H, Gupta N, Gupta R. 2005. Experimental evaluation of using dynamic slices for
fault location. In: Proceedings of the Sixth International Symposium on Automated Analysis-
driven Debugging. 33–42.

Zhang M, Li X, Zhang L, Khurshid S. 2017. Boosting spectrum-based fault localization using
pagerank. In: Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 261–272.

Zou D, Liang J, Xiong Y, Ernst MD, Zhang L. 2019. An empirical study of fault localization
families and their combinations. IEEE Transactions on Software Engineering 47(2):332–347
DOI 10.1109/TSE.2019.2892102.

Cao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1071 26/26

http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1007/s11390-020-9754-4
http://dx.doi.org/10.1109/TSE.2019.2892102
http://dx.doi.org/10.7717/peerj-cs.1071
https://peerj.com/computer-science/

	The improved dynamic slicing for spectrum-based fault localization
	Introduction
	Background
	Motivation
	Our approach
	Empirical study
	Data analysis
	Related work
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

