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ABSTRACT
This article presents a semi-automatic algorithm that can detect pedestrians from the
background in thermal infrared images. The proposed method is based on the
powerful Graph Cut optimisation algorithm which produces exact solutions for
binary labelling problems. An additional term is incorporated into the energy
formulation to bias the detection framework towards pedestrians. Therefore, the
proposed method obtains reliable and robust results through user-selected seeds and
the inclusion of motion constraints. An additional advantage is that it enables the
algorithm to generalise well across different databases. The effectiveness of our
method is demonstrated on four public databases and compared with several
methods proposed in the literature and the state-of-the-art. The method obtained an
average precision of 98.92% and an average recall of 99.25% across the four databases
considered and outperformed methods which made use of the same databases.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Infrared video, Pedestrian detection, Video surveillance

INTRODUCTION
Video surveillance technology is rapidly proliferating across public and private spaces.
Traditionally, surveillance systems could only be found on buildings owned by the
Government and large organisations. Currently, they can be found in a variety of settings
such as shops, stadia, airports, schools and private residences. Two main factors are
responsible for the ubiquity of video surveillance systems (VSS). The first is increased ease
of acquisition and installation of VSS. This is due to the advancements in technology from
analogue to digital systems and the significant drop in the cost of acquisition. The second
factor is the increasing need for security globally. There is a high demand for persistent
surveillance systems which can monitor round the clock all year round. As most VSS use
visible-light cameras, the presence or absence of light hinders their ability to monitor
persistently. Thermal cameras are viable substitutes because they function in poor lighting
and at night. These cameras contain sensors which measure and create images from the
thermal infrared energy emitted from objects in the scene (Negied, Hemayed & Fayek,
2015).

The amount of infrared detected determines how bright or how dark an object will
appear in the final image. Emissivity is the ratio of infrared energy radiated from an object
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to that radiated from a perfect emitter under the same conditions. Given that 1 is the
emissivity of a perfect emitter, also called a blackbody, pedestrians have a value of 0.98
(Fluke, 2020). Thermal imaging finds extensive application in pedestrian detection and
tracking because pedestrians have high emissivity which creates a good enough contrast
between them and the background. The challenge to detecting pedestrians in thermal
images arises from the fact that, while pedestrians can emit infrared energy almost
perfectly, only a fraction of the emissions are detected by the thermal camera. The amount
of infrared energy reaching the thermal camera sensors depends on the prevailing weather
conditions, the reflectivity of other objects in the scene and even the thermal camera itself.
Thus, thermal images have lower resolution and lack the number of details present in
visible-light images and the applications of thermal imaging are not as varied as those of
visible imaging.

The motivation of this article is to propose a new method to detect pedestrians in
thermal imaging acquired under different conditions. State-of-the-art algorithms for
visible images usually do not perform with similar accuracy on thermal images and
generally do not perform well across different datasets. This is because Image Analysis is
slightly different when performed on visible and thermal images. Some of the
characteristics of thermal images introduce additional challenges and/or nullify some steps
in algorithms used for visible light images. For instance, there are immediate changes in
appearance as illumination changes in visible images while appearance changes much
slowly because detected radiation increases or decreases gradually in thermal images. Also,
objects in thermal images do not cast shadows. Therefore, applying algorithms such as
background subtraction to thermal images will not urgently need steps for scene update
and shadow removal as will be the case for visible images. Furthermore, objects in visible
images are commonly differentiated by their colour and displayed in the RGB (Red-Green-
Blue) colour space while thermal information is commonly mapped to grayscale. It is
important to remember that while RGB can be converted to grayscale, they still do not
present the same information as thermal infrared images even if both images capture the
same scene.

Furthermore, many of the methods put forward for pedestrian detection in thermal
images require several steps grouped broadly into two: candidate generation and
validation. Candidate generation involves extracting likely regions containing pedestrians.
Candidate validation involves examining the extracted regions and discriminating between
pedestrian and non-pedestrian. Errors tend to accumulate from each of these steps. Thus,
different from other methods put forward, the proposed method is a single-model
algorithm for pedestrian detection that eliminates the need for separate modules of
candidate generation and validation. It integrates the appearance properties of the image
with motion patterns such that all the fine-tuning and adjustment happens during energy
formulation.

The contribution of this article is a novel Graph Cut energy function, referred to as
motion-constrained energy (MCE), which repurposes binary segmentation for pedestrian
detection in infrared images. Inspired by the semi-automatic framework of Boykov & Jolly
(2001) that integrates the image region and boundary information into a single energy
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function, the proposed energy function incorporates an additional term to penalise pixels
based on motion characteristics to accurately detect pedestrians in thermal images. The
formulation in Boykov & Jolly (2001) presents an energy function E incorporating a region
D(h) and boundary term S(h) shown as follows

EðhÞ ¼ k � DðhÞ þ JðhÞ (1)

where

DðhÞ ¼ P
y2Y

DyðhyÞ
JðhÞ ¼ P

fy;zg2N
Jy;zðhy; hzÞ � eðhy; hzÞ

and

eða; bÞ ¼ 1; if a 6¼ b
0; otherwise

�

where N are unordered pairs of neighbouring pixels from a standard neighbourhood
system e.g., 4-, 8- or 26- neighbourhood system and k is used to balance the contribution of
the region and boundary term to the final segmentation result. D(h) measures how well
pixels fit into the object or background models. J(h) is also called the smoothness term and
it measures the similarity of intensity values between neighbouring pixels.

There are two areas where this formulation falls short in thermal images. Firstly, the low
resolution and noisy nature of IR images mean that more importance will be given to the
region term in many instances using this formulation. This means that a robust model for
each class will have to be determined. As mentioned earlier, most models and
approximated distributions in the literature do not generalise well across datasets,
therefore, it is important to add another element to reduce over-dependence on the region
term. Secondly, this formulation produces solutions where regions with similar intensity
values as the pedestrians are included in the solution irrespective of their location.

The proposed energy function (MCE) incorporates motion constraints and is defined in
Eq. (2) as

EðhÞ ¼ DðhÞ þ JðhÞ þ MðhÞ (2)

where

DðhÞ ¼ P
y2Y

DyðhyÞ � dðhyÞ
JðhÞ ¼ P

fy;zg2N
Jy;zðhy; hzÞ � eðhy; hzÞ

MðhÞ ¼ P
y2Y

MyðhyÞ � bðhyÞ

and

dðhyÞ ¼ 1; if y 2T ^ y =2 Dcomb
0; otherwise

�
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eðhy; hzÞ ¼ 1; if y 2T ^ z 2T ^ hy 6¼ hz
0; otherwise

�

bðhyÞ ¼ 1; if y 2 Dcomb
0; otherwise

�

whereM(h) is the motion term,T is the set of pixels containing one or more motion pixels
and Dcomb is the set of pixels with the highest energies from four directional difference
images.

The impact of the proposed energy is expressed in Fig. 1. The result of using the energy
of Boykov & Jolly (2001) produces topologically unconstrained solutions shown in Fig. 1B.
This means that all pixels with the same properties as the object of interest will be included
in the final result. However, MCE constrains the solution to only the object of interest as
shown in Fig. 1C.

The rest of the article is organised as follows. Section 2 presents the related works.
Section 3 presents the proposed framework. Section 4 provides the experimental results.
Section 5 presents the conclusion and future work.

RELATED WORKS
The task of detecting pedestrians is necessary for understanding and recognising human
activity and behaviour in video surveillance footage. In thermal infrared images, this task is
carried out in two major steps. The first step is to detect all regions likely to contain
pedestrians. This is called Candidate Generation. The second step is to discriminate from
among the extracted regions those belonging to the pedestrians. This is called Candidate
Validation.

Many methods put forward for candidate generation in thermal infrared images depend
on the contrast between the pedestrian and background. Thresholding methods have,
therefore, found extensive use in this domain and are into two categories: parametric and

Figure 1 Difference between topologically unconstrained and constrained solution using Graph Cut
(A) Original image showing the pixels belonging to the object of interest (green diamonds) and the
background (red circles) (B) topological unconstrained solution: all the pixels with similar properties
to the object of interest are included in the result (C) topological constrained solution: only the pixels
of the object of interest are included in the result. Full-size DOI: 10.7717/peerj-cs.1064/fig-1
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non-parametric. Parametric thresholding algorithms obtain a threshold by parameter
estimation while non-parametric thresholding algorithms optimise an objective function.
Examples of Parametric methods can be found in the works of Soundrapandiyan & Mouli
(2015),Wu et al. (2017),Manda et al. (2020) andManda & Kim (2020). Soundrapandiyan
& Mouli (2015) proposed a method comprising background subtraction, high-boost
filtering to highlight the pedestrian pixels and suppress the background before applying
local adaptive thresholding.Wu et al. (2017) produced formulas to compute two threshold
limits from the image histogram. One limit eliminates cold regions while the other
eliminates extremely bright regions. To obtain the binary image, the pixels with intensity
values between the low and high threshold limit are set to the maximum pixel intensity of
255 while all other values are set to 0. Manda et al. (2020) made use of the raised cosine
distribution function to determine a threshold value which separates the pedestrian from
the background. Manda & Kim (2020) assumed the distribution of the image follows that
of the transient response of the first-order linear circuit to determine a threshold value for
pedestrian detection. Non-parametric approaches can be found in the works of Li et al.
(2011) and Wu, Hou & Chen (2016). Li et al. (2011) found that previous non-parametric
methods proposed which perform well on visible images do not perform satisfactorily on
thermal images because the object and background distributions are similar and proposed
a new criterion for thresholding infrared images where the distribution for both classes
have similar standard deviations. Wu, Hou & Chen (2016) proposed a new threshold
criterion for infrared images by assuming normal distributions for both the object and
background histograms and comparing the hyper-entropies of both distributions.
Thresholding methods produce excellent results when the approximated distribution of
the image fits the dataset under consideration. However, this means that they can easily
become too dataset–dependent. Also, in situations where the contrast is not pronounced,
the pedestrians are not of uniform appearance, or polarity reversal occurs due to change of
weather and the presence of artefacts such as halos, detection based on appearance alone
suffers setbacks.

To reduce dependence on the contrast for pedestrian detection, candidate generation
has been carried out by detecting moving regions. Background Subtraction and Optical
flow-based methods are commonly used for detecting moving regions, but Background
Subtraction is less computationally expensive (Choudhury et al., 2018). Generally,
Background Subtraction is carried out by creating a model of the image background and
comparing that model with each video frame. A similarity function is employed to
determine which pixels are likely to belong to the object of interest. Background
Subtraction by Frame differencing detects moving regions and is commonly used in
tracking algorithms (Gawande, Hajari & Golhar, 2020). The presence of motion can be
obtained from the absolute difference between consecutive image pairs. Jeon et al. (2015)
created a background model using pixel difference image and combined edge information
with the result of background subtraction to detect the pedestrians. Jeyabharathi & Dejey
(2018) made use of frame differencing to extract likely pedestrian regions and reflectional
symmetrical patterns to provide geometrical information for accurate background
modelling. Motion is one feature that can cut across a wide range of infrared images.
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Candidate validation have be performed using unsupervised and supervised
approaches. Unsupervised methods make use of known or calculated physical properties
of the pedestrians to discriminate between pedestrian and non-pedestrian. Younsi, Diaf &
Siarry (2020) proposed a global similarity function that uses the sum of sub-similarity
functions to discriminate between human moving objects and non-human moving objects.
The drawback of unsupervised methods is that they also tend to be data–dependent.
Supervised methods depend on feature extraction and training. Although recent efforts are
moving towards the use of Convolutional Neural Networks (CNN) where feature
representation is an inherent part of the training framework, feature representation is still a
challenge because thermal images have low resolution and fewer details compared with
visible images. Recent efforts such as those of Dai et al. (2019), Park et al. (2019), Chen &
Shin (2020), Gao, Zhang & Li (2020),Huda et al. (2020), Krišto, Ivasic-Kos & Pobar (2020),
Tumas, Nowosielski & Serackis (2020) and Haider, Shaukat & Mir (2021) rely on features
for a (pedestrian/non-pedestrian) classifier. Park et al. (2019) proposed a CNN-based
classifier with three input channels for fine-grained pedestrian detection. The input
channels take in the original image, a Difference image from the previous frame and a
background subtraction mask. In their results, they noted that training and testing needed
to be carried out on similar datasets for best performance. Chen & Shin (2020) developed
an attention-guided autoencoder network that includes a skip-connection block which
combines features from the encoder-decoder modules to increase contextual information
for robust and distinguishable features in infrared images with low SNR and resolution.
YOLOv3 was used by Krišto, Ivasic-Kos & Pobar (2020) and Tumas, Nowosielski & Serackis
(2020) for pedestrian detection under different weather conditions.Gao, Zhang & Li (2020)
redesigned the visual geometry group (VGG-19) CNN to extract more features from
infrared images for better detection results. The rationale for using these methods is that
they perform well on visible images and achieve state-of-the-art results. However, their
performance is lower on infrared images for two reasons. First, the models developed by
Huda et al. (2020) for testing infrared images were trained on visible images. Second,
different thermal cameras output different levels of detail. Therefore, even for models
trained on infrared images such as done by Krišto, Ivasic-Kos & Pobar (2020) and Park
et al. (2019), the performance of the trained model depends on how similar the test dataset
is to the training dataset.

To the best of our knowledge, semi-automatic methods requiring human inputs have
not yet found extensive application in the thermal domain. This work is inspired by the
methods put forward by Boykov & Jolly (2001) and Viola, Jones & Snow (2003). Graph Cut
is a powerful optimization method that guarantees an exact solution for binary labelling
problems. Graph Cut’s effectiveness is shown in the framework of Boykov & Jolly (2001)
which seamlessly combines edge and appearance information into its energy formulation
to produce topologically unrestrained solutions Boykov & Funka-Lea (2006). This means
that all pixels with the same properties are given the same label regardless of their location.
Viola, Jones & Snow (2003) proposed a method which eliminates the need for separate
modules for pedestrian detection and put forward a detector that integrates appearance
and motion patterns such that all the fine-tuning and adjustment happens during training.
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Both methods are similar in that they seamlessly combine different attributes to
accomplish one goal that would otherwise have required several steps. Also, both methods
were tested and achieved state-of-art on visible images. However, the framework of Boykov
& Jolly (2001) is semi-automatic while that of Viola, Jones & Snow (2003) is supervised.

PROPOSED METHOD
This work considers a Graph-Cut based method for pedestrian detection which combines
intensity (region and boundary) information with motion characteristics. The task of
pedestrian detection is formulated as a binary labelling problem where the goal is to
partition the image into two classes. Formally, the labelling problem is a function that
maps observed data to labels. For our purposes, the observed data is the image and the
labels are the classes. Let labels Z assigned to a pixel be given asZ ¼ ð‘ped’, ‘bkg’) where
‘ped’ refers to the ROI and ‘bkg’ refers to the rest of the scene. The labelling ofX overZ is
a function h : X!Z. hx specifies the label assignments to x inX and is taken fromZ. To
solve the binary labelling problem, Graph Cut performs efficient searches for the optimal
labels among the possible set of labels. A graph is constructed over the image and a cut on
the graph corresponds to the binary partitioning of the image. An energy function is used
to represent the information in the image and the global minimum of the energy
corresponds to the optimal partitioning. The overview of the proposed method is
presented in Fig. 2.

Graph construction
The first step is to construct a graph G over an image. G ¼ hV; Ei where V are the nodes of
the graph and E are the edges. V correspond to the pixels of the image and include two
additional nodes, source s and sink t, called terminals. The edges which connect the pixels

Figure 2 Overview of the proposed method. Full-size DOI: 10.7717/peerj-cs.1064/fig-2
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to each other are referred to as N-links while the edges which the pixels to the two
terminals are referred to as T-links. A neighbourhood system N determines the placement
of edges between the nodes. A non-negative weight, discussed in “Weight assignment”, is
assigned to each edge. An illustration of a graph constructed over an image is shown in
Fig. 3

Weight assignment
The non-negative weights for each edge edge e 2 E of the graph G are calculated from the
region, boundary and motion terms of Eq. (2).

The region term, DyðhyÞ reflects the extent to which each pixel fits into the image
intensity model of “object” and “background”. These weights, Dyð“object”) and
Dyð“background”), are computed as negative log-likelihoods as follows.

Dyð“object”Þ ¼ � ln PrðYyj“object”Þ
Dyð“background”Þ ¼ � ln PrðYyj“background”Þ (3)

The intensity model for DyðhyÞ is built using pixels, called seeds, which definitely belong
to the “object” and “background”. These seeds are chosen interactively by the user.

The boundary term Jy;zðhy; hzÞ assigns penalties to discontinuities between
neighbouring pixels y and z. Therefore, the edge weights between pixels with dissimilar
pixel intensity values will be higher and vice versa. These weights are calculated as follows

Sy;z ¼ exp
ðy � zÞ2
2r2

� �
(4)

Figure 3 An illustration of a graph constructed over an image (A) original image (B) graph
construction. Full-size DOI: 10.7717/peerj-cs.1064/fig-3
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In the above equation, r has been calculated as the variance of the video frame under
consideration.

The motion term MyðhyÞ computes the cost of labelling a pixel as “object” or
“background” as determined by the motion constraint Dcomb. Dcomb provides an
estimate of the location of each pedestrian in the image obtained by thresholding and
combining four images obtained by frame differencing. The direction of motion can be
obtained from the absolute differences DLf , DRf , DUf and DDf between consecutive
image pairs If and shifted versions of Ifþ1 to the left, to the right, up and down respectively.
The difference image computations are given as follows

Df ¼ jIf � Ifþ1j
DLf ¼ jIf � Ifþ1  j
DRf ¼ jIf � Ifþ1 ! j
DUf ¼ jIf � Ifþ1 " j
DDf ¼ jIf � Ifþ1 # j

(5)

Figure 4 shows how the shifted difference images provide information about the
direction of motion. In our experiments, we found that the energy of the image was highest
when the image was shifted in the direction of motion and the least when shifted in the
opposite direction. Also, because the surveillance footage is taken from different angles and
there are usually several pedestrians going in different directions, we found that the energy
for each subject is higher in at least two directions, that is, either in the ↑ or ↓ direction and
either in  or ! direction.

Figure 4 (A) and (B) are two consecutive frames with an area of interest selected and (C) shows the directional difference images around that
selected area. The image energy is higher when the image is shifted to the right than to the left, and then when it is shifted downwards than upwards.
So, without previous knowledge, we can tell the pedestrian is moving to the right and slightly downwards. Image credit: LITIV dataset; Torabi, Massé
& Bilodeau (2012). Full-size DOI: 10.7717/peerj-cs.1064/fig-4
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Dcomb is, therefore, created by combining the pixels with the highest energies from
each directional difference image and is defined as

Dcomb ¼ fðDLf > ThÞ [ ðDRf > ThÞ [ ðDUf > ThÞ [ ðDDf > ThÞg (6)

where Th is used to extract the highest energies from each directional difference image.
MyðhyÞ is, thus, defined as follows

Myð“object”Þ ¼ g; if y 2 Dcomb
0; otherwise

�
(7)

Myð“background”Þ ¼ g; if y =2 Dcomb
0; otherwise

�
(8)

where g is an arbitrarily large number to ensure that the object or background label is
assigned to a pixel if the stated condition for each class of assignment is satisfied.

Table 1 provides the weights for the graph edges. As discussed in “Graph construction”,
the elements of V for graph G are the image pixels. Each node, corresponding to pixel y, is
connected to the source s and sink t terminals using edges {y, s} and {y, t} called T-links.
Also, each node is connected to other nodes in its neighbourhood. A four-neighbourhood
system, for example, would mean that a pixel was connected to its four neighbours above,
below, to the left and the right of it. The edges which connect a node to its neighbours {y, z}
are called N-links. A higher weight on the T-link connecting a node to either s or t implies
a higher likelihood of a pixel to be labelled as “object” or “background” respectively.
Likewise, a higher weight on the N-link between vertices implies a greater dissimilarity
between pixels. It should be noted that DyðhyÞ andMyðhyÞ are unary terms acting on each
pixel to compute the weight on the T-links of the graph while Jy;zðhy; hzÞ is a binary term
acting on pixel pairs y and z in a specified neighbourhood N to compute the weight on the
N-links.

To obtainT, the image is divided into non-overlapping equal-sized detection windows
such that only windows which have one or more pixels from Dcomb are considered by D
(h) and S(h).

Energy minimization
Following the graph construction and weight assignment, the energy is minimized using
the Boykov-Kolmogorov minimum cut/maximum flow algorithm (Boykov & Kolmogorov,

Table 1 Edge weights of the graph constructed from the image.

Edge Weight For

{y, z} Jy;z fy; zg 2 N; y 2T ^ z 2T

{y, s} Dyð“pedestrian”Þ y 2 Y; y 2T

Myð“pedestrian”Þ y 2 Y; y 2 Dcomb

0 y 2 Y; y =2 Dcomb ^ y =2 T

{y, t} Dyð“background”Þ y 2 Y; y =2 T

Myð“background”Þ y 2 Y; y =2 Dcomb

0 y 2 Y; y =2 Dcomb ^ y =2 T
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2004). The aim of this algorithm is to find the cut C that partitions a two-terminal graph
into two disjoint sets S and T such that s is in S and t is in T. The optimization problem, to
find the minimum among all possible cuts, is solved by finding the maximum flow moving
from the source s to the sink t. The cost of the cut C ¼ fS;Tg is the sum of the weights on
the edges (y, z) where y ∈ S and z ∈ T. The final labelling on the original image is produced
by the minimum cut separating the two terminals shown in Fig. 5.

EXPERIMENTAL RESULTS
Dataset
The proposed method is tested on the following public databases as previously described in
Oluyide, Tapamo & Walingo (2022):

1. The Linkoping Thermal InfraRed (LTIR) dataset put forward by Berg, Ahlberg &
Felsberg (2015)

2. LITIV dataset put forward by Torabi, Massé & Bilodeau (2012)

3. OTCBVS benchmark – Terravic Motion IR database put forward by Miezianko (2005)

4. OTCBVS benchmark – Ohio State University (OSU) thermal pedestrian database put
forward by Davis & Keck (2005)

Performance metrics
The performance of the proposed method is measured using Recall and Precision given in
Eqs. (9) and (10).

Figure 5 Binary labelling of an image after energy minimization (A) shows the minimum cut
separating the vertices (B) shows the binary labelling as a result of the cut.

Full-size DOI: 10.7717/peerj-cs.1064/fig-5
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Recall ¼ TP
TP þ FN

(9)

Precision ¼ TP
TPþ FP

(10)

Comparison of MCE with energy function of Boykov & Jolly (2001)
To show the improvements of the proposed method by the inclusion of an additional term
in the energy function, the detections results of the proposed method (MCE) are compared
with those produced by the energy of Boykov & Jolly (2001) (GC). The results of the
comparison are presented in Table 2 and Fig. 6. The visual comparison of GC and MCE is
shown in Figs. 7–10.

The performance of both GC and MCE is lowest on the LTIR database. This could be
because LTIR has the most varied scenes of all the datasets. The images were either too
bright or too dark and there were cases of slight camera motion and reversed polarity.
Conversely, it shows the greatest improvement in performance when MCE is used.

LITIV database has the most uniform appearance but is the most varied in perspective;
images were captured from different angles from the side view to the top view. Most of the
images were very dark and the contrast was poor except in images taken from the top view.
Significant improvement in performance is also observed when MCE is used.

Table 2 Quantitative results for GC and MCE comparison.

Method LITIV LTIR Terravic OSU

Recall GC 0.9859 0.9562 0.9842 0.9933

MCE 0.9992 0.9771 0.9902 0.9995

Precision GC 0.9785 0.9504 0.9780 0.9801

MCE 0.9969 0.9805 0.9889 0.9907

Figure 6 Chart showing the performance of GC and MCE using precision and recall. Full-size DOI: 10.7717/peerj-cs.1064/fig-6
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Figure 7 GC and MCE results on LTIR database (A) image (B) GC (C) MCE. Image credit: Linkoping Thermal InfraRed (LTIR) dataset; Berg,
Ahlberg & Felsberg (2015). Full-size DOI: 10.7717/peerj-cs.1064/fig-7
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Figure 8 GC and MCE results on LITIV database (A) image (B) GC (C) MCE. Image credit: Linkoping Thermal InfraRed (LTIR) dataset; Berg,
Ahlberg & Felsberg (2015). Full-size DOI: 10.7717/peerj-cs.1064/fig-8
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Figure 9 GC and MCE results on OSU database (A) image (B) GC (C) MCE. Image credit: Linkoping Thermal InfraRed (LTIR) dataset; Berg,
Ahlberg & Felsberg (2015). Full-size DOI: 10.7717/peerj-cs.1064/fig-9
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The Terravic database had the best contrast, but the pedestrians were not always moving
and, compared to the other databases, it took a long time for the pedestrians to move
significantly. The impact of this slow or lack of movement is in deciding the interval
between consecutive frames. Ideally, the next immediate frame should be used but this
might depend on the footage.

The OSU database is the oldest and most extensively used because it was created
specifically for evaluating pedestrian detection algorithms. The database contains details
about the weather condition and comprehensive ground truth. The images were taken over
different days and under different weather conditions but from the same scene. As
mentioned in the introduction, temporal changes in appearance do not occur in thermal

Figure 10 MCE results on TMIR database (A) image (B) GC (C) MCE. Image credit: Linkoping Thermal InfraRed (LTIR) dataset; Berg, Ahlberg &
Felsberg (2015). Full-size DOI: 10.7717/peerj-cs.1064/fig-10
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images unless there is a drastic change in weather conditions, and these changes occur
much slowly as detected radiation increases or decreases gradually. Table 3 shows the
weather conditions for each video sequence in the database, the total number of
pedestrians in the database and the true positive (TP) and false positive (FP) detection
results using the proposed algorithm. It can be concluded that the proposed method is
quite robust to changes in weather.

Comparison with other methods in the literature
The performance of the proposed method is presented in comparison with other methods
in the literature (Table 4). Tables 5 and 6 compare the number of True Positive (TP) and
False Positive (FP) detections obtained by the proposed method with other methods which
use the OSU dataset including the creator of the Dataset Davis & Keck (2005). In Tables 5
and 6, the best result(s) for each sequence from each author is highlighted in bold. It is
important to note that Sequence 3 has its polarity reversed, therefore, the pedestrians
appear dark. Thus,Manda et al. (2020) do not provide results for sequence 3 because their
method is for detecting bright regions in thermal images. While the proposed method does
not always produce the best result for each sequence in Table 5, the average results
outperform the methods put forward.

Table 3 Table showing the weather conditions, true positive (TP) and false positive (FP) detection
results for the OSU thermal database.

Video Atmospheric phenomenon Time of day Temp (°C) Total pedestrians TP FP

1 Light rain Afternoon 13 91 90 0

2 Partly cloudy Morning 5 100 98 2

3 Partly cloudy Morning 21 101 98 3

4 Fair Morning 9 109 109 0

5 Partly cloudy Morning 25 101 99 1

6 Mostly cloudy Morning 21 97 95 0

7 Light rain Afternoon 36 94 92 1

8 Light rain Afternoon 30 99 95 0

9 Haze Afternoon 18 95 95 1

10 Haze Afternoon 23 97 90 1

984 961 9

Table 4 Legend for Tables 5 and 6 column names.

Author Letter

Davis & Keck (2005) A

Wu et al. (2017) B

Soundrapandiyan & Mouli (2018) C

Zhao et al. (2019) D

Manda et al. (2020) E
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The proposed method is also compared with methods which apply the state-of-the-art
algorithms for object detection in visible images to thermal images using Precision and
Recall. Table 7 presents the results of this comparison. As mentioned in “Related works”,
the low performance of the state-of-the-art is because the models were either trained on
visible images or trained on datasets dissimilar to the test set. However, the proposed
method performs well across the different datasets.

Time complexity and execution time
The steps of the proposed method are given in Algorithm 1. The time complexity can be
determined as follows. In step 1, the directional difference images are computed using
Eq. (5) and each computation takes O(n) time. In step 2, the location estimate image is
computed using Eq. (6) and it involves two stages: finding the highest energies in each

Table 5 Comparing the proposed method with other methods using the number of true positive
(TP) detections on the OSU dataset.

Video #Pedestrians A B C D E MCE

1 (91) 88 90 87 77 78 90

2 (100) 94 95 96 99 98 98

3 (101) 101 101 83 64 - 98

4 (109) 107 108 109 107 109 109

5 (101) 90 95 100 97 101 97

6 (97) 93 94 94 92 97 93

7 (94) 92 93 86 78 80 90

8 (99) 75 80 97 89 96 93

9 (95) 95 95 95 91 95 95

10 (97) 95 95 94 91 83 89

1–10 (984) 930 946 941 885 829 961

Table 6 Comparing the proposed method with other methods using the number of false positive
(FP) detections on the OSU dataset.

Video A B C D E MCE

1 0 0 5 3 0 0

2 0 0 14 2 2 2

3 1 1 27 90 - 3

4 1 0 18 7 10 0

5 0 0 13 16 16 1

6 0 0 2 8 0 0

7 0 0 4 8 0 1

8 1 1 3 8 0 0

9 0 0 2 4 0 1

10 3 3 8 18 16 1

1–10 6 5 96 164 44 9

Oluyide et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1064 18/23

http://dx.doi.org/10.7717/peerj-cs.1064
https://peerj.com/computer-science/


difference image and creating a new image from the union of the highest energies. Each
stage is computed in O(n) time. Computing the edge weights using Table 1 is the third step
and it involves the use of two matrices; an adjacency matrix for the N-links and an nx2
matrix for the T-links. For the adjacency matrix, adding a node takes O(n2) time, adding
an edge takes O(1) time and finding neighbours takes O(n) time. The overall time for the
adjacency matrix is O(n2). In the nx2 T-links matrix, one column holds the weights for
pixels connected to the Source terminal and the second column holds the weights for pixels
connected to the Sink terminal. Computing the weights for each terminal takes O(n) time.
Thus, the overall time for step 3 is O(n2). In step four, the minimization algorithm has a
worst-case time complexity of O(mn2jCj) where n is the number of nodes,m is the number
of edges and |C| is the cost of the minimum cut. This algorithm outperforms standard
minimization algorithms on typical Computer Vision problems even though the
complexity of the algorithm is theoretically worse. The reader is referred to the work of
Boykov & Kolmogorov (2004) for more details. Therefore, the overall time complexity of
the proposed method is O(mn2jCj).

The proposed method was implemented using MATLAB R2018aTM on an Intel i7-4790
3.60 GHz CPU with 8 GB RAM. The average execution time for each video frame ranged
from 6.8 to 11.3 s depending on how fast the user selects seeds.

Limitations of the proposed method
The main limitation which potentially reduces the effectiveness of the proposed method is
the presence of extreme camera motion. A bit of camera motion was encountered in the

Table 7 Comparison of the proposed method with the state-of-the-art using precision and recall.

Author Metrics LITIV LTIR Terravic OSU

Lahouli et al. (2018) Precision 0.9679 – – 0.9737

Recall 0.7819 – – 0.7375

Krišto, Ivasic-Kos & Pobar (2020) Precision – 0.6700 0.9600 0.8600

Recall – 0.7500 0.9500 0.8900

Huda et al. (2020) Precision – – – 0.7100

Recall – – – 0.6100

Haider, Shaukat & Mir (2021) Precision – – – 0.9920

Recall – – – 0.9775

Proposed method Precision 0.9969 0.9805 0.9899 0.9907

Recall 0.9992 0.9771 0.9902 0.9995

Algorithm 1 Motion-constrained Graph Cut.

1: Compute the directional difference images using Eq. (5)

2: Compute the location estimate map Dcomb using Eq. (6)

3: Compute edge weights according to Table 1

4: Minimise the energy using Boykov-Kolmogorov min-cut/max-flow algorithm
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LTIR database which can account for its lower performance compared to the other four
datasets. However, if it is extreme, then it can hamper the effectiveness of the difference
images produced using Eq. (5) because stationary objects might be included in the results.
Although there are methods to correct camera motion, the additional step implies
increased computational cost.

CONCLUSION
In this article, a motion-constrained Graph Cut framework for pedestrian detection in
thermal infrared videos has been presented which integrates appearance information with
motion characteristics in a single model. The proposed method has been compared with
the framework of Boykov & Jolly (2001) to show the advantages of including an additional
constraint and the performance of the detection framework. In addition, the method has
been tested on four publicly available datasets and with different methods in the literature
which make use of the same datasets to showcase the robustness of the framework. As the
process of selecting seeds significantly increases the execution time, future work will
involve optimising the algorithm to require as little human input as possible.
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