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Feature extraction often needs to rely on sufficient information of the input data, however,
the distribution of the data upon a high-dimensional space is too sparse to provide
sufficient information for feature extraction. Furthermore, high dimensionality of the data
also creates trouble for the searching of those features scattered in subspaces. As such, it
is a tricky task for feature extraction from the data upon a high-dimensional space. To
address this issue, this paper proposes a novel autoencoder method using Mahalanobis
distance metric of rescaling transformation. The key idea of the method is that by
implementing Mahalanobis distance metric of rescaling transformation, the difference
between the reconstructed distribution and the original distribution can be reduced, so as
to improve the ability of feature extraction to the autoencoder. Results show that the
proposed approach wins the state-of-the-art methods in terms of both the accuracy of
feature extraction and the linear separabilities of the extracted features. We indicate that
distance metric-based methods are more suitable for extracting those features with linear
separabilities from high-dimensional data than feature selection-based methods. In a high-
dimensional space, evaluating feature similarity is relatively easier than evaluating feature
importance, so that distance metric methods by evaluating feature similarity gain
advantages over feature selection methods by assessing feature importance for feature
extraction, while evaluating feature importance is more computationally efficient than
evaluating feature similarity.
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19 Abstract
20 Feature extraction often needs to rely on sufficient information of the input data, however, the distribution 

21 of the data upon a high-dimensional space is too sparse to provide sufficient information for feature 

22 extraction. Furthermore, high dimensionality of the data also creates trouble for the searching of those 

23 features scattered in subspaces. As such, it is a tricky task for feature extraction from the data upon a 

24 high-dimensional space. To address this issue, this paper proposes a novel autoencoder method using 

25 Mahalanobis distance metric of rescaling transformation. The key idea of the method is that by 

26 implementing Mahalanobis distance metric of rescaling transformation, the difference between the 

27 reconstructed distribution and the original distribution can be reduced, so as to improve the ability of 

28 feature extraction to the autoencoder. Results show that the proposed approach wins the state-of-the-art 

29 methods in terms of both the accuracy of feature extraction and the linear separabilities of the extracted 

30 features. We indicate that distance metric-based methods are more suitable for extracting those features 

31 with linear separabilities from high-dimensional data than feature selection-based methods. In a high-

32 dimensional space, evaluating feature similarity is relatively easier than evaluating feature importance, so 

33 that distance metric methods by evaluating feature similarity gain advantages over feature selection 

34 methods by assessing feature importance for feature extraction, while evaluating feature importance is 

35 more computationally efficient than evaluating feature similarity. 

36

37 Keyword: Autoencoder, Distance metric, Feature extraction

38

39 Introduction

40 High-dimensional data usually contains rich features, through extracting the important features, 

41 those irrelevant attributes in high-dimensional data can be filtered, thereby achieving data 
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42 dimensionality reduction (Xue et al., 2015). Hence, feature extraction is considered to be one of 

43 the important methods for data dimension reduction (Bo et al., 2016)]. 

44    Feature extraction is a hot topic in recent years, aiming to gain the most valuable features from 

45 the input data (H.Tao et al., 2016; M. Luo et al., 2018). High dimensionality of data, the so-

46 called the curse of dimensionality, brings negative effects for feature extraction (J.Gui et al., 

47 2018; R. Chakraborty, N.R.Pal, 2015). Upon a low-dimensional space, those relations between 

48 the data are relatively compact but they may become sparse upon a high-dimensional space (Bing 

49 et al., 2021), e.g., the data space with more than 10 dimensionalities (A.-M., et al, 2011). Clearly, 

50 sparse relations between data are usually considered to be an unfavorite factor for feature 

51 extraction since feature extraction needs to rely on the relations between data (Bo et al., 2021). 

52 Beyond that, those latent features scattered in subspaces inside a high-dimensional space not 

53 only inspect the ability of methods to extract features (L. Wang et al., 2016), but also test their 

54 extraction efficiency. Hence, it is a challenge for feature extraction from high-dimensional data.

55     Recently, some opinions have been proposed for feature extraction, for instance, distance 

56 metric-based methods, where, the typical representative is the well-known Mahalanobis distance-

57 based methods, which evaluates the similarity between samples using the covariance matrix of 

58 data (R. De et al, 2000). Furthermore, S.-Y (2018) et al proposed the intrinsic semi-supervised 

59 metric learning (ISSML) based on a distance metric for feature extraction. Similar, the methods 

60 implemented in (P. Zadeh et al, 2016) and (H. Luo, 2017) also applied distance metrics. 

61 Certainly, also including, the information-theoretic metric learning is (ITML) (J. Mei et al, 2014) 

62 employed a distance metric to obtain features. These methods in (S. Ying et al, 2018; P. Zadeh et 

63 al, 2016; H. Luo, 2017; J. Mei et al, 2014) address the issues of symmetric positive-definite 

64 matrix minimization during feature extraction, but there are several problems in them, 1) since 

65 most of them use iterative calculation while performing feature selection, optimization issues 

66 have to be addressed iteratively. 2) Most of them need to rely on parameter selection to obtain 

67 those desired features. Usually, feature selection-based methods are also considered to be used 

68 for feature extraction. Such methods achieve feature extraction through analyzing the 

69 information of feature subsets, for example, the cheap feature selection method based on k-

70 means algorithm (Marco et al, 2021) selects the m features with the highest relevance measure 

71 through obtaining a clustering for each subset of features. Although the method (Marco et al, 

72 2021) is a novel measurement for feature relevance, which is beneficial for feature selection, 

73 however, calculating per subset of features needs to spend a lot time cost. In order to reduce the 

74 correlation between features, some measurements for quickly assessing features are proposed, 

75 e.g., the information entropy metric (T. X. et al, 2019), whereas the method (T. X. et al, 2019) has 

76 a bias toward features, which may result in appearing selecting deviation during feature 

77 extraction. Another kind of feature selection method depends on eigen decomposition, such as, 

78 locally linear embedding (LLE) (R. Hettiarachchi, J. F. Peters, 2015; Ugochukwu Ejike Akpudo, 

79 Jang-Wook Hur, 2020), multi-manifold discriminant isometric feature mapping (MMD-

80 ISOMAP) (Bo.Y et al, 2016), ISOMAP-KL (Alaor Cervati Neto, Alexandre L. M. Levada, 2020), 

81 however, they cannot assess the importance of the features in the background space explicitly. 
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82 Neural network-based methods are favored because of excellent feature capture ability 

83 (Hong.C et al, 2022), e.g., Multilayer Perceptron Neural Network (K. Sun et al., 2017). For 

84 dimension reduction, feature extraction and data compression, autoencoder-based networks 

85 provide an interpretable approach for the unknown meaningful insights (Ang et al., 2017) by 

86 learning non-identity mapping functions (Jian et al., 2022), for instance, Rami et al (2022) 

87 developed interpretable data representation for data dimensionality reduction using Logic-

88 Oriented and Granular Logic Autoencoders, and such as, Autoencoder (Angshul Majumdar, 

89 2019) for image compression, and Blind Denoising autoencoder (Fei et al, 2020) for denoising. 

90 In addition, sparse autoencoders are used as an unsupervised feature extractor to serve data 

91 dimensionality reduction, feature extraction and data mining (Z.Qiang et al., 2018), e.g., K.-J et 

92 al (2018) proposed Sparse Autoencoder (SAE) for feature extraction of ferroresonance 

93 overvoltage waveforms in power distribution systems. Yan et al (2018) used Stacked Sparse 

94 Autoencoder (SSAE) to extract effective features. In addition, the Autoencoders (Qu et al., 2021, 

95 Qu et al., 2020, Jian et al., 2022) also successfully capture the low-dimensional features from 

96 high-dimensional data, however, these captured low-dimensional features do not show good 

97 linear separability. In terms of addressing high-dimensional complex problems, deep methods 

98 are the state-of-the-art solution in many disciplines (R.Abadía, et al, 2022), e.g., video and 

99 language processing, etc. 

100     In this study, our motivation is to extract the features with linear separabilities from the data in 

101 a high-dimensional space. Thus, we proposed a novel autoencoder method based on Mahalanobis 

102 distance metric of rescaling transformation. The proposed method does not have to address any 

103 optimization issue, and also it can focus on the whole data distribution. 

104     We summarize the main contributions of this work as follows:

105     (i) Distance metric-based methods are more suitable for extracting those features with linear 

106 separabilities from high-dimensional data than feature selection-based methods. 

107     (ii) Assessing feature similarity in a high-dimensional space is relatively easier than evaluating 

108 feature importance, therefore, distance metric approaches by evaluating feature similarity have 

109 more advantages than feature selection approaches by evaluating feature importance in terms of 

110 feature extraction.

111     (iii) The computational time of distance metric-based algorithms is higher than that of feature 

112 selection-based algorithms upon a high-dimensional space.

113     This paper is organized as follows. Section 2 describes the proposed method and implements 

114 the proposed model, including training for the model and parameter configuration. Experiment 

115 datasets, competing methods, and experiment description are given in Section 3. Section 4 

116 presents experiment results. Section 5 draws conclusions.

117

118 Methods

119 Theory

120 Given a sample X={ xi | }, and . is the d-dimensional Euclidean space. P is the 1 i N  dX   d

121 probability distribution of X, denoted as original probability distribution. u(X) and are the x
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122 mean vector and the covariance matrix of X, respectively. Let us assume that Z={ zj | } is 1 j N 

123 the reconstructed X, and . Q is the probability distribution of Z, denoted as approximate dZ  

124 probability distribution. Similar, u(Z) and are the mean vector and the covariance matrix of Z, z

125 respectively. The K-L divergence (D. Tao et al, 2009) between the two distributions P and Q is 

126 given in Eq. (1).

127                                            (1)1 11
( || ) log | | log | | tr( ) tr( )

2
z x z x z xzK P Q D           

128 Where . The tr( ) is the trace of a matrix. is a symmetrical | | det( )    ( ( ) ( ))( ( ) ( ))T

xzD u X u Z u X u Z  

129 matrix. Training a distance metric is equivalent to finding a rescaling of a sample which replaces 

130 each xi with MTxi (Lin et al, 2019), so the K-L divergence in Eq. (1) can be converted into Eq. 

131 (2), having  

132                        (2) * 11
( || ) log | | log | | tr ( ) ( ( ) )

2L

T T T T

z x z x xzK P Q M M M M M M M D M         

133 Where M is a metric matrix and satisfies , and , . The K-L divergence in * TA MM 0d d
M

 0d d

134 Eq. (2) is the rescaling transformation for the K-L divergence in Eq. (1) using the distance metric 

135 matrix A*. To reduce the difference between the approximate distribution Q and the original 

136 distribution P, we consider Mahalanobis distance metric for K-L divergence in Eq. (2), having 

137                                                            (3)
*

* *

1 ,

- ( || ) ( , )
LA A i j

i j

K L d K P Q d x z


 （）

138 is Mahalanobis distance between xi and zj using A*. The advantage of doing this is that * ( , )A i jd x z

139 the Mahalanobis distance using A* can appropriately measure similarities between the input 

140 sample and the reconstructed input sample because of non-negativity (i.e., ), * ( , ) 0A i jd x z 

141 distinguishability (i.e., ) and symmetry (i.e., ) (Lin et al, * ( , ) 0A i j i jd x z x z   * *( , ) ( , )A i j A j id x z d z x

142 2019). Eq. (4) gives the calculation of , where A* can be decomposed as .* ( , )A i jd x z * TA MM

143                                                              (4)* ( , ) ( ) *( )T

A i j i j i jd x z x z A x z  

144

145 Model implementation

146 A classic auto encoder (AE) consists of an input layer, a hidden-layer and an output layer. For 

147 AE, the loss error is often measured by using the distance between the original input instance, the 

148 predicted instances, and the reconstructed instance (L. Theis et al, 2017). Usually, using 

149 divergence metrics or expanding autoencoder structures (e.g., enlarging the number of hidden 

150 layers) is more helpful for autoencoders to characterize the data distribution and to learn the 

151 desired representations (Weining et al, 2017). As such, we designed an autoencoder with 

152 multiple-hidden layers, namely m-AE, and m 1, as shown in Fig.1. In addition, the K-L 

153 divergence in Eq. (3) was used to increase the ability of m-AE to capture low-dimensional 

154 feature representations. The loss error in m-AE is given as follows:( , )KL w b

155                                                             (5)2

*( , ) || || -KL X Z Ae e K L d   w b （）
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156 Where eX, eZ are the inputting and the reconstructed inputting, respectively. is updated ( , )KL w b

157 through using the backpropagation manner.

158      To better train the proposed model, we carefully studied part hyper parameters in the model. 

159 For the rest of hyper parameters, their default values were used.

160      (i) Optimizer. Common optimizers are Adam, RMSprop, SGD, Momentum, Nesterov, etc. 

161 However, we selected Adam as the optimizer of m-AE, since Adam has the ability to handle 

162 sparse gradients (Diederik P. Kingma, Jimmy Lei Ba, 2015). Compared with other optimizers, 

163 Adam is more suitable for high-dimensional data. Moreover, Adam can provide different 

164 adaptive learning rates for different hyper parameters.

165      (ii) Activation function. Gradient vanishing is easily to be induced during passing gradients 

166 backwards for neural networks, in this case, the probability of gradient vanishing caused by 

167 activation function Sigmoid is relatively high. Similar to Sigmoid, activation function tanh also 

168 suffers from this problem. While for activation function ReLu, the phenomenon of gradient 

169 vanishing is partially alleviated, meaning that gradient vanishing does not appear in the positive 

170 interval of ReLu. Furthermore, ReLu converges much faster than Sigmoid and Tanh. Therefore, 

171 we chose ReLu as the activation function of m-AE. 

172     (iii) Iteration epoch. We dynamically adjust the iteration epoch according to training accuracy. 

173 For instance, when training accuracy starts to change from large to small, we reduce iteration 

174 epoch in order to prevent over-fitting. When the difference in accuracy between training and 

175 testing is minimal, the current iteration epoch can be accepted and training procedure is stopped. 

176     We give the training algorithm for m-AE in Algorithm 1. In the algorithm, the training set 

177 Train_set is divided into two datasets TCro_train, TCro_val in step 1. Since m-AE has multiple hidden 

178 layers, we set m in the range of Om, in order to determine the m, the dataset TCro_train is used to 

179 train m-AE. The data set TCro_val is used for the validation of the network structure of m-AE. To 

180 get the optimal m, denoted as mopt, the cross-validation is implemented in step 2 to step 18, 

181 where the procedure of step 6 and step 10 describes the calculation process of loss error . ( , )KL w b

182 After gaining the optimal m, m-AE is trained using the training set Train_set. Using 

183 backpropagation manner updates network parameters until m-AE can converge, as shown in step 

184 18 to step 28. The procedure shown in step 29 to step 33 indicates that the maximum training 

185 accuracy Train_acc are outputted and the well trained m-AE is saved.

186

187 Algorithm 1. Training for m-AE.

188 Input: Training set Train_set, is an identity matrix, iteration epoch T, L, parameter * d dA I  

189 Om.

190 Output: Training accuracy Train_acc.

191 Begin：

192 1.  Train_set is divided into TCro_train, TCro_val;

193 2.  for  t=1 to T  do:

194 3.      foreach  m  in  Om:

195 4.            Decompose A* as satisfying  using eigen decomposition.* TA MM
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196 5.            Calculate loss error using Eq. (5) and the procedure is summarized as ( , )KL w b

197 following:

198 6.            The procedure:

199 7.                                   Calculate using Eq. (2).* ( || )
L

K P Q

200 8.                                   Calculate using Eq. (4).* ( , )A i jd x z

201 9.                                   Take and into Eq. (3) to calculate .* ( || )
L

K P Q * ( , )A i jd x z
*- AK L d（）

202 10.                                 For any xi, xj, calculate using Eq. (5).( , )KL w b

203 11.          Calculate training accuracy T_acc= m-AE(TCro_train; m; t);

204 12.          Validate m-AE using data set TCro_val ;

205 13.          Calculate validation accuracy V_acc= m-AE(TCro_val; m; t)

206 14.          Update weight .+ w w w

207 15.          Update A* as MMT.

208 16.          Until A* and hyper parameters converge.

209 17.     end foreach

210 18.  end for

211 19.  Get the optimal value of m, i.e., mopt=arg max(V_acc);

212 20.  for  l=1 to L  do:

213 21.           Decompose A* as satisfying  using eigen decomposition.* TA MM
214 22.           Train m-AE using training set Train_set and mopt ;  

215 23.           Update network parameters using the optimizer Adam ;     

216 24.           Calculate loss error  using Eq. (5);( , )KL w b

217 25.           Calculate training accuracy Training_acc(l) = m-AE(Train_set; mopt) ;

218 26.           Update A* as MMT;

219 27.           Using backpropagation manner updates network parameters;

220 28.  end for

221 29.  Select the l so that lmax=arg max(Training_acc(l)) ;

222 30.  Get the maximum training accuracy Train_acc in the lmax-th iteration ;

223 31.  Train_acc=m-AE(Train_set; mopt, lmax);

224 32.  Output Train_acc

225 33.  Save the well trained m-AE(Train_set; mopt, lmax);

226 End

227

228 EXPERMENTS

229 Datasets and assessment metrics

230 To verify the performance of the proposed m-AE, we selected 4 benchmark datasets with 

231 different data dimensions from the UCI machine learning repository (C. L. Blake, C. J. Merz, 

232 1998). The attributes of the 4 benchmark datasets are summarized in Table 1. 
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233     Receiver operating characteristic curve (ROC) and corresponding area under curve (AUC) are 

234 usually used to assess the precision of machine learning methods. Therefore, AUC is taken as the 

235 assessment metric of method precision.

236

237 Competing and benchmark methods

238 Since m-AE applies the distance metric of rescaling transformation, the methods based on a 

239 distance metric were used for comparisons, including ISSML (S.-Y et al, 2018) and ITML (J. 

240 Mei et al, 2014). Certainly, the method based on feature selection was also considered, i.e., 

241 MMD-ISOMAP (Bo.Y et al, 2016). In addition, autoencoder-based approaches were used as a 

242 comparison, e.g., the SAE (K.-J et al, 2018). Furthermore, to further examine the effects of the 

243 distance metric of rescaling transformation on the performance of m-AE, a benchmark model 

244 was developed with m-AE as a reference. The developed benchmark model used the same 

245 structure and parameter configuration of m-AE without using the distance metric of rescaling 

246 transformation, namely AE-BK.

247     We implemented the corresponding algorithms of the six models using Python on Tensorflow 

248 framework. While for those parameters of competing methods, we adopted those values 

249 observed in the corresponding literature. Certainly, unless otherwise stated, the five 

250 corresponding algorithms all run on the same GPU and apply the same experimental 

251 configuration settings.

252

253 Experiment description

254 Experiments were conducted on the four benchmark datasets in order to validate the ability of 

255 these six models to extract features and their efficiency.

256     Experiment I. To test the robustness of m-AE. The proposed m-AE has multiple hidden 

257 layers, since the number of hidden layers (i.e., the m) significantly affects the precision of feature 

258 extraction, the m needs to be firstly verified, i.e., robustness testing of the model, let m set in the 

259 range of {1, 2, 3, 4, 5, 7, 10, 15, 20}.

260     Experiment II. To test the ability of feature extraction for the six models. The six models 

261 were run on the four benchmark datasets, and then the testing results were analyzed. 

262     Experiment III. To compare the efficiency of our method with competing methods. These 

263 methods were performed on four benchmark datasets and observed their running time.

264     Ablation experiments. To verify that using the distance metric of rescaling transformation 

265 can be beneficial for extracting linearly separable features, the ablation experiments were also 

266 designed.

267      In addition, to eliminate randomness during the experiment and present an objective result, 

268 we used cross-validation to verify the six models. We randomly selected two datasets from the 

269 four benchmark datasets as the training set to train the six models. Once the six models were well 

270 trained, they were tested on the four benchmark datasets, respectively. The process was repeated 

271 five times, independently, then we took the average of five testing results was as a measurement.

272
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273 RESULTS 

274 Experiments on robustness

275 Results in Fig.2 show that the performance of the proposed m-AE and the benchmark model AE-

276 BK improves along with increasing of m, and then the performance remains stable when m 

277 reaches a certain size, i.e., m=3. This means that m-AE and AE-BK are not sensitive to large m 

278 on the four benchmark datasets, i.e., their network structures are robust within a reasonable 

279 range. Therefore, let m be equal to 3 in subsequent experiments. 

280

281 Comparisons of accuracy extraction

282 Results in Table 2 show that the proposed m-AE wins the four competing models and the 

283 benchmark model in the accuracy of feature extraction on all considered instances. For 

284 competitors, ISSML, ITML and SAE outperform MMD-ISOMAP in most benchmark datasets 

285 for the extracted accuracy.

286

287 Comparisons of linear separability.

288 The results of ablation experiments in Fig.3 (a) show that compared with the models without 

289 using distance metrics, e.g., AE-BK, SAE, the models using distance metrics (including m-AE, 

290 ISSML, ITML) perform much better on most datasets in the extracted accuracy of the features 

291 with linear separabilities. Similar, the models using distance metrics also win the model using 

292 feature selection, as shown in Fig.3 (b). To observe the linear separabilities of the extracted 

293 features from the four benchmark datasets, we projected these extracted features onto 2-

294 dimensional space, and then visualized them. Fig.4 displays the results of visualized distribution 

295 on the four benchmark datasets by the six models. The visualized results show that it is optimal 

296 for the separation distance between different types of features extracted by m-AE, meaning that 

297 compared with competing and benchmark models, m-AE is a winner in terms of the linear 

298 separabilities of the extracted features. Together, these results imply that distance metric-based 

299 methods have advantages over feature selection-based methods in terms of extracting the 

300 features with linear separabilities.

301

302 Running time

303 Fig.5 displays the running time of methods. Obviously, the advantage of m-AE in running time is 

304 not as significant as that in both the extracted accuracy and the linear separabilities of the 

305 extracted features. MMD-ISOMAP spends less in running time on most benchmark datasets than 

306 distance metric-based methods, meaning that the execution efficiency of feature selection-based 

307 methods is higher than that of distance metric-based methods when running upon a high-

308 dimensional space. Distance metric-based methods take a lot of time to calculate the distance 

309 between each point pair upon a high-dimensional space, so as to increase the running time.

310

311 Discussion
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312 Insights gained from investigation

313 Compared with the competitors, the proposed m-AE has outstanding advantage in term of both 

314 the accuracy of feature extraction and the linear separabilities of the extracted features on high-

315 dimensional data. We interpret it as following.  On one hand, Mahalanobis distance in Eq. (3) 

316 can appropriately measure similarities between the input sample and the reconstructed input 

317 sample, so as to minimize the loss error of m-AE in Eq. (5). As such, m-AE gains the desired 

318 accuracy of feature extraction. On the other hand, we performed a rescaling on K-L divergence 

319 metric in Eq. (2) by using A* in Eq. (4), which effectively allows the extracted features to present 

320 linear separabilities, because the rescaling can maximized the classification distance between the 

321 extracted different types of features. Hence, the features extracted by m-AE present linear 

322 separabilities than competitors .Overall, m-AE outperforms the competitors in extracted accuracy 

323 and the linear separabilities of the extracted features.

324     In a high-dimensional space, distance metric-based methods easily evaluates the feature 

325 similarity by calculating the distance between the data, however, feature selection-based methods 

326 relatively difficulty assess the feature importance. Therefore, distance metric-based methods, e.g., 

327 ISSML (S.-Y et al, 2018) and ITML (J. Mei et al, 2014), are more suitable for extracting those 

328 low-dimensional features with the linear separability from high-dimensional data than feature 

329 selection-based methods. However, the computational time of feature selection-based methods, 

330 e.g., MMD-ISOMAP (Bo.Y et al, 2016), is lower than that of distance metric-based methods in a 

331 high-dimensional space, since distance metric-based methods spend too much in calculating the 

332 distance between each point pair.

333 Although autoencoders have excellent feature capture capabilities, they may perform poorly in 

334 extracting linearly separable features, e.g., SAE (K.-J et al, 2018). Whereas, this deficiency of 

335 autoencoders can be remedied by introducing a distance metric. Certainly, there are many 

336 methods of distance metrics, e.g., Wasserstein distance metric (Na et al, 2019; Jian et al, 2022), 

337 Bhattacharyya distance metric (Mariucci E, Reiß M, 2017).  

338

339 Limitations

340 The ability of the autoencoder to extract linearly separable features depends on the 

341 reconstructed data distribution, while the reconstruction of the data distribution is achieved by 

342 the Mahalanobis distance metric of rescaling transformation. Upon a high-dimensional space, the 

343 calculation of Mahalanobis distance metric is relatively complicated than that up a low-

344 dimensional space. Moreover, matrix factorization operation needs to be implemented for each 

345 computation, therefore, the proposed model is trained using large-scale high-dimensional data 

346 until it can converge, which may take longer training epoch.

347

348 Conclusions

349 This paper proposed a novel autoencoder method using Mahalanobis distance metric of 

350 rescaling transformation to extract linearly separable features from the data in the high-

351 dimensional space. The difference between the reconstructed distribution and the original 
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352 distribution can be reduced by implementing Mahalanobis distance metric of rescaling 

353 transformation, so that the autoencoder can extract the desired features. Finally, results on real 

354 high-dimensional datasets show compared with competing methods, the proposed method is a 

355 winner in both the accuracy of feature extraction and the linear separabilities of the extracted 

356 features. We find that the linear separabilities of those features obtained by the distance metric-

357 based methods are better than that of obtained by the feature selection-based methods. Upon a 

358 high-dimensional space, since evaluating feature similarity is relatively easier than evaluating 

359 feature importance, distance metric-based methods have more advantages than feature selection-

360 based methods for linearly separable feature extraction, however, feature selection-based 

361 methods are better than distance metric-based methods in computational efficiency. In future 

362 work, we will look at exploring low-dimensional feature extraction from high-dimensional data 

363 under noise disturbance.
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Figure 1
The structure of the proposed m-AE
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Figure 2
Validation of robustness
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Figure 3
Results of ablation experiments

(a) Comparisons between using distance metrics and without using distance metrics. These
models using distance metrics are marked as the symbol √. The models without both
distance metrics and feature selection are marked as the symbol ×. (b) Comparisons
between using distance metrics and using feature selection. These models using feature
selection are marked as the symbol ≠.
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Figure 4
Visualization distributions.

The four datasets are Iris, Dermatology, Hepatitis, Primary from left to right, respectively.
The different extracted features are marked with different shapes and colors. The models
using distance metrics are marked as the symbol √. The models using feature selection are
marked as the symbol ≠. The models without both distance metrics and feature selection are
marked as the symbol ×.
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Figure 5
Runtime on benchmark datasets.

The models using distance metrics are marked as the symbol √. The models using feature
selection are marked as the symbol ≠. The models without both distance metrics and feature
selection are marked as the symbol ×.
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Table 1(on next page)

Benchmark datasets
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1

Dataset Data volume Data dimensionality features

Iris 150 4 3

Primary 339 17 2

Hepatitis 155 19 2

Dermatology 366 33 6

2
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Table 2(on next page)

Accuracy of feature extraction.

The best accuracy for each dataset is shown in bold. The models using a distance metric are
marked as the symbol √. The models using feature selection are marked as the symbol ≠.
The models without both a distance metric and feature selection are marked as the symbol
×.
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1

Iris Dermatology Hepatitis Primary 

m-AE   (√) 0.9744 

0.0157

0.9506 

0.0137

0.7703 

0.0753

0.7375 

0.0534

ISSML  (√) 0.9402 

0.0154

0.8931 

0.0284

0.7131 

0.0642

0.6886 

0.0865

ITML   (√) 0.9488 

0.0120

0.9374 

0.0246

0.7457 

0.0622

0.6816 

0.0745

MMD-ISOMAP  

(≠)

0.9247 

0.0053

0.7680 

0.0377

0.6897 

0.0657

0.6664 

0.0733

SAE    (×) 0.9571 

0.0227

0.8707 

0.0892

0.6773 

0.0373

0.6700 

0.0166

AE-BK  (×) 0.8715 

0.1533

0.7511 

0.0099

0.6666 

0.0771

0.6252 

0.1052

2
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