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ABSTRACT

Outliers are data points that significantly deviate from other data points in a data set
because of different mechanisms or unusual processes. Outlier detection is one of the
intensively studied research topics for identification of novelties, frauds, anomalies,
deviations or exceptions in addition to its use for data cleansing in data science. In this
study, we propose two novel outlier detection approaches using the typicality degrees
which are the partitioning result of unsupervised possibilistic clustering algorithms. The
proposed approaches are based on finding the atypical data points below a predefined
threshold value, a possibilistic level for evaluating a point as an outlier. The experiments
on the synthetic and real data sets showed that the proposed approaches can be
successfully used to detect outliers without considering the structure and distribution
of the features in multidimensional data sets.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms, Data
Mining and Machine Learning

Keywords Outlier detection, Anomaly detection, Unsupervised learning, Fuzzy and possibilistic
clustering, Data analysis

INTRODUCTION

There are various definitions of the term “outlier” in statistics and data science. According
to Barnett ¢ Lewis (2004 ), an outlier is “an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data” as quoted in Hodge ¢
Austin, (2004). Outliers are the data points that violate the assumptions with the statistical
data distribution models. These data points behave differently than the others in the
same data set, and hence, lead to suspicion as if they are created by different factors

or exceptional processes. The outliers should be removed from data sets before going to
further data analysis to avoid the biased results in the calculation of descriptive statistics and
other statistical model parameters used in many data mining applications. For this reason,
outlier detection for identifying outliers in data sets is an important data preprocessing
task in statistics and data science. Besides its use for this sort of data cleansing purposes,
outliers also provide valuable information in discovering unusual objects, unexpected
situations, fraudulent behaviours, novel cases, rare events, human errors and device faults.
Therefore, outlier detection is used for detecting novelties, frauds, anomalies, intrusions,
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noises, deviations, faults or exceptions in business and engineering applications (Hodge ¢
Austin, 2004).

According to the surveys, various methods and approaches have been proposed
for outlier detection (Patcha ¢ Park, 2007; Chandola, Banerjee ¢» Kumar, 2009; Gogoi et
al., 20115 Zhang, 2013; Kalinichenko, Shanin ¢ Taraban, 2014). All these methods and
approaches can be grouped in different taxonomies such as univariate vs multivariate;
parametric, semi-parametric vs non-parametric; supervised, semi-supervised vs
unsupervised; or more frequently in the classes of distribution-based, depth-based,
distance-based, density-based and clustering-based methods (Bern-Gal, 2005; Cebeci, 2020;
Zhang, Meratnia ¢& Havinga, 2010).

Statistical outlier detection methods (a.k.a. distribution-based methods) suppose that
outliers are the data objects having a low probability of belonging to a modelled distribution,
and therefore, deviate from the assumptions of the concerned distribution. In general, they
are based on statistical tests, and their efficiencies highly depend on whether the assumptions
of statistical models fit to the real data or not. These methods generally cannot be applied
on multidimensional data sets, and they also do not work for data sets in which there is no
prior information about their distribution (Ben-Gal, 2005; Cebeci, 2020).

The proximities of data points in a data set can be obtained using the distance or density
metrics. The distance-based proximity methods mark a data point as an outlier if it is
farther away from other data points in the same data set. On the other hand, density-based
proximity methods treat a data point as an outlier if it is located in a low-density region
in a data set. In outlier detection, the overall performance of a proximity-based method
can be easily affected by the metrics used with it (Cebeci, 2020). The advantage of these
methods over statistical-based methods is that no prior assumptions are made about data
distribution. However, these methods have computational complexities and sometimes
lead to difficulties in identifying outliers when they are very close to normal data points.

The clustering-based methods seek the data points that are very distant to the closest
cluster centers. These methods suppose that normal data points belong to big and point-
intensive clusters, whereas outlying data points are not located in any cluster or belong to
very small clusters. Some people consider cluster-based outlier detection as computationally
expensive and not scalable for large data sets. Although this is true to some extent, as
concluded in many studies, there is n superior outlier detection method for universally
applicable on all kind of data sets. The clustering-based methods can be used in outlier
detection practically because they need not prior information about the structure and
distribution of data. Furthermore, they are still good candidates for outlier detection in
multidimensional data sets and provide advantages to work in incremental mode. Sreevidya
argued that the clustering-based outlier detection was more successful than the other types
of outlier detection methods with an 88% accuracy rate in an experiment with many data
sets (Sreevidya, 2014). Similarly, Christy, Gandhi ¢ Vaithyasubramanian (2015) found that
their clustering-based outlier detection approach provided better performance than the
other distance-based outlier detection algorithms. In a very recent comparative study,
Goldstein ¢ Uchida (2016) argued that outlier detection based on clustering can be a good
option for working on large data sets.
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A dozen of fuzzy and possibilistic clustering algorithms have been developed in the last
two decades. Although they mainly target to identify homogeneous groups in data sets,
their possibilistic partitioning results can be also used in detecting outliers. Moreover,
some existing clustering algorithms have also been extended to improve outlier detection.
Because of their less sensitivity to noise and outliers, the fuzzy and possibilistic clustering
algorithms are expected to be more efficient in detecting outliers when compared to
the conventional hard and soft partitioning algorithms. In this study, we describe two
simple approaches to detect outliers in multidimensional data sets using the possibilistic
partitioning results from the possibilistic and fuzzy clustering algorithms.

RELATED WORKS

Studies on clustering-based outlier detection

Choosing an appropriate clustering algorithm for outlier detection is difficult and usually
application dependent task because it depends on many criteria such as the size of data
set, types, distribution and number of features, level of outliers in data, shapes of existing
clusters, time constraints and many others (Bern-Gal, 2005; Penny ¢ Jolliffe, 2001). Although
there is a few outlier detection techniques based on the hierarchical clustering algorithms
(Loureiro, Torgo ¢ Soares, 2004), the partitioning algorithms have been widely used in
outlier detection especially when the size and number of features are primary concerns.
Among them, K-means has been the most widely used algorithm in many clustering-based
outlier detection studies. On the other hand, as mentioned in many studies, K-means is
sensitive to noise and outliers, and may not give accurate results (Hodge ¢» Austin, 2004;
Gan & Ng, 2017). Alternatively, K-medoids or partition around medoids (PAM) is less
sensitive to local minima problem and, therefore, some studies targeted to use these hard
clustering algorithms in outlier detection (Jayakumar & Thomas, 2013; Kumar, Kumar ¢
Singh, 2013). However, the hard clustering algorithms such as K-means and PAM force
each data point to belong to the nearest cluster. In this case, it becomes difficult to find
outliers when they do not tend to form small or sparse clusters.

As a soft clustering algorithm, the Fuzzy C-means (FCM) algorithm calculates different
membership degrees for each data point to every cluster. When a data point has the
same degree of membership to the clusters in a partitioning task it can be evaluated as an
outlier. For detection of outliers using fuzzy clustering algorithms, Klawonn ¢ Rehm (2005)
proposed a method that combines FCM with a modified version of Grubbs (1969), which
is a statistical outlier detection test for univariate data. In their approach, the mean and
standard deviation of each feature for each cluster is calculated after a clustering analysis,
and then each feature is tested against a critical value. The feature vector with the largest
distance to the mean vector is assumed to be an outlier, and removed from the data set.
With the new data sets, the outlier tests are repeated until no outlier is found. The other
clusters are processed in the same way.

Rehm, Klawonn & Kruse (2007) introduced an outlier detection method using noise
clustering with FCM. Their approach determines the noise distance preserving the hyper-
volume of the feature space when approximating the feature space using a specified number
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of prototype vectors. They obtained high accuracy with their approach for different numbers
of clusters in FCM runs.

Moh’d Belal, Al-Dahoud ¢ Yahya (2010) also used the FCM algorithm and proposed a
method based on testing the difference of the objective function values. In their method,
small clusters are determined as outlier clusters and removed from data set after the first
run of FCM. The remaining outliers are then determined by computing the differences
between objective function values by temporally removing the points from the analyzed
data set.

Noise may be present in data sets due to random errors in a feature and they should not
be considered as outliers. But they may distort the distribution and mask the distinction
between normal objects and outliers. Regarding this kind of problems, the possibilistic
algorithms are good candidates for distinguishing outliers more efficiently. For example,
Treerattanapitak & Jaruskulchai (2011) stated that integrating the possibilistic and fuzzy
terms in a clustering algorithm allows detecting outliers. In their study, possibilistic
exponential fuzzy clustering produced accurate results in outlier detection based on
exponential outlier factor scores that are calculated from the distances to the centroids.

Even though the main goal of clustering algorithms is to divide data set into homogenous
clusters, in recent years, there is an increasing interest to extend them with some approaches
for detecting outliers. Duan et al. (2009) proposed the CBOF, a clustering-based outlier
detection algorithm requires four parameters. Huang et al. (2016) introduced the NOF
algorithm, a non-parameter based on natural neighbor. Gan ¢ Ng (2017) shortly reviewed
the extended algorithms based on K-means and introduced the K-means with outlier
removal (KMOR) algorithm which handles clusters and outliers simultaneously. Recently,
Huang et al. (2017) proposed the ROCEF, a cluster detection algorithm does not require a
top-n parameter. ROCF detects isolated outliers and outlier clusters based upon a k-NN
graph. The idea behind ROCF is that outlier clusters are smaller in size than normal clusters.

Although all the algorithms discussed above have their own advantages, they need to
select at least one or more parameters. So, using the simple methods which do not require
data-dependent parameters may be more useful in outlier detection. Although the typicality
degrees from an optimal run of a possibilistic clustering algorithm can be used to identify
outlying points, since the fuzzy and possibilistic algorithms are more robust to the noise
and coincident clusters problems they can be more successful to detect the outliers. In this
study, we used the unsupervised fuzzy possibilistic clustering algorithm by Wu et al. (2010)
as the representative of fuzzy and possibilistic algorithms.

Unsupervised fuzzy and possibilistic clustering algorithms

The hard prototype-based clustering algorithms, i.e., K-means and its variants, assume
that each object belongs to only one cluster; however, clusters may overlap and objects
may belong to more than one cluster. In this case, a data point can be a member of several
clusters with varying membership degrees between zero and one. The Fuzzy C-means
(FCM) clustering algorithm (Bezdek, 1993) assigns a fuzzy membership degree to each data
point based on their distances to the cluster centers. If a data point is closer to a cluster
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center, its membership degree to that cluster will be higher than its membership degrees
to the other clusters.

To fix the sensitivity of FCM to noise and outliers, the possibilistic C-means (PCM)
algorithm has been introduced (Krishnapuram & Keller, 1993). However, it has been
revealed that PCM can generate coincident clusters if it is not well initialized. Later a dozen
of hybrid versions of FCM and PCM have been proposed to overcome the problems with
FCM and PCM. For instance, the fuzzy possibilistic C-means (FPCM) Pal, Pal ¢ Bezdek
(1997) aims to compute memberships and typicalities simultaneously. An extended version
of PCM has been introduced by Timm et al. (2001) to make clusters far away from each
other. The possibilistic fuzzy C-means (PFCM) Pal et al. (2005) has also been developed
to fix the noise sensitivity problem with FCM, the coincident clusters problem with PCM
and row sum constraints problem with FPCM.

Wi et al. (2010) proposed the unsupervised possibilistic and fuzzy clustering (UPFC)
algorithm as an improved version of the original possibilistic clustering algorithm (PCA)
(Yang & Wu, 2006). UPFC combines FCM and PCA to overcome the noise sensitivity
problem of FCM and the coincident clusters generated by PCA. Moreover, unlike PCA
algorithm, UPFC also does not require a fuzzy membership matrix from a previous FCM
run. Using the objective function in Eq. (1), UPFC minimizes the distances between ¢
prototype vectors (v;) and n feature vectors (xx) in R features space.

n c n c
B
Jupre (XU, V) =Y (au+3)d> i vi) + ——= > > _(tillogti — 1) (1)
; n?/c e+
k=1 i=1 k=1 i=1
In Eq. (1), i and tj are the fuzzy and possibilistic membership degree of k™ feature
vector (xx) to the i cluster respectively. The UPFC objective function has the constraints
which are listed in Eq. (2).

c

Zuik=l;‘v’k;0§uik§1;a>0;b>0;m>1;n>1. (2)
i=1

In the possibilistic algorithms, the parameter m is a fuzziness exponent and the parameter
n is a typicality exponent. Both these parameters are usually set to 2. In the objective
function in Eq. (1), the parameters a and b are weighing coefficients for setting the relative
importance of fuzziness and typicality respectively. Generally, both of these coefficients are
equally set to 1.

To minimize Jyprc, the typicality degrees tjx and the membership degrees u;; are
recalculated in each iteration step with Eqs. (3) and (4) respectively.

—1

c d (xp, v) 2/(m—1)
ko Vi .
Up = — Vi, k (3)
' ]Z(d(’%v]')>

2 .
b”\/zd (xk’VZ))Vi. (4)
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As seen from the formula in Eq. (4), a typicality degree is a possibilistic measure
indicating the membership degree of a data point to clusters. The value 8 is is distance

variance, and calculated as seen in Eq. (5).

1 — 1
,3=—Zd2(xk,§);f=—zxk (5)
nk:l nk:l

The formula in Eq. (6) is used to update the cluster centers in each iteration. The UPFC
algorithm stops when a predefined convergence level is achieved.

. pIy (“”;Z"'?k)xk .
— = ;
Zk:l (a”;z+ik)

(6)

Vi

PROPOSED APPROACHES FOR OUTLIER DETECTION

To find the outliers in multidimensional data sets, we describe the proposed novel
approaches in this section. The pseudocode for the proposed approaches is given in
Algorithm 1. This algorithm uses the matrix of possibilistic membership degrees (a.k.a
typicality degrees). A matrix of possibilistic membership degrees is returned from a UPFC
run and passed to the proposed algorithm to find the outliers in the studied data set. In the
subsections below the proposed approaches are explained.

Approach 1

While the fuzzy clustering algorithms determine the fuzzy membership degree of fuzzy
data points to any cluster, they do not evaluate typicality according to their distances from
cluster centers. For example, suppose there are two data points A and B, both they have
50% fuzzy membership degree to two different clusters. If their distances from the cluster
centers are, say, 2r and 5r, the latter will be a more atypical data point as it is further away
from the cluster centers. When compared to fuzzy membership degrees, typicality degrees
from the fuzzy and possibilistic clustering algorithms reveal the distinction between the
highly atypical and the less atypical members of the clusters. This means that all fuzzy points
for a cluster are not equivalent: some are more typical and some are not. This implies that
typicality is distinct from a simple similarity to the cluster center because it also involves a
dissimilarity notion. Therefore, in our proposed algorithms we used the typicality results
from UPFC algorithm.

In our first approach, a data point which is not a member of any cluster is evaluated as
an outlier. In such case, its average typicality to all clusters should be less than a predefined
possibilistic threshold level (o). This approach checks whether the average typicality of
kth feature vector (xi) to all clusters exceeds a threshold level, which is a user-defined
possibility degree for evaluating a data point as an outlier.

The test function in Eq. (7) is used to label a data point as an outlying data point. If the
average typicality of x; to all clusters (¢ clusters) is less than «, it is considered as a highly
atypical data point and flagged as an outlier in the data set (see in Algorithm 1).
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Algorithm 1 Pseudocode for the proposed outliers detection approaches.

Input: T, alpha, apr
//Typicality degrees matrix in nxc dimension, and built by an
/lunsupervised possibilistic clustering algorithm
/1 alpha, threshold possibility value for outlier testing
// apr, number of the approach to be used in outlier detection
Output: Outliers
//Outliers, vector of n length to store the flags of outliers
n <- count of rows of matrix T
¢ <- count ofcolumns of matrix T
/1 If alpha is undefined, use 0.05 as the default value
if alpha is null then alpha = 0.05
Outliers <- {0} //Assign 0 to all elements of the outliers
fork=1tondo
if apr = 1 then
sumT <-0
fori=1tocdo
sumT <- sumT + T[i,k]
end
avgT <-sumT/c
if avgT <= alpha then
Outliers[k] <- 1
end
else
if apr = 2 then
isOutlier <- True
fori=1tocdo
if T[i,k] >= alpha then
isOutlier <- False
end
end
if isOutlier = True then
Outliers[k] <- 1
end
end
35 end
36 end
37 return Outliers

O 0 N QN Ul b W N~

—
— O

W W W W W N DD DD DN DNDDNDNDDNDIDND = = = = =
B W= O 0 00N ONU W= O N0 0N O U W

Choosing an appropriate « value is crucial in this approach. According to our tests on
several experimental data sets, we determined that a threshold level of 1% (o =0.01) may
be sufficient to find the outliers on the results of UPFC runs, and therefore we recommend
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to use it as the default value for approach on large data sets.

is.outlier (x;) =

1if() tife) <
i=1

0 otherwise

Approach 2

In the second approach, it is assumed that a data point is an outlier if it is atypical for
every cluster in ad a data set. As seen in Eq. (8), if the typicality of the feature vector x
for all clusters is less than a user-defined threshold level («), it is evaluated as an outlier,
otherwise, it is normal (see in Algorithm 1). As expected with this function, larger threshold
values may lead to less number of outliers whereas smaller ones may lead to much more
number of outliers. However, we recommend to use a default threshold typicality level
of 5% (o = 0.05) for finding the most probable outliers in data sets, one can increase

it to higher levels to make the detection task looser. But, in this case, the probability of
treating normal data points as outliers (false positives) also increase. In our experiments, a
threshold level up to 10% was sufficient to detect the simulated outliers in many runs of
UPFC on several synthetic data sets. One can look for an appropriate threshold with trial
and error approach for different data sets or can use a prior known level of threshold for a
specific application domain.

1 if tyg <a;Vi

is.outlier (x;) = ]
(xe) 0 otherwise

(8)
In some cases, even so, the proposed approaches can find most of the outliers in a data
set, collective outliers do exist in it, and their presence should be checked. These are the
outlying data points in small or sparse clusters. Thus, all members of small clusters could
be seen as the collective outliers according to the third assumption is given in Chandola,
Banerjee ¢ Kumar (2009). If the number of members of a cluster is less than a threshold
cluster size it can be flagged as a small cluster. Several formulas have been presented to
calculate a threshold size for determining small clusters. For example, Loureiro, Torgo ¢
Soares (2004) stated that a cluster is small if its size less than half of the average size of ¢
clusters (n/2c). Santos-Pereira & Pires (2002) proposed that clusters whose size of 2p + 2
can be considered as small outlier clusters. However, the mentioned proposals might be
useful for small data sets they may not work well for larger and high dimensional data sets.
For computing a more suitable threshold size to determine small clusters (fcs), we propose
to use the formula in Eq. (9). This is a simple formula based on the expected cluster size,
which is weighted with the logarithm of the number of features in an examined data set.

log2n

fcs= log2p 9)
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Figure 1 2D scatter plot for SD1.
Full-size G4l DOI: 10.7717/peerjcs.1060/fig-1

EXPERIMENTS ON SYNTHETIC DATA SETS

In this study, the proposed approaches have been tested on two synthetic data sets, one
with three features (p = 3) and the other with two features (p =2) for easy demonstration
of outlier detection. We generated the first experimental data set by using the R package
MixSim’ (R Core Team, 2020). To examine the performance of the proposed approaches
on multidimensional data, we aimed to generate our dataset consisting of three features
and four clusters. For this purpose, we ran ‘MixSim’ with the set of parameters of
BarOmega = 0.001, K =4, and p = 3. The created data set had a total of 120 data points,
30 in each cluster. In addition to the normal data points located in the simulated clusters,
10 outlying data points were also added to the data set as illustrated with the box dots in
Fig. 1. The labels (row numbers) of these outliers were between 121 and 130. As a result of
the simulation work using ‘MixSim’, we obtained our first synthetic data set (SDS1) with
130 data points as illustrated with 2D and 3D scatter plots in Fig. 1.

In our experiments, we coded the R functions for the proposed outlier detection
approaches in R environment (R Core Team, 2022). As an implementation of the UPFC
algorithm, we used the “‘upfc’ function of the R package ‘ppclust’ (Cebeci, 2019). To initialize
the cluster prototypes, we applied Kmeans++ algorithm Arthur ¢» Vassilvitskii (2007) by
using ‘kmpp’ function in the R package ‘inaparc’. For initialization of cluster prototypes
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matrix V and membership matrix U, we set the seed of random number generator to

a predefined constant number (234) to ensure the same initialization values between
UPFC runs. To determine the success of proposed outlier detection approaches at different
number of clusters, UPFC has been started at five levels of number of clusters (c =2,...,6)
on the synthetic data sets. An important subtask in clustering-based outlier detection is
to find a good partitioning result for identifying outliers. A reasonable way to find an
optimum partitioning is to validate the results obtained at different number of clusters.
For this purpose, we used four well-known internal fuzzy indices: Xie-Beni index (XB) Xie
& Beni (1991), Tang-Sun index (TS) Tang, Sun ¢ Sun (2005), Pakhira-Bandyopadhyay-
Maulik Fuzzy index (PBMF) Pakhira, Bandyopadhyay ¢ Maulik (2004), Modified Partition
Coefficient (MPC) (Dave, 1996). These internal validation indexes work with membership
degrees, which are calculated by the regular FCM algorithm and some of its newer variants.
However, the fuzzy and possibilistic algorithms do not calculate fuzzy membership degrees
only, they also calculate possibilistic membership degrees called as typicality degrees. Since
the possibilistic clustering algorithms do not constraint row sums of feature vectors, the
validation indices for fuzzy clustering cannot be directly used to validate typicality degrees
in possibilistic and fuzzy environments. In this case, the existing indices do not work
properly with typicality degrees. For instance, the MPC index value also becomes higher
when the number of clusters used by a partitioning algorithm is higher. The same validation
issues apply to other indexes. Thus, some modified or generalized versions of these indices
are needed to find a good partitioning result by using typicality degrees. As a solution for
this need, Yang ¢ Wu (2006) proposed to normalize typicality degrees as formulated in
Eq. (10).

A = Lik
AU
Y itk

Using Eq. (10), we divided the typicality degrees into their row sums and obtained the

; Vi k (10)

normalized typicality degrees (1) to use in validation of clustering results. In this study,
the R package ‘fcvalid’, Cebeci (2020) has been run for computing the internal validity
indices using the UPFC clustering results.

The outliers detected from the results of UPFC runs for five different number of clusters
for SDS1 are given in Table 1.

As seenin Table 1, all the ten simulated outlying points in SDS1 plus one more data point
(the point 39) were found as outliers by Approach 1 using the typicalities from UPFC run
for the clustering done for two clusters (¢ = 2). Except for two points (the points 126 and
128), Approach 2 also detected most of the simulated outliers in SDS1. Using the results
from partitioning done for three clusters (¢ = 3), Approach 1 found twelve outliers that
consist of points 1 and 6 in addition to all of the simulated outliers. In the clustering done
for three clusters, except two points (the points 124 and 128) Approach 2 also detected the
same outliers as those found in the clustering done for two clusters.

For comparison purposes, as the second data set (SDS2), we used the synthetic data set
given in Table 2 by Rehm, Klawonn ¢ Kruse (2007). The data set SDS2 contains 45 data
points in two clusters with some amount of outliers. The labels of the outliers are 14, 35,
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Table 1 Outliers detected in SDS1.

c Approach 1 Approach 2

2 39121122123 124 125126 127 128 129 130 121 122123 124 125127 129 130

3 16121122123 124 125126 127 128 129 130 121122123 125127 128 129 130

4 121122123 124 125126 127 128 129 130 121 122123 125126 127 128 129 130
5 121 122 123 124 125 126 127 128 (129 130) 121 123 125 126 128

6 104 121 122 123 124 125 126 127 128 121 123 125 126 128

Table 2 Values of the validity indices by different number of clusters for SDS1.

c XB TS PBMF MPC

2 0.1167624 8.043394 0.09970858 0.8583530
3 0.1385422 8.044566 1.87827975 0.8379177
4 0.1853725 8.732699 0.01513389 0.8392733
5 0.1059272 6.024347 0.95398914 0.8742973
6 1.4147905 10.132927 0.06037724 0.7632591

41, 42, 43, 44 and 45 (marked with the box dots in Fig. 2) according to the results obtained
by Rehm, Klawonn & Kruse (2007).

Although the proposed approaches were highly successful to identify the simulated
outliers from the clustering results at ¢ =2 and ¢ = 3, outlier detection should be based
on an optimum clustering result suggested by the fuzzy validation indices. According to
the validation indices in Table 2, the PBMF index suggested four clusters whereas XB, TS
and PBMF suggested five clusters for SDS1. In UPFC run for four clusters, Approach 1
completely detected the ten simulated outliers in SDS1. Approach 2 was also successful
and found the same result with Approach 1 excluding one missing outlier (the point 124).

The clusters and the detected outliers are also shown in Fig. 3 for giving a clear idea
about the clusters and outliers results found with UPFC run for four and five clusters. The
scatter plots on the left panels show the outliers found by Approach 1 while the scatter
plots on the right panels stand for the results found by Approach 2. In Fig. 3, the blue
crossed circles and the red box dots with labels show the cluster centroids and detected
outliers, respectively. In the UPFC run for five clusters, the number of outliers was less than
those detected from UPFC run for four clusters. As seen from the left two panels of Fig.
3, while the data points 129 and 130 are the outliers according to the results from UPFC
run for four clusters, they moved to a newly formed cluster in UPFC run for five clusters.
Since their typicalities to this newly formed cluster increased they were not detected as the
outliers by the proposed approaches in UPFC run for five clusters. In such cases, the size
of clusters should be examined for the existence of collective outliers because the small
clusters are considered as the outlier clusters which having a few numbers of highly similar
points in isolated locations of data space. In our experiment, the above-mentioned cluster
includes the points 129 and 130 were interpreted as an outlier cluster because its size was
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Figure 2 2D-scatter plot (p1 vs p2) for SDS2.
Full-size & DOI: 10.7717/peerjcs.1060/fig-2

small according to the formula in Eq. (9). In Fig. 3, we can conclude that UPFC run for
five clusters was also successful to detect all the simulated outliers in SDS1.

According to the results in the last row of Table 1, Approach 1 again detected the
identical outliers plus one more (the point 104) in the clustering done for six clusters
whereas Approach 2 found five outliers. These findings pointed out that some of the
outliers may not be found directly when the number of cluster parameter used in the
clustering algorithm is higher than the real number of groups in the examined data sets.
In such case, as above discussed for the clustering done for five clusters, the size of clusters
should be examined for finding the small clusters. In our experiment, since the points 129
and 130 were together located in a small cluster, they were again considered as the outliers
in clustering done for six clusters.

As seen in Table 3, all the validity indices found that the best partitioning for SDS2
from the clustering done for two clusters (c =2). As seen in Fig. 4, based on this validation
result, four outliers (the points 42, 43, 44 and 45) and three outliers (the points 43, 44 and
45) were detected by the Approach 1 and Approach 2, respectively. The outliers detected
by Approach 1 were identical between the clustering done for two and three clusters. But
less number of outliers was detected with the clustering done for four clusters (c =4). The
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Figure 3 Outliers detected from the results of possibilistic partitioning for four and five clusters on

SDS1.
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Table 3 Values of the validity indices by different number of clusters for SDS2.

c XB TS PBMF MPC

2 0.08256631 4.213788 257.2904 0.9480826
3 0.85765530 43.048094 30203.7867 0.6795931
4 0.42083833 22.494335 42228.4537 0.7041015
5 3.36639018 177.540583 70887.5026 0.4275838
6 2.65760351 146.300871 45277.8600 0.4881886

outliers found with Approach 1 from the clustering done for five clusters (c = 5) were the

same with those found in the study on SDS2 data set by Rehm, Klawonn ¢ Kruse (2007).
Similar to those found for SDS1, Approach 2 detected less number of outliers than

Approach 1 for SDS2 too. However, this result was due to the used threshold level («)

as small as 0.05. When it is increased to a higher level, namely to 2 o, Approach 2 could
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Figure 4 Clusters and outliers detected from the result of possibilistic partitioning for two clusters on
SDS2.
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produce the same results with Approach 1. Even though leveraging « to higher values is an
option for detecting more outliers, Approach 2 should be applied at lower levels of « to
obtain the most possible outliers.

COMPARISON OF MULTIVARIATE OUTLIER DETECTION
METHODS

For comparison purposes, we have finally detected the outliers in SDS1 and SDS2 by using
some outlier detection packages in R environment. The function lofactor in the package
DMwR (Torgo, 2010) and the function lof in the package Rlof (Hu et al., 2020) calculate
local outlier factors using the LOF (local outlier factor) algorithm with the parameter k,
which is the number of neighbors used in the calculation of the local outlier factors. LOF is
an algorithm for identifying density-based local outliers (Breunig et al., 2000). It compares
the local density of a point with those of its neighbors. If the density is significantly lower
than the density of its neighbors it is evaluated as an outlier.

The function aq.plot in mvoutlier package (Filzmoser & Gschwandtner, 2021) plots the
ordered squared robust Mahalanobis distances of the observations against the empirical
distribution function of the MD?. The distance calculations are based on the MCD
estimator. For outlier detection two different methods are used. If an observation exceeds
a certain quantile of the Chi-squared distribution it is marked as an outlier by the first
method. The second is an adaptive procedure searching for outliers specifically in the tails
of the distribution, beginning at a certain Chi-squared quantile (Filzmoser et al., 2005).
The function behaves differently depending on the dimension of the data. If the data is
more than two-dimensional it is projected on the first two robust principal components
(Filzmoser ¢ Gschwandtner, 2021).
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HDoutliers package (Fraley, 2022) is an R implementation of an outlier detection
algorithm based on a distributional model that uses probabilities to determine outliers in
multidimensional data sets. The details of the algorithm can be seen in Wilkinson (2018).
The first stage with the HDoutliers is to run getHDmembers function in which the data is
partitioned according to exemplars and their associated lists of members. Afterward, an
exponential distribution is fitted to the upper tail of the nearest-neighbor distances between
exemplars with getHDOutliers function of the package. Data points are considered outliers
if they fall in the (1 —«) tail of the fitted cumulative distribution function (Fraley, 2022).

As seen in Table 4, while the outliers detected in SDS1 with HDOutliers algorithm
were the same with those found by Approach 1 and Approach 2 in the clustering done
with four clusters in Table 2. HDoutliers did not outcome any outlier for SDS2. LOF
algorithm, ran with the parameter k = 10 in DMwR and Rlof package produced the
identical outliers (excluding the point 20) to those found by Approach 1 in the clustering
for six clusters in SDS1. Although LOF algorithm detected more outliers when compared to
those detected by the proposed approaches in SDS2, most of outliers found were the same.
The mvoutlier package resulted with too many outliers for SDS1 (45 outliers), and thus, was
not comparable to the other algorithms. But it suggested mostly similar outliers to those
of Approach 1 in SDS2. Finally the outliers found by Approach 1 from the clustering done
for five clusters (c =5) were the same with those found by Rehm, Klawonn & Kruse (2007)
on SDS2. Based on these comparisons, we could conclude that our proposed approaches
were efficient to detect the outliers in the analyzed synthetic data sets.

EXPERIMENTS ON THE REAL DATA SETS

The performances of suggested approaches have been also tested on the real data sets,
which are given in Table 5. All these data sets are the modified versions of the original data
sets in UCI machine learning repository (UCIML) which have been processed for use in
benchmarking for outlier detection. The descriptions of these data sets can be seen at the
Outlier Detection Data Sets (ODDS) library (Rayana, 2016), the directory of Unsupervised
Anomaly Detection of Harvard Dataverse (Goldstein, 2015) and UCIML (Dua ¢ Graff,
2017).

The Wine data set (wine) in Table 6 was imported from ODDS. It is a down-sampled
version of the original Wine dataset in UCIML. While the original data set contains 13
features and 1 class variable with three classes, in the modified version of it in ODDS, the
class 2 and 3 have been labelled as normal data points and the class 1 has been labelled as
outlier class with 10 data points.

The data sets Wisconsin breast cancer (b-cancer), letter recognition (letter), pen-based
recognition of handwritten text (pen-global) and Statlog Landstat Satellite (satellite) were
imported from the Harvard Dataverse repository (Goldstein, 2015). To use in benchmarking
studies for unsupervised anomaly detection, these data sets have been generated from their
original versions in UCIML.

The Wisconsin breast cancer data set in UCIML contains the records for benign and
malignant cancer types. In the modified version of this data set (b-cancer), the malignant
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Table 5 Real data sets used for evaluation of the proposed approaches.

Data set Size Features Outliers (%)
b-cancer 367 30 10 (2.70)
letter 1600 32 100 (6.25)
pen-global 809 16 90 (11.10)
satellite 5100 36 75 (1.47)
wine 129 13 10 (7.70)

Table 6 Number of outliers detected on the real data sets.

Approach 1 Approach 2
Data set c o =0.01 a=0.025 oa=0.05 o=0.01 o=0.025 o =0.05
b-cancer 2 10 16 21 9 10 16
letter 2 40 190 491 18 73 242
pen-global 3 100 180 239 83 140 206
satellite 2 78 153 372 61 95 207
wine 2 2 7 16 2 3 8

class in the original data set has been downsampled to 21 points, which are considered
as outliers, while points in the benign class are labelled normal data points. This data set
includes totally 367 data points with the rate of 2.72% of outliers.

The original letter recognition data set in UCIML includes 16 features of 26 uppercase
letters in the English alphabet. The original data set has been reorganized for outlier
detection by subsampling data from three letters to form the normal class and randomly
concatenate pairs of them. The letter data set used in this study contains 1600 data points
with 32 features.

In UCIML repository, the original data set pen-based recognition of handwritten text
contains the handwritten digits 0-9 by 45 different people. The processed version of this
data set called “global” (pen-global) in ODDS has been handled by keeping only the digit 8
as the normal class and sample the 10 digits from all other classes as outliers. The pen-global
dataset has 16 features and 809 data points (Christy, Gandhi & Vaithyasubramanian, 2015).

The Satellite data set (satellite) is a modified version of the original Statlog Landsat
Satellite data set in UCIML. To create this data set, the smallest three classes have been
combined to form the outlier class, while all the other classes have been as the inlier class.
The satellite data set consists of 36 features and 5,100 data points.

In Table 6, the column with head ¢ shows the suggested cluster numbers by the fuzzy
validation indices for the examined real data sets. According to the outlier detection analyses
at these numbers of clusters, Approach 1 at the threshold level of 1% and Approach 2 at
the threshold level of 2.5% were completely successful to find all the outliers in b-cancer
data set. Both the proposed approaches detected more outliers than the reported number
of outliers for the letter data set. Approach 2 with the threshold level of 2.5% produced the
nearest result to the numbers of outliers in the letter data set. Approach 1 at the threshold
level of 1% successfully detected all of the outliers marked in pen-global data set whereas
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Approach 2 found the most of them at the same threshold level. Approach 1 with the
threshold level of 1% was again successful to find the outliers in the satellite data set while
Approach 2 detected less number of outliers for the same data set. Finally, for the wine data
set, Approach 1 with the threshold level of 2.5% and the Approach 2 with the threshold
level of 5% gave the closest number of outliers to those reported for this data set.

As a general evaluation of the results, we could conclude that when the dimensionality
of data sets increases we recommend to use Approach 1 at the lower threshold levels.
Working with the threshold level of 1% may practically be enough for detecting outliers in
many cases. As explained in the introduction of the approaches in ‘Proposed Approaches
for Outlier Detection’, since Approach 2 detects the most probable outliers it will return
less number of outliers for the analyzed data sets.

CONCLUSIONS

In this study, we introduced and tested two novel approaches to detect outliers using the
typicality degrees obtained from unsupervised possibilistic and fuzzy clustering algorithms.
Based on the experiments, the proposed approaches seem promising in detecting outliers
in different kind of multidimensional data sets. Additionally, the proposed approaches are
simple to implement and do not need any parameter except only a user-defined alpha value
as the threshold typicality level. In this study, although we tested the proposed algorithms
on the typicality degrees from UPFC algorithm, they can be applied with the typicality
results from the other PCM-like algorithms. Therefore, they can be easily used for achieving
considerably good performance in most of the application domains.

However, both of the proposed approaches provide the same results when the parameter
¢ is chosen close enough to the real number of clusters in data sets, Approach 2 tends to
give a smaller number of outliers, usually at the higher levels of number of clusters used
in the runs of the clustering algorithm. Although the outliers could be detected from the
partitioning results done for the number of clusters below and above the actual number
of clusters, we recommend detecting the outliers by using the partitioning result, which is
suggested by the majority of fuzzy internal indices. We also recommend using Approach 1
at the lower threshold levels, i.e., 1%, because it worked well for majority of the analyzed
real data sets.

In this study, although the proposed approaches have been tested to detect the outliers
on some well-known real data sets, we still need some further studies to examine their
performances at different densities of outliers in larger data sets. The performance of
outlier detection based on clustering is also closely related with the selected values of
parameters which are used in the runs of clustering algorithms. Therefore, the efficiency of
the proposed approaches should be examined regarding the parameters used by UPFC such
as different settings of fuzziness and typicality exponents, different weights of possibilistic
part of the objective function, and the different initialization techniques in generation of
the prototypes used in UPFC runs.
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