Submitted 24 February 2022
Accepted 17 July 2022
Published 6 September 2022

Corresponding author
Michele De Bonis,
michele.debonis@isti.cnr.it

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.1058

© Copyright
2022 De Bonis et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

FDup: a framework for general-purpose
and efficient entity deduplication of
record collections

Michele De Bonis, Paolo Manghi and Claudio Atzori

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI), Consiglio Nazionale delle
Ricerche (CNR), Pisa, Italy

ABSTRACT

Deduplication is a technique aiming at identifying and resolving duplicate metadata
records in a collection. This article describes FDup (Flat Collections Deduper), a
general-purpose software framework supporting a complete deduplication workflow
to manage big data record collections: metadata record data model definition, iden-
tification of candidate duplicates, identification of duplicates. FDup brings two main
innovations: first, it delivers a full deduplication framework in a single easy-to-use
software package based on Apache Spark Hadoop framework, where developers can
customize the optimal and parallel workflow steps of blocking, sliding windows, and
similarity matching function via an intuitive configuration file; second, it introduces a
novel approach to improve performance, beyond the known techniques of “blocking”
and “sliding window”, by introducing a smart similarity matching function T-match.
T-match is engineered as a decision tree that drives the comparisons of the fields of two
records as branches of predicates and allows for successful or unsuccessful early-exit
strategies. The efficacy of the approach is proved by experiments performed over big
data collections of metadata records in the OpenAIRE Research Graph, a known open
access knowledge base in Scholarly communication.

Subjects Data Science, Digital Libraries
Keywords Deduplication, Scholarly communication

BACKGROUND

Deduplication is a technique for the identification and purging of duplicate metadata
records in a collection of records, generally intended as sets of field-value pairs describing
the properties of an entity. To this aim, deduplication techniques first identify groups of
equivalent records in a collection (i.e., different records describing the same entity), then
apply preferred duplication resolution strategies (e.g., record merge, record purging, etc.)
to return a disambiguated collection of records. The deduplication process entails several
known challenges, which have to do with (Atzori, Manghi ¢» Bardi, 2018): (i) the efficiency
of the process, which in the case of “big data” metadata record collections is severely
biased by the quadratic complexity derived from the need of matching every record with
all the records in the collection; (ii) the similarity matching function and its ability to
encode and capture record equivalence; and (iii) the complexity and flexibility of tools,

How to cite this article De Bonis M, Manghi P, Atzori C. 2022. FDup: a framework for general-purpose and efficient entity deduplication
of record collections. Peer] Comput. Sci. 8:e1058 http://doi.org/10.7717/peerj-cs.1058

https://peerj.com/computer-science
mailto:michele.debonis@isti.cnr.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

often resulting from assembling different pieces of code, not easily adaptable to deal with
different scenarios.

The efficiency challenge is traditionally tackled by adopting a combination of two
heuristics: clustering and sliding window (Paulo ¢ Pereira, 2014; Venish ¢ Sankar, 2015).
Clustering makes sure potentially equivalent records are grouped into clusters (aka
“blocks”), within which the pair-wise similarity match will be quadratically applied.
Blocking reduces the number of matches but, most importantly, allows for the parallel
execution of the process across different blocks (Manghi et al., 2020). The sliding window
technique further optimizes the number of matches within the individual blocks by sorting
the records in such a way that similar records are likely kept close to each other and then
matching each record with the “k” following records (“K-length window”).

The similarity matching challenge is typically addressed with a function yielding an
equivalence score between two records, obtained as the weighted sum of the scores
calculated by the pair-wise comparison of records’ field values. The flexibility of the
function depends on the available comparators, predicates, etc., the configuration of the
weights for each comparator/field, etc.

As mentioned above, customization and configuration of such tools can be cumbersome
and a barrier for developers, whose steep learning curve typically leads to the re-
implementation of new tools or “one-shot” code to patch/assemble existing projects.

This article presents FDup (Flat Collections Deduper), a software framework based on
the Apache Spark Framework that supports the full deduplication process as described
above. FDup improves the current state-of-the-art approaches in two ways:

o Customization and flexibility of configuration: users can flexibly and easily customize
the various phases of the framework via a single configuration file: clustering, sliding
window and similarity functions; it offers a set of predefined comparators which can
be used to configure a deduplication process without being proficient in programming
languages;

e Efficient Similarity Matching: users can configure a similarity function T-match, defined
as a PublicationTreeMatch which drives the comparisons of the fields of the records and
allows to configure early-exit strategies to further reduce the overall performance.

FDup was conceived as an enhancement of the GDup framework (Graph Deduper)
(Atzori, Manghi ¢ Bardi, 2018), a software framework designed to deduplicate big data
graphs, intended as sets of record collections connected by relationships. GDup adopts
parallel clustering and sliding windows techniques to identify duplicates and delivers
strategies to resolve duplication while preserving the topology of the graph. In order to
further improve performance, GDup was endowed with the T-match function, somehow
pioneering performance optimization in the similarity matching phase. The resulting
software modules, efficiently identifying duplicates in a flat collection of records, have been
factored out of the GDup software package and published as FDup, a stand-alone software
package (De Bonis, Atzori & La Bruzzo, 2022) that can be easily re-used in such common
scenarios.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

FDup is today in use in the production system of the OpenAIRE infrastructure
to deduplicate the entities of the OpenAIRE Research Graph (http:/graph.openaire.
eu) (Manghi et al., 2021). The OpenAIRE Research Graph is a scholarly communication
“big data graph” whose goal is to support the realization of research impact monitoring
and discovery services for funders, institutions, and researchers in specific disciplines. The
graph is constructed by harvesting, harmonizing, and deduplicating beyond 300Mi+ records
about publications, datasets, software, and organizations harvested from 97,000 scholarly
communication sources (e.g., journals, institutional repositories, data repositories). The
simplicity of use and the improved performance derived from FDup will be demonstrated
by experimenting with two collections of 10Mi and 230Mi of non-deduplicated publication
records in the graph.

Outline: the last part of this section analyses the state-of-the-art to highlight the
innovation gap brought by FDup. The ‘Material’ section formally presents the functional
architecture of FDup, focusing on the requirements, the model adopted, and the technical
implementation of the framework, providing an example of its usage in the OpenAIRE
infrastructure. ‘Methods’ describes methods and techniques used to test both the efficiency
and the general-purposeness of the framework defining an innovative custom configuration
for the deduplication. ‘Results’ provides experimental results and highlights how FDup
overcomes traditional approaches in terms of time consumption. ‘Discussion’ and
‘Conclusions’ conclude the article and delve into possible future works and developments
of the framework.

State of the art

Many tools and frameworks contributed in different ways to the general problem of
entity linking of which deduplication is a specific application. Complete surveys of such
approaches can be found in Nentwig et al. (2017) and Sitas ¢ Kapidakis (2008). This class
of problems has been deeply studied in the literature, and many solutions were proposed to
specifically tackle the usability and the efficiency of the approaches. Solutions focus mainly
on the optimization of the quadratic complexity by accurately selecting (e.g., heuristics)
the pairs of entities to be matched and by parallelizing the actual match operations Ralim
& Peukert (2019). Interestingly, the survey also analyzes the approaches used for similarity
matching of a pair of records. Record matching is in general driven by similarity measures
that are computed atomically but never mentioned as a phase where further optimization
of the overall process can take place.

Saltzer ¢ Hylton (2002) propose a clustering algorithm that tolerates errors and
catalogues variations by using a search engine and an approximate string matching
algorithm. The approach proved to be effective as it identifies more than 90 percent of the
related records and includes incorrect records in less than 1 percent of the clusters.

Tauer et al. (2019) describe a solution based on a graph partitioning formulation that
improves the accuracy of entity resolution by incrementally revising results whenever new
information about the input entities is provided. The approach improves accuracy and
optimizes the process by reducing the number of comparisons required in subsequent
rounds of deduplication.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 3/23

https://peerj.com
http://graph.openaire.eu
http://graph.openaire.eu
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

The GDup framework described in Atzori, Manghi ¢ Bardi (2018), offers an out-
of-the-box solution to a complete workflow of deduplication for big data knowledge
graphs. The framework includes ground truth management, candidate identification via
blocking and sliding windows, identification and merging of duplicates, and graph topology
consolidation. The Spark-based implementation drives the parallelization process, further
boosting the performance introduced by clustering. The similarity match function can be
flexibly configured but does not support any optimization option.

A novel contribution to performance optimization is offered by Papadakis et al. (2019),
where block purging and filtering techniques are adopted to further reduce the number of
records in a block, hence the number of matches. These techniques take advantage of the
frequency to which a pair of entities appear in the same group to avoid redundant and rare
comparisons. The approach shows better performance than traditional blocking/sliding
window techniques, but it is not recommended when a high recall is required.

In most approaches, the similarity function is provided as a weighted mean of the sum of
comparators applied to the pair of records without performing any optimization process.
For example, in Azeroual et al. (2022), the authors present a six-step deduplication process
in which the comparison between two entities is driven by a similarity vector. Such vector
is represented as an aggregation of single similarity scores between attributes and it is
subsequently used to apply rules defining threshold-based conditions for the equivalence
of the entities. Similarly, in the context of data association, the research in Brown ¢ Hagen
(2003) proposed a solution to link criminal records that possibly refer to the same suspect.
This method is based on the calculation of a total similarity measure as a weighted sum
of the similarity measures of all corresponding feature values. Moreover, Wang, Chen ¢
Atabakhsh (2004) propose a record linkage algorithm for detecting deceptive identities by
combining personal attributes scores into an overall similarity score. To draw a conclusion,
it establishes a threshold for match decisions using a set of identity pairs labeled by an
expert.

In summary, existing approaches tackle performance optimization by optimizing the
deduplication workflow phases that precede the similarity match, in some cases renouncing
precision due to low recall. FDup follows the same approach by providing an easy-to-use
Apache Spark-based framework for deduplication but further improves performance by
introducing a similarity function T-match, capable of further reducing execution time

without renouncing recall.

MATERIAL

This section describes the FDup architecture in ‘Architecture’ and its software
implementation in ‘Tmplementation’. The former illustrates the deduplication workflow
steps and the underlying concepts and features. The latter presents the software modules
implementing the architecture steps, referring to the packages published in Zenodo.org by
De Bonis, Atzori ¢ La Bruzzo (2022).

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 4/23

https://peerj.com
Zenodo.org
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Deduplication Blockin Sliding | T-match
record model 9 Window | functi

1]
Collection ‘ Collection » Candidate » Duplicates ‘ Duplicates e

N N . " . gt . R equivalent
import identification identification Grouping objects

of records

Figure 1 FDup deduplication workflow.
Full-size &l DOL: 10.7717/peerjcs.1058/fig-1

Architecture

FDup realizes the deduplication workflow shown in Fig. 1. The workflow is intended to
deduplicate very large collections of records, processing them in four sequential phases:
Collection import, to set the record collection ready to process; Candidate identification, to
cluster the records to be matched; Duplicates identification, to efficiently identify pairs of
equivalent records via the T-match function, and Duplicates grouping, to identify groups
of equivalent records via transitive closure.

Collection import
FDup operates over a set of flat records, whose structure consists of a set of labels (custom
name) and values (extracted by the original record). Therefore, the first step of the workflow
consists in mapping the target collection of records, which may not be flat, onto an FDup
flat collection of records with labels [/},..., k], which will be used as the template for the
configuration of the deduplication steps.

In this article, the experiments are conducted over a collection of bibliographic records
for scientific publications as provided by the OpenAIRE Research Graph, featuring the
following flat structure:

e PIDs: a sequence of values denoting persistent identifiers of the records, i.e., unique
identifiers; each record may have more than one PID, released by different agencies
at the moment of depositing the article, such as DOIs in Crossref, ArXiv identifiers,
PubMed identifiers, etc.;

e title: the title of the article;

e abstract: the abstract of the article;

e authors: the list of authors and contributors of the article, provided as a list of strings
typicaly following different formats, e.g., ““J. Smith”, “Smith,].”, “Smith, John H.”, “J.H.
Smith”;

e date: the date of publication of the article, harmonized to a common format
dd/mm/yyyy;

e venue: the venue of publication, such as the conference or a journal, typically comes as
a string of free text.

Candidate identification

The ideal similarity matching process, where every pair of records is confronted to yield in
an equivalence score, features quadratic complexity and known performance issues. Two
common solutions are the techniques of clustering/blocking and sliding window. Both

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 5/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-1
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

methods apply heuristics to identify, prior to record matching, a selection of record pairs
in the collection that are candidates for equivalence.

Clustering functions are of the form clusteringKey ([1;,...,1lk]) and are applied to all
records in the initial collection to produce one or more keys per record. Functions should
be smart enough to ensure that potentially equivalent records likely return the same key.
Records are then grouped by key into blocks, and pair-wise comparisons are executed
within such blocks. For the scientific publication records above, a reasonable clustering
function is one that generates n-grams (fragments of n characters of a string) from the title
words or one that generates the PIDs (especially the DOI) when these are available.

Sliding window methods introduce a further optimization of the number of comparisons.
Records in one block are sorted by a key (typically obtained from a value of the record’s
field) (orderField) to obtain an array that is visited from the first element to the last. At
every iteration, the pivot record is matched with the subsequent ones in a limited K interval
(window). The key used for the sorting should be generated in such a way that similar
records are likely close in the ordering, possibly within the window range K.

FDup offers the possibility to easily configure every single step previously described via
single configuration profile, including: a pre-defined and extendable set of clusteringKey
functions, the orderField, and the length K of the sliding window.

Duplicate identification: T-match function

Duplicate identification consists of a similarity function that matches the equivalence
conditions between two records in a block. As such, it is defined by matching the values of
the records fields in such a way domain-specific conditions of equivalence are met.

For scientific publication records, OpenAIRE defines two records as equivalent when
they describe the same scientific work, hence one object for the purpose of measuring
impact. For example, different depositions of the same article in distinct repositories (e.g.,
ArXiv.org, Zenodo.org) are to be considered equivalent, i.e., cannot be counted as two
independent scientific results. For the same reason, two different versions of a document
are to be considered different, as they denote different efforts. For example, version 1 and
version 2 of a project deliverable.

In real case scenarios, like the one of OpenAIRE, where metadata is harvested from highly
heterogeneous data sources, many of the field values in the records are not and cannot be
sufficiently harmonized to the degree of uniformity required to make them reliable in the
process of equivalence check. This is the case for abstract, for which establishing a distance
and weight for it is not trivial, and venue whose values can hardly be harmonized into
comparable values. Moreover, the date field cannot be used as a discriminator, as different
versions of the article, published at different times, may indeed be regarded as equivalent.

Record equivalence is assessed by relying on three fields, PID, title, and authors, when
matching the following considerations:

e Equivalence by identity: when two records have one PID in common, they are
equivalent;

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

e Equivalence by value: when PIDs are not matching, the records may still be equivalent
(e.g., deposited in different repositories), hence a field value equivalence matching is
required.

While equivalence by identity is rather straightforward, equivalence by value requires
context-driven rules, which in the case of publication match in OpenAIRE are: (i) a rather
high title equivalence confidence of 99%, as indeed typos may occur; (ii) ensuring that
the 0,01% of difference in the titles is not due to a number or Roman number denoting
different versions of the publication; and, (iii) making sure the records have corresponding
authors, by checking their names.

The majority of deduplication frameworks in the literature encodes record similarity
match conditions via a similarity function of the form:

F(v1seeos i [y e v) = Zfi(vi,vi/) X W;

i:0...k
where the v;’s are the values of field I, fi(v;, vl-/) are comparators, functions measuring the
“distance” of v; and v/ for the field J;, and w;’s are the weights assigned to the comparators
fi’s,such that)., wi=1.

As a result, f returns a value in a given range, e.g., [0...1], scoring the distance between
two records. The records are regarded as equivalent if the distance measure is greater than
a given threshold.

For the example above, the similarity function PublicationWeightedMatch, created using
the GDup framework in OpenAIRE, encodes both equivalence by identity and by value as
follows:

PublicationWeightedMatch(r,r') = jsonListMatch(r.PIDs,r'.PIDs) x 0.5
+ TitleVersionMatch(r .title, v’ .title) x 0.1
+ AuthorsMatch(r .authors,r’.authors) x 0.2
+ LevenshteinTitle(r .title, 1’ .title) x 0.2

where jsonListMatch, applied to the field PID, returns 1 if there is at least one PID in
common in the two records; TitleVersionMatch, applied to the titles, returns 1 if the two
titles contain identical numbers or Roman numbers; LevenshteinTitle returns 1 if the
two (normalized) titles have a Levenshtein distance greater than 90%, and AuthorsMatch
performs a “smart” matching of two lists of author name strings and returns 1 if they are
90% similar (the minimal equivalence threshold is computed over a manually validated
ground truth of equivalent records). All comparators return 0 if their condition is not met.
The minimal threshold for two records to be equivalent is 0.5, the threshold that can be
reached by jsonListMatch alone or by combining the positive results of the three functions
TitleVersionMatch, AuthorsMatch, and LevenshteinTitle.

All f’s in PublicationWeightedMatch are computed at the same time and averagely
require a constant execution time, despite the successful or unsuccessful match that
those may feature. Motivated by such observation, FDup introduces a similarity match
function T-match that returns an equivalence match exploiting a decision tree, nesting
the comparator functions. Each tree node verifies a condition, which can be the result of

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

combining one or more comparators, and introduces a positive (MATCH) or negative
(NO_MATCH) exit strategy. If the exit strategy is not fired, T-match heads to the next
node. An early exit skips the full traversal of the tree and can turn the result into a MATCH,
i.e., a simRel relationship between the two records is drawn, or into a NO_MATCH, i.e.,
no similarity relationship is drawn.

A T-match decision is formed by a tree of named nodes with outgoing edges. The
core elements of a T-match node are the aggregation function, the list of comparators,
and a threshold value. The aggregation function collects the output of the comparators
and delivers an “aggregated” result based on one of the following functions: maximum,
minimum, average, and weighted mean. Each comparator in a node accepts two values
of the input records for a given field and returns a value in the range 0...1. Notably,
different comparators in an aggregation can refer to different fields, giving high degree
of customization to end-users (in the following, one node will encode a weighted mean
function as the one described above). The execution of a T-match node must end with a
decision, which may be:

e positive, i.e., the result of the aggregation function is greater or equal than the threshold
value;

e negative, i.e., the result of the aggregation function is lower to the threshold;

e undefined, i.e., one of the comparators cannot be computed (e.g., absence of values); a
node also bears a flag ignoreUndefined that ignores the undefined edge even if one of the
values is absent.

For each decision, the node provides the name of the next node to be executed. By
default, T-match provides two nodes MATCH and NO_MATCH to be used to force a
successful or unsuccessful early exit from the tree.

The example in Fig. 2 shows the function PublicationTreeMatch, which uses the same
comparators but exploiting a T-match decision tree. The individual matches are lined up
by introducing MATCH conditions early in the process, i.e., equivalence by identity via
PIDMatch, and then ordering NO_MATCH conditions by ascendant execution time, i.e.,
equivalence by value via versionMatch, titleMatch, and authorsMatch.

Independently of the domain, smart identification of exit strategies becomes a means
for developers to reduce the overall deduplication time. Moreover, T-match allows for the
definition of multiple paths, hence the simultaneous application of alternative similarity
match strategies in one single function. The experiments described in later sections will
show that when the number of records is very large, T-match significantly improves the

overall performance of the deduplication process.

Duplicates grouping

The outcome of the duplicate identification phase is the graph resulting from combining
the input collection of records with the set of simRel relationships between them. The
duplicate grouping phase first finds the sets of equivalent records by calculating the
connected components in the graph via the transitive closure of the simRel relationships;
for example, A simRel B and B simRel C identify the group A, B, C. Secondly, it generates a

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 8/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

start
jsonListMatch on PID
undefined
versionCheck
title VersionMatch on TITLE
gative

undefined

positive

titleCheck
levenshteinTitle on TITLE
similarity > 0.9

undefined

authorsCheck
authorsMatch on AUTHORS

undefined

Figure 2 T-match’s decision tree for PublicationTreeMatch.
Full-size Gal DOI: 10.7717/peerjcs.1058/fig-2

new graph, where the groups of equivalent records are all linked with a mergeRel relationship
to a representative record, created by the process to identify the groups; for example, the
group of nodes A, B, C will deliver the graph of four nodes A, B, C, R with the relationships
A mergeRel R, B mergeRel R, C mergeRel R.

Implementation

This section describes the software modules implementing FDup’s functionalities (GitHub,
https:/github.com/miconisfdup) (De Bonis, Atzori ¢ La Bruzzo, 2022) as described in
the previous section. FDup’s software is structured in three modules, Pace_Core,
Dedup_Workflow, and Configuration file depicted in Fig. 3. The framework is
implemented in Java and Scala, and grounds on the Apache Spark Framework, an
open-source distributed general-purpose cluster-computing framework. FDup exploits
Apache Spark to define record collection parallel processing strategies that distribute
the computation workload and reduce the execution time of the entire workflow. Scala
is instead required to exploit the out-of-the-box library for the calculation of a “closed
mesh” in GraphX (Apache Spark GraphX, https:/spark.apache.org/graphx/).

The three modules implement the following aspects of FDup’s architecture:

e Pace_Core includes the functions implementing the candidate identification phase
(blocking and sliding window) and the T-match function, as well as the (extensible)
libraries of comparators and clustering functions.

e Dedup_Workflow is the code required to build a deduplication workflow in the
Apache Spark Framework by assembling the functions in Pace_core according to

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 9/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-2
https://github.com/miconis/fdup
https://spark.apache.org/graphx/
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Pace_Core Configuration file
Pace section Workflow section
Blocking T-match - - -
‘ Processor ’ processor | Data model || Synonyms | | Block limit H Window size
Clustering | Blacklists |I T-match | I OrderingField | Connect
Comparators functions Ca
iterations
|
I T
Dedup_Workflow
Collection Groups of
of records SparkCreateSimRels ‘ SparkCreateMergeRels » SparkCreateDedupRecord equivalent
objects

Figure 3 FDup software modules.
Full-size Gal DOI: 10.7717/peerjcs.1058/fig-3

the comparators, clustering functions, and parameters specified in the Configuration
file.

e Configuration file sets the parameters to configure the deduplication workflow
steps, including record data model, blocking and clustering conditions, and T-
match function strategy.

In the following sections, the three modules are described in detail.

The Configuration file

The FDup’s configuration file is expressed in JSON format and consists in two different
sections: pace, which defines the T-match function parameters; and workflow, which
defines the deduplication workflow parameters.

Pace section. The section specifies the configuration for the pair-wise comparisons,
including the data model, the record pairs’ blacklist, the synonyms, and the decision tree of
the T-match function.

FDup operates on a collection of flat records with the same structure. As the original
collection of JSON records may not be flat, FDup introduces the mechanism of the data
model. The data model subsection of the configuration drives the transformation of the
original JSON records onto a flat record with labels and values as depicted in Fig. 4. The
mapping is defined by means of JSON paths, whose result is implicitly assigned to a given
field of the FDup’s record data model. Additional parameters such as length and size can
be used to limit the value to take from the original JSON entity.

The clustering subsection includes the list of blocking functions (more than one can be
used) to be used for the key extraction. Each clustering function specifies the list of record
fields to which the function should be applied. The user can also specify parameters for
the clustering function such as key length, maximum number of keys to extract and other
configurations. The structure of a clustering function is depicted in Table 1.

The blacklist is a list of field values to be excluded from the computation. The mechanism
is useful to exclude false positives from subsequent rounds of deduplication. It is expressed
as a map in which the key is the field name while the value is the list of strings to exclude.
When the process is running, entities with one of those values for the specified field will be
ruled out of the comparisons.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 10/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-3
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

"authors™: [

"fullname™: "Smith John",
"name": "John",
"surname": "Smith"

h
{
"fullname™: "Foo Alex",

"name": "Alex”, Label Value
"surname": "Foo"

]} |::> Authors | [Smith John, Foo Alex]
“title™:{ S Title Publication Title

"value": "Publication Title"
}

' . o Pids 10.000/example_doi
escription™: "publication abstract*",

"id™: "123456789",

"pids™: [
"value": "10.0000/example_doi",
"type™ "doi"

}

]
}

Figure 4 The transformation of an original JSON record into a flat record.
Full-size Gal DOI: 10.7717/peerjcs.1058/fig-4

Table 1 Definition of a clustering function.

Field Description

Name The name of the clustering function

Fields The list of fields to which the clustering function should be applied

Params The list of parameters to configure the clustering function. Every parameter has a name and can assume a

number as value. Those parameters are accessible from the clustering function.

The synonyms are lists of equivalent terms. They are typically used to encode semantic
equivalence across different vocabularies (e.g., replacing terms with a common code). For
example, synonyms are exploited to address translations of terms across different languages
and therefore capture their equivalence.

The decisionTree section sets the configuration of T-match’s pair-wise comparison
algorithm. T-match’s tree can be shaped up by creating different nodes, each composed
by one or more comparators. Each comparator acts on a pair of records and over a given
pair of fields, to return a number that reflects the similarity of two fields. The results of the
comparators in one node are then aggregated to return an overall similarity score. The user
can define the aggregation function to be used (i.e., weighted mean, average, maximum,
minimum, etc.). The structure of a comparator and a tree node are depicted in Table 2 and
Table 3.

Workflow section. The section specifies parameters for the whole deduplication workflow.
Such parameters are: groupMaxSize, i.e., the limit for the block size, slidingWindowSize, i.e.,

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 11/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-4
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Table 2 Definition of the comparator.

Field Description

Field The field to compare (it must be defined in the model)

Comparator The comparator to use for the comparison

Weight The weight of the score for the comparator. The value is used when the comparator’s scores are aggregated to
give a weight to the comparator.

countIfUndefined Boolean value that specifies if the score should be considered in the aggregation also when the result of the
comparison is undefined (i.e., missing field)

Params The list of parameters for the comparator. Every parameter has a name and can assume a string as value. Those

parameters are accessible from the comparator.

Table 3 Definition of the tree node.

Field Description

Fields The list of comparators contributing to the computation of the final score

Threshold The threshold for the final score of the node. If the final score is greater than the threshold, the execution will
follow the positive edge; otherwise, it will follow the negative edge. The execution will follow the undefined
edge when the ignoreUndefined is not enabled and one of the comparators returned an undefined result.

Aggregation The aggregation function to use for the computation of the final score (e.g., maximum, minimum, average,
weighted mean, ecc.)

Positive The name of the next node to compute if the final score of this node is greater than or equal to the threshold.

Negative The name of the next node to compute if the final score of this node is lower than the threshold.

Undefined The name of the next node to compute if the result of the node is undefined.

ignoreUndefined Boolean value that specifies if the undefined tree edge should be ignored or not.

the size of the sliding window, orderField, i.e., the field to be used when sorting the sliding
window in a block, and maxlIterations, i.e., the maximum number of iterations when the
connected components are computed via the close mesh operation.

Pace_Core module: Block Processor and T-match Processor

The BlockProcessor is the Java class that provides functionalities to process a block
(e.g., entity sorting), it implements the sliding window mechanism and it invokes the
T-match Processor to performing the record pair-wise comparisons. The core of this
class is the function that implements the queue management when blocks of records
are sorted. Records in a block are queued in alphabetical order (of the orderField) and
subsequently the queue is processed and pair-wise comparisons are computed.

The T-match Processor is the Java class that navigates the decision tree by calculating
the result for every node according to the configuration provided in the Configuration
file. Such class is invoked by the BlockProcessor and basically invokes each comparator
involved in the node in order to collect and aggregate their scores (as specified by the user).
At the end of the aggregation, a threshold is applied to the final score and the next tree
node to process is chosen.

For the example in Fig. 2, when the T-match Processor is computing the score of
the second node of the tree, it firstly calculates the scores for the two comparators (i.e.,

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

titleVersionMatch and sizeMatch) and then aggregates them with an AND operation (i.e.,
both conditions must be satisfied).

Pace_core module: libraries
As stated before, FDup offers a set of predefined and extendable libraries of comparators
and clustering functions. They are implemented as Java classes inside the framework
package.

The user can customize the framework by implementing new components depending
on its needs. In order to implement a new comparator, it is sufficient to implement a Java
class that extends the proper interface defined in the package.

Comparators. In the context of the pair-wise comparison, the comparator specifies the
logic that computes the score measuring the similarity degree of two fields of the pair,
one for each record. Such a score is then aggregated with others in the same tree node to
compute the overall similarity score of the node.

Comparators are Java classes that implement the comparison between two fields a and
b of a record, whose Java interface is:

public interface Comparator {
public double compare(Field a, Field b, Config conf);

The only method to be implemented within the interface is compare. The method has
three parameters: the two fields to be compared and the Configuration file, which
drives the deduplication and may include comparators parameters. compare yields a
double value in the range 0, ..., 1 (0 different, 1 identical) indicating the similarity between
the two field values. In particular, it returns 0 when the comparator cannot produce a result
(e.g., because one of the two labels is empty or missing) and a value in the range 0,...,1
otherwise.

Table 4 describes the set of pre-defined comparators available in FDup today, which can
be extended to address new application needs. In general, such a comparator framework
grounds on the assumption that values are available via record fields. Hence, specific
comparators can for example accept as input fields whose values are the result of smart
pre-processing of the record collection, e.g., machine learning embeddings, full-text
extraction, topic modeling, efc.

Clustering functions. Clustering functions are Java classes that implement the key extraction
from a flat record. In the context of blocking, the clustering function specifies the logic that
extracts the keys from the value of a certain label, e.g., by computing ngrams, extracting
the domain from an URL, etc. Such keys are subsequently used to group similar records
into the same cluster and therefore limit the number of pair-wise comparisons.

In order to create a new clustering function, the following Java interface must be
implemented:

public interface ClusteringFunction {
public Collection<String> apply(Config config, List<Field> fields);

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Table 4 List of FDup comparators.

Name Description

AuthorsMatch Performs a “smart” comparison between two lists of authors; author names are matched by considering a cus-
tom similarity threshold and the result is the percentage of common elements between the two lists

CityMatch Extracts city names from the field and returns the percentage of names in common; city names are matched by
considering translations in different languages of the most important cities in the world

ContainsMatch Searches for a given string in the input fields; logic operators (i.e., AND, OR, XOR) can be used

ExactMatch Returns 1 if the two fields are exactly the same. There are also other implementation of exact matches specific
for a particular scope (i.e., DoiExactMatch specific for DOIs, DomainExactMatch specific for URLs, and Exact-
MatchlgnoreCase to perform a case insensitive comparison)

JaroWinkler Computes the JaroWinkler similarity function between two fields; the comparator can be specialized to address
special cases, e.g., JaroWinklerNormalizedName to compare two fields after removing city names and keywords,
JaroWinklerTitle to compare fields containing titles, SortedJaroWinkler to a sorted version of the algorithm),
Level2JaroWinkler, Level2JaroWinklerTitle and SortedLevel2]JaroWinkler

JsonListMatch Returns the common element percentage between two JSON lists extracted from the input fields

KeywordMatch Extracts keywords from string fields and returns the common element percentage; the keywords are compared
by considering translations in different languages provided via an input CSV; the list of keywords is customiz-
able and located in the classpath

Levenshtein Computes the Levenshtein distance measures between the two strings in the fields; possible specializations are
LevenshteinTitle to compare specific title fields, LevenshteinTitleIgnoreVersion to compare titles and removing
versions, and SubStringLevenshtein to compute the distance on substrings of the field, and Level2Levenshtein

MustBeDifferent Returns 1 if the two fields are different

NumbersMatch Extracts numbers from the input fields and returns 1 if they are equal

RomansMatch Extracts Roman numbers from the input fields and returns 1 if they are equal

SizeMatch Specific for lists, returns 1 if the size of two lists is equal

StringListMatch Returns the percentage of common elements in two lists of strings

TitleVersionMatch Specific for title fields, performs a normalization and returns 1 if numbers in the title are equal

UrlMatcher Specific for URLs, performs a normalization of the URLs and returns 1 if they are equal

YearMatch Extracts the year from the input fields and returns 1 if they are equal

public Map<String, Integer> getParams();

The interface provides two methods:

e getParams: to access the list of parameters of the clustering function indicated in the
configuration;

e apply: to produce the list of string keys extracted from the labels (e.g., ngrams). The
config parameter gives the user the possibility to implement comparators with access
to the Configuration file.

FDup offers a list of pre-defined clustering functions, listed in Table 5. Such a list can
be extended to introduce new approaches and strategies.

The Dedup_Workflow

This module implements the workflow depicted in Fig. | by building on the Apache Spark
Framework, which allows to define and configure applications with high performance for
both batch and streaming data. The framework can be used with different programming

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 14/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Table 5 List of FDup clustering functions.

Name Description

Acronyms Creates a number of acronyms out of the words in the input field

KeywordsClustering Creates keys by extracting keywords, out of a customizable list provided in the classpath, from the field’s value
LowercaseClustering Creates keys by lowercasing the field’s value

Ngrams Creates ngrams from the field’s value; the number of ngrams and the length is indicated via parameters
PersonClustering Specific for Person names, uses name and surname to create keys

PersonHash Creates an hash of the Person name

RandomClusteringFunction Creates random keys from the field’s value

SortedNgramPairs Creates ngrams from the field’s value and then combines them in pairs

SpaceTrimmingFieldValue Creates keys by trimming spaces in the field’s value

SuffixPrefix Creates keys by concatenating suffixes and prefixes from words in the field’s value

UrlClustering Creates keys for an URL field by extracting the domain

WordsStatsSuffixPrefixChain

Creates keys containing concatenated statistics of the field, i.e., number of words, number of letters and a chain
of suffixes and prefixes of the words

languages (Java and Scala in FDup) and offers over 80 high-level operators facilitating the
realization of parallel applications.

The deduplication workflow is implemented as an Oozie workflow that incapsulates
jobs executing the three steps depicted in Fig. 3, to compute: (i) the similarity relations
(SparkCreateSimRels), (ii) the merge relations (SparkCreateMergeRels), and (iii) the groups
of duplicates and the related representative objects (SparkCreateDedupEntity). More
specifically:

e SparkCreateSimRels: uses classes in the Pace_Core module to divide entities into blocks
(clusters) and subsequently computes simRels according to the Configuration file
settings for T-match;

o SparkCreateMergeRels: uses GraphX library to process the simRels and close meshes
they form; for each connected component, a master record ID is chosen and mergeRels
relationships are drawn between the master record and the connected records;

e SparkCreateDedupEntity: uses mergeRels to group connected records and create the
representative objects.

METHODS

This section describes the methods utilized to assess the performance of FDup when
T-match can implement exit strategies, compared to a traditional approach where this
technique is not exploited. The evaluation has been carried out using the metadata record
collections used to populate the OpenAIRE Research Graph, where FDup is used as the
core deduplication component.

The aim of the evaluation is to assess performance, not the precision of the deduplication
results, which instead depends on the clustering functions, window functions, comparators,
node thresholds, and ultimately on the context of use and quality of metadata.

The following sections introduce the OpenAIRE Research Graph, the specific set of
metadata records used for the assessment, and describe the behaviour of T-match in two

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 15/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

setting modes, by adopting exit strategies and by adopting a traditional approach, where
all fields are matched before taking a decision.

OpenAIRE research graph

The OpenAIRE AMKE is a no-profit legal entity (Manghi et al., 2012) whose purpose is
to facilitate, foster, and support Open Science in Europe. The infrastructure has been
operational for almost a decade and is successful in linking people, ideas, and resources for
the free flow, access, sharing, and re-use of research outcomes. On the one hand, OpenAIRE
manages and enables an open and participatory network of people willing to identify the
commons and forums required to foster and implement Open Science policies and
practices in Europe and globally. On the other hand, it operates a pool of technical services
(OpenAIRE Catalogue, http:/catalogue.openaire.cu) required to facilitate and monitor
Open Science publishing trends and research impact across geographic and discipline
boundaries. One of the core services of the infrastructure is the OpenAIRE Research Graph,
a knowledge graph populated by harvesting, from 97,000+ data sources (e.g., institutional,
thematic, data repositories, ORCID, ROR, DataCite, Crossref, Unpaywall, MAG, etc.) and
scientific journals, close to 300Mi+ metadata records and 1Bi semantic relationships among
research entities, such as publications, datasets, software, organizations, projects, funders,
authors, and data sources (for provenance); as a result of the deduplication process, the
metadata records are merged into 150Mi+ representative records—for more details, visit
http:/graph.openaire.cu and http:/explore.openaire.cu. A high-level view of the graph’s
data model is depicted in Fig. 5.

FDup is today used as core component of the deduplication phase of the Graph,
disambiguating metadata records of publications, datasets, software, other products,
and organizations. The experiments carried out in this work rely on the subset of non-
deduplicated publication records, for a total of 230Mi. The expriments will be performed
over a sub-collection of 10Mi records and on the overall set of 230Mi. The collections
are sufficiently large to appreciate the performance optimization gain introduced by
T-match and ensure the replicability and reproducibility of the experiment.

Experiment setting

The aim of the experiment is to show the performance gain yielded by the proper
configuration of T-match in a deduplication workflow for the publication similarity match
example presented in Fig. 2. To this aim, the experiment sets two deduplication workflows
with identical blocking and sliding window setting but distinct T-match configurations.
Both configurations address the similarity criteria but in opposite ways:

e PublicationTreeMatch configuration: a configuration that implements the
PublicationTreeMatch decision tree illustrated in Fig. 2, taking advantage of early
exits;

e PublicationWeightedMatch configuration: a configuration that implements the
similarity match as the GDup (average mean) function PublicationWeightedMatch
described in ‘Architecture’ by combining all comparators in one node, whose final result
isa MATCH or NO_MATCH decision.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 16/23

https://peerj.com
http://catalogue.openaire.eu
http://graph.openaire.eu
http://explore.openaire.eu
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

— Publications

Funders Data Sources collectedFrom
hostedBy
streams
— Datasets
O

@
S
R h 3
. esearc a
Streams ——o< Projects —
projects) funds Products
~—
related Software
substream organizations
beneficiaries
Organizations ___| Other Research
Products

Figure 5 OpenAIRE Research Graph: data model.
Full-size &l DOI: 10.7717/peerjcs.1058/fig-5

Both configurations are based on the same settings for the candidate identification and
duplicates identification. In particular:

e the clustering functions used to extract keys from publication records are the
LowercaseClustering on the DOI (e.g., a record produces a key equal to the lowercase
DO, the result is a set of clusters composed by publications with the same DOI) and the
SuffixPrefix on the publication title (e.g., a record entitled “Framework for general-purpose
deduplication” produces the key “orkgen”, the result is a set of clusters composed by
publications with potentially equivalent titles); both functions are described in Table 5

o the groupMaxSize is set to 200 (empirically) to avoid the creation of big clusters requiring
long execution time;

o the slidingWindowSize to limit the number of comparisons inside a block is set to 100
(empirically).

Experiment methodology

Both the PublicationTreeMatch and the PublicationWeightedMatch configurations

were performed over the publication record collection published in De Bonis (2021)
(https:/doi.org/10.5281/zenodo.5347803). The collection contains a set of 10Mi publications
represented in JSON records extracted from the OpenAIRE Graph Dump (Manghi et al.,
2021) (https:/doi.org/10.5281/zenodo.4707307). In particular, publications have been
selected from the Dump to form a dataset with a real-case duplication ratio of around 30%
and a size that is appropriate to prove the substantial improvement in performance yielded
by the early exit approach.

Two tests were performed, comparing the performance of the configurations
PublicationTreeMatch and PublicationWeightedMatch over the 10Mi and the 230Mi collec-
tion respectively. The tests are intended to measure the added value of T-match in terms
of performance gain, i.e., PublicationTreeMatch vs PublicationWeightedMatch execution
times.

The tests were performed with a driver memory set to 4 Gb, the number of executors
to 32, the executor cores to 4, and the executor memory to 12 Gb. The Spark dynamic

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 17/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-5
https://doi.org/10.5281/zenodo.5347803
https://doi.org/10.5281/zenodo.4707307
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

allocation has been disabled in order to ensure a fixed amount of executors in the Spark
environment, so as to avoid aleatory behaviour. Moreover, since Spark’s parallelization
shows different execution times, depending on both the distribution of the records in the
executors and the cutting operations on the blocking phase, each test has been executed 10
times and the average time has been calculated.

The execution time was measured in terms of processing time required by
SparkCreateSimRels, where the pair-wise comparisons are performed, and by
SparkCreateMergeRels, where groups of duplicates are generated. It was observed
that SparkCreateSimRels is dominant taking 70% of the overall processing time. As a
consequence, for the sake of experiment evaluation, we: (i) reported and confronted the
time consumed by SparkCreateSimRels under different tests to showcase the performance
gain of T-match, and (ii) reported the results of the SparkCreateMergeRels to ensure that
the tests are sound, i.e., yield the same number of groups.

RESULTS

The results of the tests on the 10Mi publication records dataset and the 230Mi full
publication datasets are depicted in Figs. 6 and 7, respectively. The graphs show the average
time consumption of the SparkCreateSimRels phase for each execution of the test.

The average time of the SparkCreateSimRels stage in the test performed over
10Mi records dataset with the PublicationTreeMatch configuration is 750 seconds,
while the PublicationWeightedMatch configuration consumes 1,536.4 seconds. The
SparkCreateSimRels test on the 230Mi records dataset features an average time of 9,637.6
seconds for PublicationTreeMatch and of 15,224.5 seconds for PublicationWeightedMatch.

The results reported in Table 6 show that the two scenarios produced a comparable but
not identical amount of simRels, mergeRels and connectedComponent. Differences are due
to two main aspects: the size of the datasets, which required us to impose a limit to the
block size to avoid uncontrolled execution time, and the Apache Spark behavior, which
introduces a non-deterministic degree in the way blocks are formed (i.e., keys are randomly
distributed in parallel across blocks). These factors may introduce slight differences between
the blocks resulting from different runs over the same input set. However, for both input
datasets, the differences of simRels and mergeRels across different runs are limited to a
range of 1,000-2,000 and are therefore not influential to the validation of the experiment.
The differences between the two configurations is measured using the relative change, e.g.,
the variation between the number of relations in terms of percentage.

Based on such results, it can be stated that the PublicationTreeMatch configuration
overtakes the PublicationWeightedMatch configuration in terms of time consumption, by
improving performance up to a 50% in the first test and up to 37% in the second test. The
tests show a significant performance improvement, which suggests that the performance
gain does not depend on the size of the dataset but improves with the number of early exits.
It is also important to mention that the time measured in our tests includes the clustering
phase. This may suggest that a notable amount of time is consumed by the key generation
process especially when the input dataset is larger.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Execution time - ~10Mi records

1600 .
1500 ®1536,4
1400 e decision tree
=1300 execution times
‘g 1900 « all-field
] execution times
v
2 1100 @ decision tree avg
-,g. 1000
900 @ all-field avg
800
® 750
700

PublicationTreeMatch PublicationWeightedMatch

Figure 6 10Mi records test.
Full-size G4l DOI: 10.7717/peerjcs.1058/fig-6

Execution time - ~230Mi records

15500
®152245
14500
e decision tree
?13500 execution times
-]
S12500 ¢ all-field
§ execution times
E11500 @ decision tree avg
*10500
@ all-field avg
9500 §963715
L]
8500

PublicationTreeMatch PublicationWeightedMatch

Figure 7 230Mi records test.
Full-size G DOLI: 10.7717/peerjcs.1058/fig-7

DISCUSSION

This work presented FDup, a framework for the deduplication of record collections that
allows to: (i) easily and flexibly configure the deduplication workflow depicted in Fig. 1
and (ii) add to the known execution time optimization techniques of clustering/blocking
and sliding window, a new phase of similarity match optimization.

Flexibility and customization

The framework allows to personalize a deduplication workflow by means of a configuration
file and a rich set of available libraries for comparators and clustering functions. The record
collection data model can be adapted to any specific context and the T-match function

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 19/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-6
https://doi.org/10.7717/peerjcs.1058/fig-7
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

Table 6 Average number of relations drawn by the deduplication workflow on 10Mi and 230Mi publication records.

Size Relation TreeMatch WeightedMatch Relative
type change (%)
simRels 13,865,552 13,866,320 0.000055

L0Mi mergeRels 5,247,252 5,247,585 0.000063
connectedComponents 1,890,012 1,890,148 0.000071
pairwiseComparisons 255,772,628 255,772,628 0.0
simRels 172,510,072 172,511,772 0.0000098

230Mi mergeRels 69,974,139 69,974,155 0.00000022
connectedComponents 25,250,036 25,250,143 0.0000042
pairwiseComparisons 3,650,733,202 3,650,733,202 0.0

allows for the definition of smart and efficient similarity functions, which may combine
multiple and complementary similarity strategies. For example, Fig. 8 shows a decision tree
DatasetTreeMatch used to deduplicate research dataset records in the OpenAIRE Research
Graph. The function mirrors the one used for publication records, but includes an extra
path as the equivalence by identity requires stronger criteria in the case of datasets. In
this case, the field PID may include values that are not related to the dataset but rather
to the PID of the article that is related to the dataset (e.g., supplementedBy relationship in
DataCite’s ontology). Hence, in order not to merge datasets and articles, an extra test on
the title is performed.

Encoding the functions of this kind by means of weighted means similarity functions is
in general not possible. Furthermore, the readability and therefore reusability of a decision
tree, with node names, edges, and MATCH and NO_MATCH nodes, are by far better than
the ones of a mathematical function.

Execution time optimization
The implementation of the entire FDup workflow by using Spark contributes to the
optimization of the computation because of the parallelization of the tasks in the clustering
and similarity checking phase. T-match gains further execution time by anticipating the
execution of no-match decisions and postponing time-consuming decisions, such as the
AuthorsMatch in the example. As proven by the reported experiments the hypothesis is not
only intuitively correct but brings in some scenarios substantial performance gains. When
used to analyse big data collections, time saving is key for many reasons: the execution
of experiments to improve a configuration, speeding up the generation of quality data in
production systems or saving time that can be spent to improve the recall and precision
by relaxing clustering and sliding window approaches, i.e., large numbers of blocks and
increased window size.

On the other hand, time-saving depends on the nature of the input records and
the ability to identify smart exit strategies applicable to a considerable percentage
of the pair-wise comparisons. For example, if the publication record collection used
for the experiments featured correct and corresponding PIDs for all records, the
PublicationTreeMatch execution time would be further improved; on the contrary, if

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

start

jsonListMatch on PID
undefined

hardCheck1
titleVersionMatch on TITLE

positive

softCheck

levenshteinTitle on TITLE
) similarity>0.90?
negative
undefined

undefined

hardC|
sizeMatch on AUTHORS

undefined

hardCheck3

levenshteinTitle on TITLE
hegative
undefined

Figure 8 T-match’s decision tree for DatasetTreeMatch.

positive

Full-size &l DOI: 10.7717/peerjcs.1058/fig-8

no PIDs would be provided the execution time would increase and get closer to the one
of PublicationWeightedMatch. The two functions would perform identically if, for all
pair-wise comparisons, the records would always feature no difference in the versions and
no difference in the title, making the AuthorsMatch title determinant to the final decision.

CONCLUSIONS

FDup is currently in use in the OpenAIRE production system to deduplicate entities of
various kinds, such as publications, datasets, software, organizations, and services. The
deduplication criteria are often updated due to user feedback or natural refinements of
the approach, proving the flexibility and usability of the framework. Still, a number of
improvements are possible and currently under consideration to generalize the framework,
to further optimize execution time, and to improve the quality of results.

Generalization: The framework is designed to perform comparisons between entities
of the same record structure. It could be possible generalize the approach to enable
comparisons between entities of different types, turning the framework into an entity
linking tool by which not only relations for deduplication can be drawn but also semantic
relations between records.

Optimization: Block purging and block filtering techniques can be integrated into the
framework to further reduce the number of pair-wise comparisons within a block. Known
approaches described in the survey from Papadakis et al. (2019) detect significant pairs
based on the number of times the pair appears in multiple blocks. Edge filtering techniques
can also be added to the framework to increase the precision of the deduplication. The
general idea is to weigh similarity relations relying on the type of the match that determined
their equivalence. For example, when a relation is drawn because of a match on a persistant

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 21/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1058/fig-8
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

identifier, its weight is higher than the weight of a relation drawn because of a match on
the title.

Quality of results: Finally, new releases of FDup are exploring the possibility to post-
process the resulting groups of duplicates to correct deduplication errors by computing
statistics and by detecting the wrong element in a chain of similarity relationships, in order
to split the affected group into two smaller groups. Such elements may be identified with
algorithms based on deep learning and artificial intelligence and the group could be split
by removing the less important relation that starts from the wrong element.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was funded by the EU H2020 project OpenAIRE-Nexus (Grant agreement ID:
101017452). There was no additional external funding received for this study. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
EU H2020 project OpenAIRE-Nexus: 101017452.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

e Michele De Bonis conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

e Paolo Manghi conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

e Claudio Atzori analyzed the data, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at Github: https:/github.com/miconisfdup/iree/dnet-dedup-
4.1.10.

The dataset used for the experiments is available at Zenodo: https:/zenodo.orgfrecord/
5347803#.YhdW7e7MJTY.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 22/23

https://peerj.com
https://github.com/miconis/fdup/tree/dnet-dedup-4.1.10
https://github.com/miconis/fdup/tree/dnet-dedup-4.1.10
https://zenodo.org/record/5347803#.YhdW7e7MJTY
https://zenodo.org/record/5347803#.YhdW7e7MJTY
http://dx.doi.org/10.7717/peerj-cs.1058

PeerJ Computer Science

REFERENCES

Atzori C, Manghi P, Bardi A. 2018. Gdup: de-duplication of scholarly communication
big graphs. In: 2018 IEEE/ACM 5th International Conference on Big Data Computing
Applications and Technologies (BDCAT). Piscataway: IEEE, 142—-151.

Azeroual O, Jha M, Nikiforova A, Sha K, Alsmirat M, Jha S. 2022. A record linkage-
based data deduplication framework with datacleaner extension. Multimodal
Technologies and Interaction 6(4):27-45 DOT 10.3390/mti6040027.

Brown DE, Hagen S. 2003. Data association methods with applications to law enforce-
ment. Decision Support Systems 34(4):369-378 DOI 10.1016/S50167-9236(02)00064-7.

De Bonis M. 2021. 10mi openaire publications dump. DOI 10.5281/zenodo.5347803.

De Bonis M, Atzori C, La Bruzzo S. 2022. miconis/fdup: Fdup v4.1.10
DOI10.5281/zenodo.6011544.

Manghi P, Atzori C, Bardi A, Baglioni M, Schirrwagen J, Dimitropoulos H, La Bruzzo
S, Foufoulas I, Lohden A, Bicker A, Mannocci A, Horst M, Jacewicz P, Czerniak A,
Kiatropoulou K, Kokogiannaki A, De Bonis M, Artini M, Ottonello E, Lempesis
A, Ioannidis A, Manola N, Principe P. 2021. Openaire research graph dump.
DOI10.5281/zenodo.4707307.

Manghi P, Atzori C, De Bonis M, Bardi A. 2020. Entity deduplication in big data graphs
for scholarly communication. Data Technologies and Applications 54(4):409—435
DOI 10.1108/DTA-09-2019-0163.

Manghi P, Manghi P, Schirrwagen J, Schirrwagen J, Schirrwagen J, Smith T. 2012.
Openaireplus: the European scholarly communication data infrastructure. DLib
Magazine 18:9-10.

Nentwig M, Hartung M, Ngomo AN, Rahm E. 2017. A survey of current link discovery
frameworks. Semantic Web 8(3):419-436.

Papadakis G, Skoutas D, Thanos E, Palpanas T. 2019. Blocking and filtering techniques
for entity resolution: a survey.

Paulo JA, Pereira J. 2014. A survey and classification of storage deduplication systems.
ACM Computing Surveys 47(1):1-30.

Rahm E, Peukert E. 2019. Large scale entity resolution. In: Sakr S, Zomaya AY, eds.
Encyclopedia of big data technologies. Cham: Springer.

Saltzer J, Hylton J. 2002. Identifying and merging related bibliographic records.

Sitas A, Kapidakis S. 2008. Duplicate detection algorithms of bibliographic descriptions.
Library Hi Tech 26:287-301 DOIT 10.1108/07378830810880379.

Tauer G, Date K, Nagi R, Sudit M. 2019. An incremental graph-partitioning algorithm
for entity resolution. Information Fusion 46:171-183
DOI 10.1016/j.inffus.2018.06.001.

Venish A, Sankar K. 2015. Framework of data deduplication: a survey. Indian Journal of
Science and Technology 8(26):1-7.

Wang G, Chen H, Atabakhsh H. 2004. Automatically detecting deceptive criminal
identities. Communications of the ACM 47(3):70-76 DOT 10.1145/971617.971618.

De Bonis et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1058 23/23

https://peerj.com
http://dx.doi.org/10.3390/mti6040027
http://dx.doi.org/10.1016/S0167-9236(02)00064-7
http://dx.doi.org/10.5281/zenodo.5347803
http://dx.doi.org/10.5281/zenodo.6011544
http://dx.doi.org/10.5281/zenodo.4707307
http://dx.doi.org/10.1108/DTA-09-2019-0163
http://dx.doi.org/10.1108/07378830810880379
http://dx.doi.org/10.1016/j.inffus.2018.06.001
http://dx.doi.org/10.1145/971617.971618
http://dx.doi.org/10.7717/peerj-cs.1058

