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ABSTRACT

Among the main challenges associated with navigating a mobile robot in complex
environments are partial observability and stochasticity. This work proposes a stochastic
formulation of the pathfinding problem, assuming that obstacles of arbitrary shapes
may appear and disappear at random moments of time. Moreover, we consider the
case when the environment is only partially observable for an agent. We study and
evaluate two orthogonal approaches to tackle the problem of reaching the goal under
such conditions: planning and learning. Within planning, an agent constantly re-
plans and updates the path based on the history of the observations using a search-
based planner. Within learning, an agent asynchronously learns to optimize a policy
function using recurrent neural networks (we propose an original efficient, scalable
approach). We carry on an extensive empirical evaluation of both approaches that
show that the learning-based approach scales better to the increasing number of the
unpredictably appearing/disappearing obstacles. At the same time, the planning-based
one is preferable when the environment is close-to-the-deterministic (i.e., external
disturbances are rare). Code available at https:/github.com/Tviskaron/pathfinding-in-
stochastic-envs.

Subjects Artificial Intelligence, Autonomous Systems, Robotics

Keywords Reinforcement learning, Path finding, Policy optimization, Stochastic A%,
Asynchronous learning

INTRODUCTION

Consider a mobile robot operating in a complex, non-stationary environment, e.g., a
service robot that has to transfer documents between the offices in an office building. One
of the key challenges that arise when such robot navigates from its current location to
the target one is that at no moment of time the robot possesses an accurate model of the
environment. Among the main reasons for that the following can be named.

First, the apriori map of the environment (e.g., the floor plan) is either unknown
or approximate, i.e., it does not contain the crucial information about the furniture,
open/closed doors, etc. This leads to a necessity to invoke the so-called simultaneous
localization and mapping (SLAM) (Bresson et al., 2017) pipeline that builds and constantly
updates the map, based on the data from the sensors installed on the robot (cameras, lidars,
etc.). Due to the measurement errors and to the limited sensors’ range, the robot at each
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timestep acquires only a local semi-accurate patch of the map. Combining these patches
to a global map via SLAM typically results in a more inaccurate map, which is subject to
constant changes while the robot is progressing toward its goal.

Indeed, planning a path on the basis of such a map (that constantly changes and
does not contain accurate information about a large portion of the environment) is a
challenging task. Within a planning framework, it is typically addressed via re-planning,
i.e., at each timestep, an agent constructs a new plan taking into account the up-to-date
map. This can be done in a straightforward fashion (from scratch) using, for example, a
suitable variant of A* algorithm (Hart, Nilsson ¢ Raphael, 1968), or via the more involved
techniques, like incremental search, that re-use the search efforts of the previous planning
attempts (e.g., D*Lite (Koenig ¢ Likhachev, 2002) algorithm, which is widely used in mobile
robotics). Overall, such approaches can cope reasonably well with the problems induced
by the robot’s internal disturbances like noisy sensor data and partial observability.

There exists, however, a much harder problem, associated with the disturbances that
are external to the robot. The environment (and, thus, its representation as a map) can
change due to the actions of other agents interacting with the environment, e.g., people that
close/open doors, move pieces of furniture from one place to the other etc. These stochastic
changes may lead to complete failures of the described planning/re-planning approach.

As an example, consider the environment, depicted at the top of Fig. 1. Even if it is fully
observable, the robot can stuck in an oscillating behavior due to the stochastic (from the
robot’s perspective) blockage of one of the grid cells that can correspond to opening/closing
a door. When the door is closed the robot constructs a detouring path and starts moving
along it. After three steps, the door opens and a shorter path is found which is adopted by
the robot (Fig. 1, top right). However, when the robot comes close to the door, it might
be closed again, and the robot switches back to the detour path. Another challenging
example is depicted on Fig. 1 at the bottom row. Due to partial observability and, again,
unpredictable changes in the environment, the robot is stuck being unable to find a path
to the goal on a map produced by accurately combining all observations.

We are unaware of the works that study the pathfinding problem when the environment
is both partially observable and stochastic (when the obstacles may appear/disappear
unpredictably). Our work aims to fill this gap. We develop and study empirically two
orthogonal approaches to tackle the problem: the one that follows the planning/re-
planning scheme (Ghallab, Nau ¢ Traverso, 2016), and the learnable one, when we utilize
a reinforcement learning approach (Sutton & Barto, 2018; Moerland, Broekens ¢» Jonker,
2020) to optimize a policy function that maps observations to actions. Within the planning
approach, we rely on a heuristic search based method that constantly attempts to find a
path on the grid. As expected, this approach often fails due to the reasons explained above.
To mitigate this issue to a certain extent we develop an extension of this approach that
handles the history of observations in a way to heuristically identify stochastic obstacles and
avoid them. Moreover, we apply a learning approach to the problem at hand and optimize
a policy (deep neural network) that learns to deal with the stochasticity end-to-end. One
can think of this as learning to adaptively change the action selection heuristics online
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Figure 1 The challenges associated with pathfinding in stochastic environments. Top row: the robot
with unlimited field of view is stuck in an oscillating behavior due to blocking/unblocking of a single grid
cell (which might correspond to opening/closing the door by humans). Bottom row: due to the partial ob-
servability the robot is unaware that the previously blocked cell becomes traversable (the door opens) and,
thus, the robot is not able to plan a path to the goal. Both cases can be successfully solved by the learnable
policy suggested in the paper, which is empirically shown to learn such behaviors as “wait for an obstacle
to disappear,” “keep exploring the environment for additional options of reaching the goal”, etc.

Full-size & DOI: 10.7717/peerjcs.1056/fig-1

(when solving a pathfinding query). For example, the agent may choose to “wait” as many
timesteps as needed when a passage gets temporarily blocked.

We carry out an extensive experimental evaluation on a wide range of setups and show
that the designed learnable policy outperforms the planning approach both in terms of
success rate and the solution cost (i.e., number of actions needed to reach the goal) when
the number of stochastically appearing/disappearing obstacles is not zero. Thus, we infer
that the learning-based approaches should be the tool of choice when solving the studied
kind of problems. Despite the latter may sound obvious, we are unaware of the works that
empirically confirm this claim.

Overall, our main contributions can be summarized as follows. First, we introduce
and study a challenging variant of the single-agent pathfinding problem inspired by
the real-world robotic applications. In this setting the obstacles might stochastically
appear/disappear in the environment and the latter is only partially-observable to the
agent. Second, we propose the planning based and the learning based approaches to
solve the problem. The latter utilizes reinforcement learning and is able (as shown
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empirically) to form an adaptive pathfinding policy that successfully handles a wide
range environment’s disturbances. Finally, we empirically show that the designed learnable
approach outperforms the planning one in the majority of the setups (on different maps,
with different numbers of stochastic obstacles etc.).

The rest of the paper is organized as follows. Section 2 provides a brief overview of related
works. Section 3 focuses on the formulation of the problem of pathfinding in stochastic
environments with partial observability. Section 4 describes the methods of planning and
asynchronous reinforcement learning that are being compared. Section 5 is devoted to the
experimental study of the limits of applicability of the methods under consideration. In
the conclusion, the results obtained are discussed.

RELATED WORK

Context: The previous work in grid-based pathfinding was mainly focused on the
application of the planning-based approaches to solving the problem. It was known
that the planners based on the heuristic search are the versatile tools when the environment
is static and partially observable. These planners have not been examined (both theoretical
and empirical) in the setting with both unpredictably appearing/disappearing obstacles
and partial observability, thus it was not evident whether planning approaches will succeed
in it. On the other hand, pure reinforcement learning (RL) techniques (without hierarchy
and model) were known to be very powerful in solving a wide range of problems with
simple casual structure (like playing the video game of pong), however, when it comes
to the problems that require reasoning about the outcomes of the series of actions (like
navigation on a grid) RL shows much worse results. e.g., in one of the most citepd papers,
that addresses the navigation on a fully-observable grid without stochastic obstacles
(Panov, Yakovlev & Suvorov, 2018), the RL methods demonstrated pure convergence of the
learning process in even simplest cases. In some papers considering reinforcement learning
in a partially observable stochastic environment, tabular methods are used that do not
presuppose scaling to large-sized environments (Pena ¢» Banuti, 2021). In the other recent
paper from OpenAl (Cobbe et al., 2020), which describes a state-of-the-art RL benchmark
including the grid-based navigation problem with the maximum grid size being 25 x 25,
the advanced RL methods were not able to generalize easily and fast, which means that
navigation queries on large grids remained unsolved. Overall, no clear evidence that RL
methods, in general, can handle navigation problems on the large partially-observable grids
exist so far.

Relevant papers: There exist a lot of different works relevant to the considered problem.
Most of them are related to robotics, as the problem of operating in unknown environments
with partial observability, uncertainty, and presence of the dynamic obstacles naturally
appears in this field of research. Fiorini ¢ Shiller (1998) introduces velocity obstacles—one
of the major approaches to avoid dynamic obstacles that is based on the idea of predicting
their further movement and choosing such an action that does not lead to a collision with
any of the observable dynamic obstacles. This idea was further used in many approaches,
including such algorithms as ORCA (Van Den Berg et al., 2011) and ALAN (Godoy et al.,
2018), developed for multi-agent pathfinding problems.
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Neural networks and machine learning are also widely used for planning in dynamic
environments. In Chen et al. (2020) and Zhu et al. (2014), biologically-inspired neural
networks were applied for planning in unknown dynamic environments. Recent works,
such as Lei, Zhang ¢ Dong (2018) and Wang et al. (2020), have tried to apply reinforcement
learning to solve the problem of planning in dynamic environments. Moreover, it is also
worth mentioning such kind of planners as ABT (Kurniawati ¢» Yadav, 2016) or DESPOT
(Yeetal., 2017) that solve the POMDP-problem, building a belief-state tree to deal with
uncertainties and presence of dynamic obstacles.

Another field of research related to this work is heuristic search algorithms. Though
having a lot of restrictions and assumptions to be applicable, they provide strong theoretical
guarantees such as completeness and even optimality. Koenig ¢ Likhachev (2002) intrudes
state-of-the-art algorithm called D* Lite for planning in unknown partially-observable
environments. In Van Den Berg, Ferguson & Kuffner (2006), there was presented an anytime
version of D* algorithm that works not only in unknown environments, but also can deal
with dynamic obstacles. Another well-known approach is SIPP (Phillips ¢» Likhachev,
2011) that can be applied for planning in the environments with dynamic obstacles and
guarantees to find optimal solutions. However, it assumes that the environment is fully
observable and trajectories of dynamic obstacles are known.

The stochastic shortest path (SSP) is a generalized version of the classical shortest path
problem with a presence of stochasticity. In most cases, stochastic behavior is expressed in
a non-deterministic result of the actions’” execution. Mainly, it is considered as a Markov
Decision Process (MDP) and the solution of such kind of problems is a policy that chooses
which action to produce in any state to minimize the solution cost. An overview of different
variations of this problem is given in Randour, Raskin ¢» Sankur (2015). Though the SSP
problem contains stochasticity, it is assumed that the probability distributions are known,
which makes it different from the problem that is considered in this paper.

It is also worth noting a direction of research where planning algorithms are combined
with reinforcement learning. In Skrynnik et al. (2021) and Davydov et al. (2021), the authors
train RL agents in a centralized (QMIX) and decentralized (PPO) way for solving multi-
agent pathfinding tasks. The resulting RL policies are combined with a planning approach
(MCTS), which leverages the resulting performance. In Ferber, Helmert ¢ Hoffmann
(2020), RL was used to learn the heuristic function to make it more informative. A similar
idea of using reinforcement learning to get a better heuristic was suggested in Micheli ¢
Valentini (2021) but for the problem of temporal planning.

Overall, there exist a large body of works that study the problems which are similar to
ours in some aspects. However they all are different in the set of assumptions. As noted
above, some of the works assume that the environment is known and fully observable,
some of them—that even trajectories of dynamic obstacles are known. Most assume that
the trajectories of the dynamic obstacles can be predicted at least for a short period of time.
Approaches that deal with stochastic environments assume that probability distributions
are given, so they can use them to build an optimal policy. Contrary to all these assumptions,
in the problem that we are considering, the environment is changing in an unpredictable
way.
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'The introduced observation model allows
the agent to “see through the obstacles”.
Although this assumption is not realistic
in the majority of the real-world cases it,
indeed, reflects the property of the local
observability and at the same time is very
easy to implement and experiment with.

PROBLEM STATEMENT

Consider an agent moving on a 4-connected M x N grid. At each time step of the discrete
timeline T =0, 1,..., Tyax, Where Tjqy is the duration (length) of the episode, a grid cell
can be either occupied or free. The cells that are occupied for all time steps are called static
obstacles, the cells that are occupied for some time steps while being free for the others
correspond to the stochastic obstacles (e.g., closing doors, chairs that are moved by humans
etc.). Indeed, the agent can use only the free cells for movement.

The action set for the agent is comprised of five actions: A = {up, down, left, right , wait }.
Being at the grid cell c at timestep ¢, an agent can opt to either wait at the current cell or
to move to one of the cardinally-adjacent cells. Let ¢’ denote the target cell of the action,
which is either the same cell or one of the neighboring ones. In case ¢’ is free at ¢ + 1, the
action is considered valid and the agent is transferred to ¢’. If, however, the destination cell
of the move is blocked in the next time step the agent stays put, i.e., is kept in its current
cell. Each action a € A is associated with a non-negative cost: cost(a) =w € R.o. We assume
this cost to be uniform, i.e., 1, for all actions in the rest of the paper. In case the action
chosen by the agent turns to be invalid the agent stays put but it still incurs a 41 cost.

The grid topology, its size and status of all the grid cells at a certain/any time step is
not known to the agent. Instead, the agent can observe the grid environment only locally.
Different ways to model this local observability model can be suggested. In this work we
adopt the most easy-to-implement one: when located at the grid cell ¢ at time step ¢, the
agent observes a (2- R+ 1) x (2- R+ 1) patch of the grid environment, which is centered
at ¢, where R is the given visibility range. In the example depicted in Fig. 2, R =5, which
means that the agent observes a 11 x 11 patch of the grid at each time step.! Within the
visibility range the agent is able to observe the blockage status of the cells, however it is not
able to distinguish which cells are blocked only temporarily (due to the appearance of the
stochastic obstacles) and which are blocked constantly (due to the static obstacles).

We assume that the agent can not predict the blockage status of the grid cells which
are both within or out of the visibility range. However, it is able to memorize the past
observations if necessary.

The problem now is formulated as follows. Given the start and the goal location (cell)
design a mapping from the (history of the) observations to actions, i.e., the policy 7, s.t.
the chance of reaching the goal cell within the T}, time steps is maximized. In this work
we are not restricting ourselves to design the policy that minimizes the cost of reaching
the goal, i.e., the sum of costs of the actions that led to the goal cell, however obtaining the
lower cost paths is, obviously, preferable.

METHODS

To solve the considered problem we investigate two approaches. The first one relies on
finding a path on the grid and then applying the first action of this path. The second
approach is based on reinforcement learning. Here the agent optimizes a policy that maps
the observations to actions end-to-end and follows this policy in a reactive fashion. Next,
we describe both approaches in more details.
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(a) 32 stochastic obstacles (b) 64 stochastic obstacles

Figure 2 Examples of the grid environments with different numbers of the stochastic obstacles
(shown in orange). (A) Thirty-two stochastic obstacles; (B) 64 stochastic obstacles. Undiscovered static
obstacles are transparent. The agent’s field of view is shown by the red square.

Full-size &l DOI: 10.7717/peerjcs.1056/fig-2

Planning

The main idea of planning is to repeatedly (i) construct a full sequence of actions that reach
the goal state (i.e., the grid cell) from the current one (which is the start cell initially), (ii)
apply the first action of the plan.

When constructing a plan, we rely on the history of the received observations, i.e., we
memorize the observations and construct a map out of the map. At each time step, upon
receiving the new observation we update the map. We use it then to find a path from the
current cell to the goal one by applying a pathfinding algorithm. We then extract the first
move action from this path and add it to the resultant plan. If no path is found, we opt
to perform a greedy action that moves the agent closer to the goal (more details on this
will be given below). The high-level pseudocode of the planning algorithm is presented in
Algorithm 1.

The presented algorithm relies on the following intrinsic assumptions. First, it is assumed
that the agent knows the goal’s coordinates within a reference frame, initially centered at
the start position of the agent, and is able to localize itself within this frame at each timestep.
Second, the agent is able to combine all the observations into a single representation of the
environment, i.e., the map. This map is built/updated incrementally. The size of the map
is unknown.

The crucial procedure of the algorithm is PathFinding, which finds the path on the
map provided with the start and goal locations, where start constantly changes due to
agent moving through the environment. The most prominent way of solving pathfinding
problems in the environments with partial observability is D*Lite algorithm (Koenig ¢
Likhachev, 2002). Instead of re-planning the path from scratch after applying each action,
it extensively reuses the previously built search tree to speed up the search. Unexpectedly,
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Input: start cell s, goal cell g, initial observation obs, maximal number of actions the
agent can make T4,

Output: either success or failure

map <— obs

c<s

t<0

while t < T}, do

if c =g then
| return success;

end
obs <— GetCurrentObservation()
map < UpdateMap(map, obs)
path < PathFinding (¢, g, map)
if path = @ then

‘ a < GreedyAction()
else

‘ a < FirstActionFromPath(path)
end
ApplyAction(a)
t<—t+1

end

return failure
Algorithm 1: High-level algorithm of reaching the goal in a stochastic environment via

planning.

Input: number of training epochs E,

Output: policy 6

D <« ;e <0; hy <

0 < InitializeActor ()

¢ < InitializeCritic()

while e < E,,,;x do
D <« GenerateTrajectories(); 6 <— UpdateActor (D, ¢)
¢ < UpdateCritic(D)

end

return 6
Algorithm 2: A policy optimization algorithm (training phase).

our preliminary tests have shown, that the performance of D*Lite is worse compared to
the sequential re-planning with A* from scratch after each move. The main reason for
such phenomenon is that at some (numerous) time steps the feasible path from the agent’s
current position to the goal is not existent due to the stochastic obstacles that temporarily
block the narrow passages. In case these blockages appear close to the agent, running
A* from scratch detects unsolvability notably faster compared to D*Lite which actually
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Input: initial observation obs, maximal number of actions the agent can make K,
Output: trajectory D
D« k<05 hy <O
while k < K, do
if EpisodelsDone() then
return D
end
action, hy < GetAction(obs, hr_1)
ApplyAction(a)
obs < GetObservation()
r < GetReward()
D.AddTuple(o,a,r)
k<k+1

end

return D
Algorithm 3: An algorithm for generating actions with a learnable policy model (infer-

ence phase).

plans backwards from the goal state. As such blocking happens often (especially when the
number of stochastic obstacles is high) sequential invocation of A* actually proved to be
beneficial in our preliminary tests and, thus, we adopted A* to implement PathFinding in
this work.

Additionally, we attempted to adapt the UpdateMap procedure to the environments
with stochastic obstacles. Recall, that the agent is not able to distinguish which grid cells
within its visibility range are blocked temporarily, due to the stochastic obstacles, and
which cells are blocked for good by the static obstacles. The basic UpdateMap procedure
treats all the blocked cells as the static obstacles, adding them to the map. This ignores the
fact that some of the temporarily blocked cells might become free in future. To this end,
we introduce a modified UpdateMap procedure that tries to detect stochastic obstacles
leveraging the history of observations. More specifically, in case when the agent observes
a cell that is currently blocked but was free according to the preceding observations, it is
marked as blocked temporarily. When this cell is within the observation radius its actual
blockage status is taken into account while finding a path. When the agent moves away
and this cell is no longer within the visibility range it is considered to be free, so the path
can go through it. Intuitively, this allows the agent to anticipate that the the previously
seen stochastic obstacle might move away. This variant of the planning algorithm with the
additional indication of the stochastic obstacles is called Stochastic A* (SA*).

Both regular planning algorithm (A*) and the adapted one (SA*) share the following
additional techniques: exploration threshold and greedy action. Both these techniques are
tailored to handle the case when the path to the goal does not exist (due to the temporal
presence of the stochastic obstacles). Recall, that we assume that the size of the map is
not known to the agent. This infers that it is not technically possible to detect that the
current pathfinding query is unsolvable as the search algorithm will keep on exploring the
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environment assuming that the portion of the environment, that has not been seen/mapped
before, is traversable. To mitigate this issue we impose the threshold on the number of
internal iterations of A*/SA*. When this threshold is exceeded the search is aborted with
the no-path-found result. In such case instead of picking the random action we choose
the one that is likely to move the agent closer to the goal—the so-called greedy action. It
is chosen as follows. When A*/SA* terminates due to the exploration threshold without
finding the path we pick the node in the search tree that corresponds to the cell which is
the closest to the goal. We then reconstruct the path to this cell in the tree and pick the first
action of the path.

Learning

The main idea of the reinforcement learning (RL) approach is to optimize a policy 7,
which maps the observation to an action. The policy is trained to maximize the cumulative
expected reward (cost function) for each interaction episode. We use the partially observable
setting since the agent has no access to the global state.

The advantage of RL over planning approaches is that the agent can learn the adaptive
heuristic of acting in an environment with stochastic dynamics. At the same time, it should
be taken into account that the work of the learnable approaches is divided into two phases:
the actual training on prepared environment configurations (training phase, see Algorithm
2) and the work of the trained model on any environments (inference phase, see Algorithm
3).

Formally, in RL setting, the interaction of an agent with the environment is described as
partially observable Markov Decision Process (POMDP), which can be described as tuple
(S,0,A,P,r,y), where S is the set of environment states, o € O is a partial observation of the
state, a € A is the set of agent’s actions, r(s,a) : S x A — R is a reward (cost) function, and y
is the discount factor. The agent has no access to states S (true coordinates and full obstacle
map), and the policy is a mapping from observations to actions: 7 (alo) : A x O — [0,1].

We propose and describe an end-to-end architecture to train the agent in grid pathfinding
scenarios. And we believe that our learning approach is applicable for a wide range of
pathfinding tasks. The scheme of the learning approach is presented in Fig. 3.

As already mentioned in Section 3 in the proposed environment the observation space O
of the agent is a multidimensional matrix: O: 2 x (2 X R+ 1) X (2 X R+ 1), that represents
the part of the environment around the agent within radius R. It includes the following
two matrices.

e Obstacle matrix: 1 encodes an obstacle, and 0 encodes its absence. If any cell of the
agent’s field of view, which is outside the grid, is encoded as an obstacle. The agent does
not distinguish between the type of obstacles. Both static and stochastic obstacles are
encoded the same.

o Target matrix: if the agent’s goal is inside the observation field, then there is 1 in the
cell, where it is located, and 0 in other cells. If the target does not fall into the view, then
it is projected onto the nearest cell of the observation field (Skrynnik et al., 2021).
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Figure 3 The scheme of the proposed asynchronous learning approach. The bottom-left part shows
the environment and observation encoding. The top-left part of the scheme shows the neural network ar-
chitecture. We use residual layers as a shared encoder and recurrent heads. The recurrent layers (GRU)
are responsible for remembering obstacles and environment dynamics. The right part shows the asyn-
chronous learning procedure. The green blocks show GPU computations.
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At any time step, the agent has five actions available: stay in place, move vertically (up or
down), or move horizontally (right or left). The agent can move to any adjacent free cell.

The agent receives a reward of 1.0 when it reaches the goal and 0.0 in all other cases. We
have chosen this function so one can train the agent, which can deal with a wide range of
tasks in partially observable grid environments with stochasticity.

To learn a policy in a model-free setting, there are a number of well-known methods
in reinforcement learning, which can be roughly divided into two classes—value-based
(Mnih et al., 2015) and policy-based (Schulman et al., 2015; Haarnoja et al., 2018; Lillicrap
et al., 2016) methods. The first group of approaches is characterized by the use of replay
buffer to store experience and can learn only deterministic policies. The second group of
methods is specifically designed for operating stochastic policies. In the problem we are
considering, which is characterized by stochastic behavior of the environment itself, it is
necessary to provide an opportunity to work with probability distributions on a set of
agent actions. On-policy methods (Schulman et al., 2017) that use only current experience
are the most promising for the partially observed formulation of the pathfinding problem.
This is due to the fact that in some cases of recurrent stochasticity in the environment, it
is necessary to use a stochastic policy, which is most effectively learned by on-policy policy
gradient methods . Also, this makes it possible to improve the quality of state prediction
by observation when using recurrent neural network models.

We optimize the policy 7y, which is approximated by a neural network 6, using Proximal
Policy Optimization (PPO) method (Schulman et al., 2017). The approach is a variant of
the actor-critic algorithm, and proven effective in many challenging domains (Berner et
al., 2019; Yu et al., 2021; Cobbe et al., 2020). To adapt PPO for the POMDP setting, we
approximate the state s, using a recurrent neural network (RNN): s, & f (h;,0;), where
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h; is a hidden state of RNN. PPO uses clipping in objective to improve performance
monotonically. The clipped objective penalize the new policy 7y, ., for getting far from the
previous one 7y, .

To approximate policy and value we adapt network architecture from IMPALA (Espeholt
et al., 2018). As a feature encoder we use residual layers. We have changed the original
architecture and removed max pooling, similar to AlphaZero architecture (Silver et al.,
2017), which used akin encoding for observations. Removing max pooling is crucial,
to prevent loosing spatial information of the grid observation. After the shared feature
encoder, there are recurrent layers separate for the actor and the critic.

We use single GPU asynchronous training setup based on SampleFactory (Petrenko et
al., 2020). We called the modified version of the PPO algorithm as asynchronous proximal
policy optimization (APPO). The asynchronous training can be divided into two main
parts, which run in parallel: accumulating new trajectories and policy updating. The policy
used to collect experience may lag behind the current one. That discrepancy is called a
policy lag, and it negatively affects the performance. The policy lag especially affects the
learning of recurrent architectures. To stabilize training for such case IMPALA (Espeholt et
al., 2018) introduced importance sampling for value targets, called V-trace, which we also

use in our training.

EXPERIMENTAL EVALUATION

Environment

We designed and implemented the environment simulator that takes all the specifics of the
partially observable pathfinding and stochastic obstacles into account. The following
parameters are related to the interaction between the agent and the environment:
observation radius (agents observe 1 <R < Size cells in each direction) and the maximum
number of steps in the environment before the episode ends Horizon > 1.

The stochastic part of the environment is described with the following parameters: a
number of the stochastic obstacles > 0; obstacle size [x,y] (we assume that each stochastic
obstacle is a square whose size is in between [x, y]); obstacle density € (0, 1] (the chance of
each cell comprising the stochastic obstacle to be blocked, i.e., some of the cells forming
the obstacle can be free); obstacle move radius > 0 (defines how far from the original
placement the obstacle can move); obstacle appear time range [x, y] (the range of steps
during which a stochastic obstacle can be active); obstacle disappear time range [x, y] (the
range of steps during which a stochastic obstacle can be inactive). Figure 2 shows examples
of the environments with the defined stochastic obstacles.

For the experimental evaluation, we have set the following environment parameters of
stochastic obstacles: obstacle size = [5,10], obstacle density = 0.7, obstacle move radius
= 5, obstacle appear time range = [8,16], obstacle disappear time range = [8,16]. All the
values for the parameters with ranges are chosen randomly out of the corresponding range.
In other words each stochastic obstacle is a square with a side of five to ten, and 70% of
the cells forming this square are blocked. The structure of each stochastic obstacle does
not change with time. However, every tick of time it can move , but not more than five
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(a) sc1-Thinlce

(b) street-Sydney_0 (c) wc3-scorchedbasin

Figure 4 Examples of the evaluated maps from different collections. (A) sc1-Thinlce; (B) street-Sydney_0 ; (C) wc3-scorchedbasin.

Full-size & DOI: 10.7717/peerjcs.1056/fig-4

cells from the initial position. A stochastic obstacle is present on the map from 8 to 16 time
ticks, after which it disappears for a period of 8 to 16 time ticks and then reappears.

It is also worth to note that stochastic obstacles can be superimposed on static obstacles,
on top of each other, but cannot block the cell in which the agent is located.

Moreover, the observation radius was set to five and Horizon to 512.

Setup

During the experiments, we evaluated both planning approaches —the basic one, i.e., A%,
and the improved one, i.e., SA*. There is only one crucial parameter that is needed to be
set for them —a maximum number of iterations, that was set to 10000. Besides the planning
approaches, we have also evaluated the learning one, i.e., APPO. The details about its
training process and the choice of hyperparameters are described in Section 5.3.

The experiments were conducted on the maps from three different collections taken
from MovingAl (Sturtevant, 2012)—a grid-based pathfinding benchmark: (a) wc3—36
maps from Warcraft three computer game; (b) scI—75 maps from Starcraft computer
game; (c) streets—30 maps with real city data taken from OpenStreetMap. The chosen
maps represent different landscapes with varying topological structure, i.e., they include
maps with small passages, large open areas, prolonged obstacles of non-trivial shapes etc.
The original maps can be in size up to 1024 x 1024. For our experiments we have scaled
them to 64 x 64 or such a size that the lowest side is 64. These collections were divided for
training and test subsets in a ratio of 8 : 2, simply using the alphabetic names of the maps.
Examples of the maps are shown in Fig. 4. The names of all the maps that were used for
tests can be found in Section 5.4.

For each of the evaluated maps, there were generated 200 instances. The instances were
generated randomly, but in such a way that the path between start and goal locations is
guaranteed to exist for the static obstacles. Moreover, each of these instances was evaluated
with a different number of stochastic obstacles: from 0 to 200 with an increment of 25.
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Figure 5 Heatmap of the network architecture parameters. We used a version with 60 filters and three
residual blocks as encoder in APPO model for all experiments, since it showed better performance in our
hyperparameter sweep.

Full-size Gal DOIL: 10.7717/peerjcs.1056/fig-5

During the experiments, we evaluated such a parameter as success rate, which shows
the ratio between the number of successfully solved instances to their total amount. An
instance is considered successfully solved in case the solution was found within less than
512 steps (Horizon parameter), i.e., the resulting plan contains less than 512 actions. Besides
the success rate, we have also evaluated the average episode length, taking Horizon value
for the instances that were not solved by an algorithm, and computed how many times
each of the algorithms has found a solution with less number of actions.

To evaluate the computational efficiency of the approaches, we have measured such
a parameter as “steps per second” (SPS), which shows how fast the approach returns an
action that the agent needs to perform on the current step. The more actions the approach
returns within a second, the faster it works. The evaluation of all algorithms were conducted
using AMD Ryzen Threadripper 3970X CPU (single-core). Also, the performance of RL
approach, i.e., APPO, were tested using NVIDIA GeForce RTX 3080 Ti.

APPO training

First, we made a hyperparameter search to adjust the number of residual blocks and the
number of filters in them (see Fig. 5). As the environment configuration, we use a map
with 30% density of static obstacles and 64 stochastic obstacles in 64 x 64 grid, obstacle size
is {5, 10}, the density of the stochastic obstacles is 0.7, appear and disappear time ranges
are {8, 16}. The agent was trained for 100 million steps. The best results were shown by a
network with three residual layers and 60 filters in them, thus we use these settings in all
proceedings experiments.

Skrynnik et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1056 14/22


https://peerj.com
https://doi.org/10.7717/peerjcs.1056/fig-5
http://dx.doi.org/10.7717/peerj-cs.1056

PeerJ Computer Science

Second, we trained APPO for one billion steps using training collection. For each episode,
the initial position of the agent and his target, as well as the configuration of stochastic
obstacles, were sampled randomly. Solving a task with a large number of stochastic obstacles
is difficult in terms of exploration. Thus, we used curriculum learning to automatically
adjust the difficulty of the environment. In each curriculum phase, the agent is trained
until it reaches the average success rate of 0.9 on the 256 consequent episodes, after that the
number of stochastic obstacles is increased by one. The final number of stochastic obstacles
at the end of the training was 46.

Results

The aggregated results of the experiments are shown in Table 1. As one can see in most of the
cases, APPO solves more instances than planning approaches. The only case where APPO
shows a worse success rate is the one that doesn’t contain any stochastic obstacles, where
planning approaches have solved 100% of instances. The success rate of A* algorithm,
which doesn’t detect stochastic obstacles and remembers all the obstacles it has seen, is very
poor. While APPO and SA* successfully solved 45% of the instances with 200 stochastic
obstacles, A* has shown even worse success rate with only 25 stochastic obstacles. Such
behavior explains by the fact that A* in most cases can’t pass stochastic obstacles and fails
to find a path to the goal. This behavior also explains its high SPS—A* makes a very few
expansions before it makes a conclusion that the path cannot be found.

A more detailed view of the success rates of the approaches is presented in Fig. 6. It
shows the success rates of the approaches on each of the maps separately. As one can see,
there is not a single map where SA* significantly outperforms APPO. Despite the points
with 0 stochastic obstacles, in all the cases they either show very close results, or APPO
outperforms SA*. There are some maps, for example, timbermawhold or swampofsorrows,
that show significantly higher success rates compared to other maps. Such behavior explains
by the fact that these maps contain several relatively small disjoint areas. As a result, the
instances on these maps are much simpler than on the other maps, as the distance between
start and goal location is much lower. On the other hand, there are some maps, where
success rates of all approaches drop to less than 20% on the instances with the highest
amount of stochastic obstacles. There are actually two reasons for such behavior. First,
there are maps such as ThinIce (see Fig. 4A) or Typhoon, that contains a difficult structure
for partially observable environments, i.e., they contain “trap” areas, that are on the way to
the goal but do not actually lead to it. Second, some maps of wc3 collection in the original
MovingAI benchmark contain huge borders of obstacles, that affected the scaled maps and
reduced their actual size with traversable areas to 48 x 48 (see Fig. 4C). Thus, the density
of stochastic obstacles on such maps is actually much higher than on other maps.

To get some insight about the quality of the found solutions, we have computed how
many times APPO or SA* has found a solution with less number of actions. We have
excluded the results of A* in this comparison, as its success rate is very low. However,
there actually were some instances where A* has found a solution with the least number
of actions—220 out of 56,000. The results were aggregated among the collections and are
presented in Fig. 7. As one can see, there actually presents two more lines called “Equal”
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Table 1 Averaged results of A¥, SA*, and APPO aggregated over all the evaluated maps. Bold values
highlight better performance (episode length—lower better, success rate—higher better) for each number of
stochastic obstacles. SPS denotes steps per second.

Algorithm Obstacles SPS (CPU) SPS (GPU) Episode length Success rate

A* 1127.87 - 57 1
APPO 0 105.58 812.3 95.64 0.93
SA* 1052.73 - 57 1
A* 2226.9 - 331.14 0.38
APPO 25 100.71 754.58 120.11 0.93
SA* 847.81 - 135.39 0.88
AX 2589.9 — 410.22 0.21
APPO 50 100.39 731.58 157.29 0.9
SA* 866.21 — 189.96 0.8
A* 2438.91 - 438.91 0.15
APPO 75 98.23 712.26 200.41 0.82
SA* 909.81 - 232.68 0.72
A* 2226.41 - 453.42 0.12
APPO 100 100.04 702.45 242.72 0.74
SA* 955.12 - 271.56 0.65
A* 2061.56 - 462.88 0.1
APPO 125 98.49 693.69 279.28 0.65
SA* 976.84 — 297.88 0.59
AX 1911.56 - 468.22 0.09
APPO 150 98.23 686.08 309.25 0.57
SA* 988.06 - 320.56 0.54
A* 1793.01 - 474.08 0.08
APPO 175 97.75 667.67 334.54 0.51
SA* 1021.84 - 338.94 0.49
A* 1631.31 - 475.79 0.07
APPO 200 98.39 659.66 353.37 0.45
SA* 1014.4 — 354.45 0.45

and “Failed”. “Equal” line indicates the portion of instances that were successfully solved
by both approaches with an equal number of actions, while “Failed” one indicates the
portion of instances that were solved neither by APPO nor by SA*. The results on sc1 and
street collections are very similar. The portion of instances that were solved with equal
number of steps on sc1 and street collections is relatively small, while on we3 it’s much
higher. This behavior on wc3 is explained by the presence of such maps as timbermawhold
and swampofsorrows with isolated parts, where the instances are easy and thus solved
by both approaches with equal cost. About 70% of all the instances on these maps were
successfully solved by both approaches with an equal number of actions. The behavior of
SA* and APPO methods shows that the planning approach outperforms the others when
the number of stochastic obstacles is very small. The learning approach outperforms the
others when the number of stochastic obstacles rises to about 100. When the number of

stochastic obstacles rises to the maximum, both approaches show close results. Generally,
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Figure 6 Success rates of A*, SA* and APPO on each of the evaluated maps depending on the number
of stochastic obstacles. The shaded area shows 95% confidence interval.
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these plots indicate the same trends as the ones that show the success rates of the algorithms.

CONCLUSION AND DISCUSSION

In this article, we have introduced and studied a challenging variant of the single-agent
pathfinding problem inspired by real-world robotic applications. In this setting, some of
the obstacles unpredictably appear/disappear in the environment, and the latter is only
partially observable to the agent. We designed two orthogonal approaches to solve this
problem: planning-based and learning-based. For the former, we utilized the well-known
A* algorithm and suggested its modification, called Stochastic A* (SA*), that differs in
the way how the incoming observations are processed; for the latter, we have proposed
an original asynchronous policy optimization method (APPO) based on the established
actor-critic neural network architecture. Both approaches were experimentally evaluated
on a range of setups involving different maps and degrees of stochasticity (i.e., numbers
of the appearing/disappearing obstacles). The results indicate that both of the suggested
approaches has their own pros and contras. SA* is evidently faster than APPO but its success
rate is generally lower compared to APPO. The only case when SA* performs better/on par
with APPO is either when no stochastic obstacles are present at all or when this number is
very high. Both cases can be seen as the outliers. For all other configuration APPO, indeed,
is able to successfully solve more instances than SA*. We believe that this happens due to
the ability of APPO to adaptively adjust the heuristic of choosing actions, which is learned
rather than hard-coded. We also would like to note that low computational efficiency
of our implementation of APPO is not a fundamental problem, as there is a room for a
significant speed-up via using specialized code implementations (e.g., TensorRT).

One of the perspective avenues for future research is investigating the analogous problem
statements, but when certain predictions about the dynamics of the environment can be
made. One of such settings that is of particular interest is the decentralized multi-agent
pathfinding setting, when each agent can distinguish between the static obstacles and
the moving agents and is able to predict, to a certain extent, the future moves of the
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latter. We assume that in such settings, the planning-based approaches may exhibit a
better performance due to the additional knowledge that they can take into account, i.e.,
the locations that will be blocked at the next time step due to the moves of the other
agents. In such case, pathfinding algorithms can be straightforwardly extended to reason
about the temporal dimension and to build plans that will avoid future collisions with
the other agents. As for the learning-based approaches, modifying(and learning) them
for such settings might be more problematic. Indeed, such approaches for decentralized
multi-agent pathfiding do exist currently, see (Sartoretti et al., 2019; Riviere et al., 2020)
and others, but mainly they rely on the accurate long-horizon predictions of how the other
agents will behave, i.e., they rely on the ability to acquire/accurately reconstruct the full
paths of the other agents to their goals. In case this ability is limited, e.g., only the next
action can be inaccurately predicted, their performance might get worse. Therefore, the
question on whether the learning-based approaches will beat the planning-based ones in
such settings is still to be answered.
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