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ABSTRACT
Session-based recommendation (SBR) aims to recommend the next items based on
anonymous behavior sequences over a short period of time. Compared with other
recommendation paradigms, the information available in SBR is very limited.
Therefore, capturing the item relations across sessions is crucial for SBR. Recently,
many methods have been proposed to learn article transformation relationships over
all sessions. Despite their success, these methods may enlarge the impact of noisy
interactions and ignore the complex high-order relationship between non-adjacent
items. In this study, we propose a self-supervised global context graph neural
network (SGC-GNN) to model high-order transition relations between items over all
sessions by using virtual context vectors, each of which connects to all items in a
given session and enables to collect and propagation information beyond adjacent
items. Moreover, to improve the robustness of the proposed model, we devise a
contrastive self-supervised learning (SSL) module as an auxiliary task to jointly learn
more robust representations of the items in sessions and train the model to fulfill the
SBR task. Experimental results on three benchmark datasets demonstrate the
superiority of our model over the state-of-the-art (SOTA) methods and validate the
effectiveness of context vectors and the self-supervised module.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Self-supervised learning, Graph neural network, Session-based recommendation

INTRODUCTION
In the era of information explosion, recommendation systems (RS) play critical roles in
various online commercial applications due to their success in addressing information
overload by recommending useful context to users. Many existing recommendation
approaches apply user profiles and long-term historical interactions to predict their
preference, e.g., collaborative filtering (Sarwar et al., 2001), matrix factorization (Rendle
et al., 2009), and deep learning based methods (He et al., 2017). However, in many
real-world scenarios, such information may not exist. Consequently, session-based
recommendation (SBR) has recently attracted more and more attention, which aims to
predict the next interested item based on a given anonymous behavior sequence within a
short period of time.

Early methods (Zimdars, Chickering & Meek, 2001) used Markov chains to predict the
next item based on the previous clicked items in nature and have limited prediction
accuracy due to the strong independence assumption. In recent years, with the
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development of deep learning, recurrent neural networks (RNNs) based methods (Hidasi
et al., 2016) and graph neural networks (GNNs) based models (Wu et al., 2019) have been
proposed and made great progress. RNNs-based models (Jannach & Ludewig, 2017; Li
et al., 2017; Liu et al., 2018) can learn complicated and effective item-transitions
patterns from users’ historical interactions. These models only consider the current session
and ignore the complex high-order relationships between items in different sessions.
However, individual session tends to be short, and the item transitions from other
sessions may contain useful information about the current session. Unlike RNNs-based
recommendation methods, GNNs-based methods model session sequences as graph-
structured data. Pan et al. (2020) added a star node into a session graph to consider the
non-adjacent items while ignoring cross-session information. Wang et al. (2020b) built a
global graph over all sessions to learn global-level information, unified into the current
session to improve the recommendation performance. Still, it may enlarge the impact of
noisy interactions and does not consider the information from items without direct
connections. Although multilayer GNNs are used to propagate information between items
that are not directly connected, they can easily lead to over-smoothing (He et al., 2020).

Recently, self-supervised learning (SSL), especially contrastive learning (Hjelm et al.,
2019), has become a hot research topic, which allows us to learn data representations from
raw data with annotations. As a pioneer, Zhou et al. (2020b) used SSL to enhance the
learning of data representations in a mutual information maximization manner for
recommendations. Xia et al. (2021b) constructed two views to learn inter- and intra-
session information and uses SSL to provide complementary information. However, how
to choose the proper comparison perspective in contrastive learning is still a challenging
problem in SBR on account of the information limitation of each session.

To address the above issues, we propose a self-supervised global context graph neural
network (SGC-GNN) model for SBR. Figure 1 shows the workflow of the proposed SGC-
GNN model. At first, we constructed a cross-session graph by adding a context vector for
each session which can provide a natural way to pass information beyond adjacent items.
We named the graph GCSG (Global Context Session Graph). In GCSG, we propose a
global context graph neural network to model complex high-order relationships between
items from the global level. We also constructed an Ongoing Session Graph (OSG) for each
session. By modeling pairwise item transitions within the ongoing session, we can obtain
the session-level item embedding. In addition, to obtain more robust item representations,
we generated an augmented graph of GCSG and maximize the agreement of the context
vectors of the same session in the original GCSG graph and the augmented graph, pushing
away the agreement of the two context vectors with the other context vectors. We call this
module a contrastive self-supervised learning module. Finally, SGC-GNN aggregated the
learned item representations from global-level and session-level for SBR. By jointly
optimizing the contrastive self-supervised task and the recommendation task, the model
significantly improves the recommendation accuracy and enhances the robustness of the
model against interaction noises.
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The main contributions of this work are summarized as follows.

� To the best of our knowledge, this is the first work that adds context vectors to a global
session graph to learn the relationships between item pairs that are not directly
connected cross sessions.

� A novel supervised module is proposed to obtain more robust item representations in
the global context graph.

� A unified scheme is used to combine the pairwise item-transition information in OSG
and high-order relationships between adjacent and non-adjacent items in GCSG.

� Extensive experiments show that SGC-GNN has superiority over the SOTA baselines
and achieves significant improvements on three real-world datasets.

RELATED WORK
Session-based recommendation
SBR aims to capture dynamic user preferences to provide more timely and accurate
recommendations (Wang et al., 2021). Early SBR mainly used Markov decision process-
based methods to capture the sequence signals in interactions.Wu et al. (2013) proposed a
Personalized Markov Embedding (PME) model to embed both users and items into a
Euclidean space in which the distance between users and items reflects the strength of their
relationships. Le, Fang & Lauw (2016) developed a hidden Markov model to incorporating
dynamic user-biased emission and context-biased transition for recommendation. With
the development of deep learning, many methods take advantage of the powerful
capabilities of deep neural networks to model the complex dependencies in interactions for
recommendations. Wang et al. (2020a) proposed a method to incorporate dwell time in
SBR and uses RNNs to predict the next item. Tan, Xu & Liu (2016) employed data
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Figure 1 The workflow of SGC-GNN. Full-size DOI: 10.7717/peerj-cs.1055/fig-1
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augmentation techniques and considers temporal shifts in user behavior to improve the
performance of SBR. Song, Elkahky & He (2016) employed an MLP layer to combine both
long-term static and short-term temporal user preferences and trains model with a pre-
train method.

In recent years, GNNs has developed rapidly. They are widely used in various fields
(Zhou et al., 2020a), such as providing optimal bike station layouts in the area of decision
support systems (Chen et al., 2021) and predicting traffic states (Zheng et al., 2020). In
addition, some methods employ GNN to model the complex transitions within or
between sessions which have shown promising results (Wang et al., 2021) in session
recommendation. Wu et al. (2019) introduced GNN into SBRS firstly and achieves
superior performance. Chen & Wong (2020) proposed a lossless encoding scheme to
address the lossy session encoding problem and devises a shortcut graph attention layer to
capture long-range dependencies. Qiu et al. (2019) proposed a weighted attention graph
layer to learn the embedding of items and sessions for the next item recommendation.
Wang et al. (2022) simulates users’ behavior patterns in the session without destroying the
click order and highlights the critical preferences of users during the simulate process. Xu
et al. (2019) dynamically constructed a graph structure for session sequences and uses the
self-attention network and GNN to capture global dependencies and local short-term
dependencies, respectively. Huang et al. (2021) developed a position-aware attention
mechanism to learn item transitional regularities within individual sessions and proposed
a graph-structured hierarchical relation encoder to capture the cross-session item
transitions explicitly. Deng et al. (2022) decomposed the session-based recommendation
workflow into two steps. They built a global graph over all session data, learn global item
representations in an unsupervised manner, and later refine these representations in
individual session graphs. Qiu et al. (2020) constructed a broadly connected session graph
to exploit and incorporate cross-session information in the individual session’s
representation learning. Although these studies demonstrate that GNN-based have
achieved good performance, they construct graphs based only on the adjacency or
sequential relationships of items, making it difficult to model complex higher-order
relationships between items in different sessions effectively. Xia et al. (2021b) constructed a
hypergraph to capture the high-order correlations among items, which works similarly to
our approach. However, it ignored the critical sequential relationships of items in the
session and introduces a lot of noise, which reduces the robustness of the model. Besides,
Pan et al. (2020) added a star node into a session graph to consider the non-adjacent items,
which inspired us to build nodes representing each session on the cross-session graph to
learn higher-order relationships beyond adjacent items in different sessions.

Self-supervised learning
Self-supervised learning, especially contrastive learning (Hjelm et al., 2019; Chen et al.,
2020), designed to learn data representations from raw data with annotations, can learn
user representations more robustly. Yao et al. (2021) proposed a multi-task SSL framework
for large-scale item recommendations and devised a data augmentation method from the
perspective of feature correlations. Wu et al. (2021) employed three types of data
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augmentation from different aspects and takes node self-discrimination as the self-
supervised task to offer an auxiliary signal for representation learning. Xia et al. (2021a)
learned session representations from the session view and the item view by a self-
supervised graph co-training framework, which can iteratively select evolving pseudo-
labels as informative self-supervision examples for each view to improve the performance
of recommendation.

METHODS
Problem statement
Let V ¼ fv1; v2; . . . ; vjV jg denote the set consisting of all unique items involved in all
sessions, where |V| is the number of all unique items. A session S can be represented by an
item list S ¼ ½vs1; vs2;…; vsm� ordered by timestamps, where vsi 2 V represents the i−th
clicked item within the session S. The goal of SBR is to predict the next click item vsmþ1 for
the session S given vs1; v

s
2;…; vsm.

Ongoing session graph module
An ongoing session graph (OSG) module aims to learn personalized item embedding by
modeling sequential patterns in the current session. First, each session sequence S is
modeled as a directed graph Gs ¼ ðVs;EsÞ. We name the graph OSG. Concretely, each
node represents an item vsi 2 V , each edge ðvsi�1; v

s
iÞ 2 Es means that a user clicks item vsi

after vsi�1 in the session S. The transition relationship between two items in the session can
be represented by an incoming matrix and an outgoing matrix. For example, given a
session S = [v1, v2, v3, v2, v8], let Gs denote its OSG graph, its incoming matrix Ms,I and
outgoing matrix Ms,O are shown in Fig. 2. We concatenate the incoming matrix and the
outgoing matrix to obtain a matrix M = Concat(MI, MO) for each session, which denotes
how nodes in the OSG communicate with each other. We embed each item v ∈ V into a
unified embedding space and the node vector v 2 Rd indicates the latent vector of item v.
Concretely, we generate a d-dimension embedding vi for each unique item vi in the session
through an embedding layer. Then, we use the gated graph neural networks (GGNN) (Wu
et al., 2019) to update each item embedding in the graph OSG, where the adjacency matrix
Ms and the l − 1 layer embedding vs;l�1

� are used to update the embedding vs;li of node vi in
Gs at layer l as follows.

as;li ¼ Ms
i:½vs;l�1

1 ; . . . ; vs;l�1
n �>Wþ b

zs;li ¼ rðWza
s;l
i þ Uzv

s;l�1
i Þ

rs;li ¼ rðWra
s;l
i þ Urv

s;l�1
i Þ

~vs;li ¼ tanhðWoa
s;l
i þ Uoðrs;li �vs;l�1

i ÞÞ
vs;li ¼ ð1� zs;li Þ�vs;l�1

i þ zs;li �~vs;li

(1)

whereW;Wz;Wr;Wo 2 Rd�2d andUz;Ur;Uo 2 Rd�d controls the weights, and b 2 Rd is
a bias vector. zsi ; r

s
i are the reset and the update gates, which decide what information to be

preserved and discarded, respectively. σ(·) is the sigmoid function, and � is the element-
wise multiplication operator. ~vsi 2 Rd represents the candidate state of node vi. And the
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final state vsi is the combination of the previous hidden state and the candidate state under
the control of the update gate. However, a GNN with multiple layers is prone to over-
fitting and over-smoothing. We utilize dropout (Srivastava et al., 2014) at each layer and
highway network (Pan et al., 2020) to alleviate the problems. Concretely, we aggregate the
output of the last layer of the module with the initial input as the final item representation
in the following.

g ¼ rðWs½vs;0i ; vs;li �Þ
vsi ¼ gvs;0i þ ð1� gÞvs;li

(2)

where Ws 2 R2d�d are learnable parameters and ;½ � is the concatenation operation.

Global context session graph module
The GCSG module aims to learn more powerful item embedding by modeling complex
high-order relationships among items through context vectors over different sessions.
Firstly, we formulate a cross-session item graph as G ¼ ðVg ;EgÞ, in which nodesVg and
edges Eg are generated from historical sessions. Each session sequence S is viewed as a
path which starts from vs1 and ends at vsm in graph G. Unlike existing methods, we add a
global representation for every session in the graph G, which is called a master node
or a context vector (Gilmer et al., 2017; Battaglia et al., 2018). The context vector builds up
a representation for the session as a whole and have a bidirectional edge to all other nodes
in the session, providing a natural way to pass information between items that are not
directly connected. We call the modified graph GCSG (global context session graph),
formulate it as Gg ¼ ðVg ;Eg ;CgÞ, where Cg means context vectors. A simple illustration
of GCSG is shown in Fig. 3.
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Figure 2 An example of OSG and its adjacent matrices.
Full-size DOI: 10.7717/peerj-cs.1055/fig-2
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Initialization
First, we initialize each item v ∈ V in a unified embedding space, yielding a representation
of the item v 2 Rd as mentioned in OSG module. In order to incorporate the sequential
information into a context vector, we also add a learnable position embedding p 2 Rd�m

to the item representation. More specifically, for each session S ¼ ½vs1; vs2;…; vsm�, we
add p into v 2 fvs1; vs2;…; vsmg, i.e., vp = v + p. We then take the representation of the
last item vm as the local embedding of the session S, i.e., sl = vm. After this, we aggregate all
node vectors of the session as the global preference embedding sg. Adopting the soft-
attention mechanism to learn their priority, we hybrid the local and the global embedding
sl and sg as below.

ai ¼ W>
0 rðW1v

p
m þW2v

p
i þ bÞ

sg ¼
Xn
i¼1

aiv
p
i

sh ¼ W3½sl; sg �

(3)

whereW0 2 Rd ,W1;W2 2 Rd�d andW3 2 Rd�2d are the learnable parameters to control
the weights of items, and b 2 Rd is a bias vector. Finally, we use the hybrid embedding sh as
an initialization of the corresponding context vector cs, i.e., cs = sh. This strategy combines
the long-term preference and the recent interests of the session, building up a good
representation for the session as a whole.

Node updating
To learn high-order items transitions information from sessions, inspired by Pan et al. (2020),
we alternately updated item embedding and context vectors on the global context session
graph Gg. For each node in Gg, the information was collected and propagated from two
sources: adjacent items and context vectors. First, we handle the graph Gg without
considering context vectors in the same way we handle OSG. The construction of the
incoming matrix and the outgoing matrix of the graph Gg is similar to the OSG. We also
concatenate two matrices to get the matrix M. For each node vi in graph Gg at layer l, we
update node representation vg;li from adjacent nodes across different sessions according to
Eq. (1). We then added a dropout layer to alleviate over-fitting. Since items may appear in

Sessions:

Figure 3 An example of GCSG consisting of three sessions, where c1; c2; c3 are the context vectors
corresponding to sessions s1; s2; s3, respectively. Full-size DOI: 10.7717/peerj-cs.1055/fig-3
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multiple sessions, each node in Gg may be connected to multiple context vectors.
Suppose that the context vectors of the sessions containing node vi form the set ci = [ci,1, ci,2,
…, ci,n], where n is the number of sessions containing the node vi. We first calculate the
similarity αli,j of the node vi and the context vector ci,j in layer l with an attention mechanism
as below.

ali;j ¼ r

�ðWq1v
g;l
i Þ>Wk1cl�1

i;jffiffiffi
d

p
�

(4)

where Wq1;Wk1 2 Rd�d are the trainable parameters,
ffiffiffi
d

p
is used for scaling the

coefficient, vli and cl�1
i;j are the representation of node vi at layer l and the context vector

representation at layer l − 1, respectively. Then we obtain the representation of the node vi
from context vectors, which is a linear combination of clj with the similarity ali;j as a weight
(j = 1,⋯, n). After this, we calculate the level priority bli by performing a nonlinear map on
the representation vectors vg;li and vc;li to balance the importance of the two vectors.

vc;li ¼
Xm
j¼1

ali;jc
l
j

bli ¼ rðW4½vg;li ; vc;li �Þ
(5)

where vg;li is obtained from adjacent items and vc;li is obtained from the context vectors at
layer l, W4 2 R2d�d are learnable parameters. Then, applying a gate mechanism, we
integrate the information from adjacent nodes and the related context vectors as follows.

vli ¼ ð1� bliÞvg;li þ bliv
c;l
i (6)

where vli is the representation of the node at layer l. Finally, we aggregated the output of the
last layer and the initial input of the module similar to Eq. (2) to obtain the final item
representation vgi .

Context vector updating
For each context vector in the graph Gg, we only use the representations of items in their
corresponding session to obtain the representation of the context vector. First, we assigned
different degrees of importance to each node vi as below.

clj;i ¼ Softmax

� ðWk2vliÞ>Wq2cl�1
jffiffiffi

d
p

�
(7)

where Wq2;Wk2 2 Rd�d are the trainable parameters, clj;i denotes the importance of the i-
th item to j-th sessions at layer l. We then perform a linear combination of the item
representations, and aggregate the updated context vector clj and its l − 1 layer
representation cl�1

j as follows.
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cl
0
j ¼

Xn
i¼1

clj;iv
l
i

ul ¼ rðW5½cl0j ; cl�1
j �Þ

clj ¼ ulcl�1
j þ ð1� ulÞcl0j

(8)

whereW5 2 Rd�2d are learnable parameters. In the same way as the final step of the node
updating, we also use a highway network to combine the initialization of the context vector
in the module and the output of the last layer to obtain the final representation cj.

Self-supervised contrastive learning module
To improve the robustness of the model, we integrated self-supervised contrastive learning
into the GCSG module. Since data augment methods are not the main concern of this
study, we simply use the edge drop strategy to get an augmented graph of GCSG. Give a
mini-batch of sessions fsugNu¼1, we apply the edge drop on the GCSG Gg to obtain an
augmented graph Gaug

g . We view the same session in the original GCSG and the augmented
graph ðsn; saugn Þ as a positive pair, and the other 2(N − 1) sessions in two graphs are
considered as negative samples. For each session pair ðsn; saugn Þ, their updated context
vectors are ðcn; caugn Þ. Since the context vectors can be viewed as an overall representation
of the session, the updated context vectors obtained from the session pair can be naturally
treated as a pair of positive samples. We adopted the InfoNCE loss (van den Oord, Li &
Vinyals, 2019) of the context vectors in the two graphs as the optimization object defined
below.

Lsslðcn; caugn Þ ¼ � log
expðsimðcn; caugn ÞsÞP2N

m¼1 expðsimðcn; caugm Þ=sÞ (9)

where sim(·, ·) is the similarity function, e.g., dot-product, and τ is a hyper-parameter that
controls the scaling. We use the self-supervised contrastive learning (SSL) loss on the
context vector level instead of the item level to strengthen the robustness of the whole
model.

Session representation and prediction layer
For each item vj, we have two representations: One is obtained from the OSG module, and
the other is obtained from the GCSG module, as mentioned before. Then, the final
representation of the item is computed by sum pooling as follows:

v0j ¼ vsj þ lvgj (10)

where μ is a hyper-parameter to control the ratio of the representation learned from OSG
module. Next, we calculate the representation of each session si in the same way as we
initialize the context vectors by Eq. (3). We then obtain the final recommendation
probability of the item as below.

ŷi ¼ Softmaxðs>i v0jÞ (11)
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We used the cross-entropy of the prediction results ŷ ¼ fŷ1; � � � ; ŷjVjg and the ground
truth labels y as the main loss defined in the following:

LrecðŷÞ ¼ �
XjV j

i¼1

yi logðŷiÞ þ ð1� yiÞ logð1� ŷiÞ: (12)

We then combine the SSL loss with the recommendation loss to jointly optimize the
recommendation task and the self-supervised task as follows:

L ¼ Lrec þ kLssl (13)

where λ is a hyper-parameter to control the ratio of contrastive SSL, the SSL loss is used as
a regularization term to improve the effectiveness and the robustness of the whole model.

EXPERIMENTS
Experimental settings
We conducted our experiments on three benchmark datasets, Diginetica, Tmall and
RetailRocket. Following the previous work (Wang et al., 2020b), we filtered out sessions of
length 1 and items that appear less than five times over all datasets. We set the sessions
of the latest data (such as, the data of the last week) as the test data, the remaining historical
data for training and validation. Furthermore, for a session S = [v1, v2, …, vm], we
generated a series of sequences and labels ([v1], v2), ([v1, v2], v3),…, ([v1, v2,…, vm−1], vm),
where [v1, v2,…, vm−1] is the generated sequence and vm denotes the label of the sequence.
The statistics of datasets are summarized in Table 1.

We adopted two widely used ranking-based metrics: P@K and MRR@K to evaluate the
recommendation performance. A P@K score measures whether a target item is included in
the top-K list of recommended items, and a MRR@K score considers the position of a
target item in the list of recommended items. Higher metric values indicate better ranking
accuracy. Moreover, we compare our model with the following session recommendation
models to justify the effectiveness of our model.

� FPMC (Rendle, Freudenthaler & Schmidt-Thieme, 2010) combined the matrix
factorization and Markov chain for recommendation.

� GRU4Rec (Hidasi et al., 2016) uses Gated Recurrent Unit (GRU) to model user
sequences for session recommendation.

� NARM (Li et al., 2017) employs RNNs with attention mechanism to capture user’s main
purpose.

Table 1 Dataset statistics.

Dataset Diginetica Tmall RetailRocket

#Training sessions 719,470 351,268 433,643

#Test sessions 60,858 25,898 15,132

#Items 43,097 40,728 36,968

#Average lengths 5.12 6.69 5.43
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� STAMP (Liu et al., 2018) utilizes attention layers to capture the general preference and
the current interests of the last click of the current session.

� SRGNN (Wu et al., 2019) utilizes the gated graph neural networks to update item
embeddings and uses the attention mechanism to compute session representations.

� GCE-GNN (Wang et al., 2020b) constructs two types of session graphs to capture local
and global information.

� SGNN-HN (Pan et al., 2020) applies a star graph neural network to model transition
relationship between items.

� S2-DHCN (Xia et al., 2021b) constructs a hypergraph and a line graph to learn inter-
and intra-session information and uses self-supervised learning to provide
complementary information.

� COTREC (Xia et al., 2021a) construct two views to capture inter- and intra-session
information and use a co-training strategy to iteratively select and evolve pseudo-labels
as informative self-supervision examples.

The hyperparameters were selected on the validation set, which was randomly selected
from the training set with a proportion of 10%. For a general setting, the embedding size is
256, the batch size is 1,024, and each session is truncated within a maximum length of 20.
We adopt the Adam optimizer with an initial learning rate 1e−3 and a decay factor of 0.1
for three epochs. Moreover, the L2 regularization is 10−5, the scale ratio τ is 0.2, the ratio of
dropping edges is 0.3, and the ratio for all dropout layers is 0.1.

For the baseline models, we reported their results in their original papers directly, if
available, since we use the same datasets and evaluation metrics. We use well-reproduced
results from the literature for some models without public code data or using different
datasets. We can find the results of FPMC, GRU4Rec, STAMP, and SRGNNmodels in Xia
et al. (2021a, 2021b) which are also the baseline models in our study. In addition, since the
public session recommendation datasets are usually split according to time, the
distribution of samples at the latter positions in the training data is more similar to
the test data than the samples at the former positions (Guo et al., 2022). Therefore,
recommendation methods based on constructing graphs for individual sessions, such as
SGNN-HN, without shuffling the model will fit better. However, for methods that build
graphs based on multiple sessions, not shuffling can lead to label leakage during testing.
For fairness, we rerun the source code of the SGNN-HN model by shuffling the training
datasets. Since we could not find the result of GCE-GNN on the “RetailRocket” dataset, we
reran GCE-GNN and SGNN-HN and adjusted the hyperparameters of the models by grid
search, and reported the average results on 10 random seeds.

Results and analysis
The experimental results of overall performance are present in Table 2. In Table 2, our
model (SGC-GNN) consistently achieved a good performance (statistically significant) on
three datasets with both evaluation metrics, verifying our model’s superiority. From the
results, we can draw the following conclusions.
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� The methods (i.e., GRU4REC, NARM, STAMP, SR-GNN) that take into account
temporal information achieve better results than the traditional methods (i.e., FPMC). It
demonstrates the importance of sequential effects for SBR. Moreover, all methods using
deep learning techniques perform well, which indicates the powerful ability of deep
learning models in SBR.

� Graph-based methods all achieve better results than the RNN-based methods,
demonstrating the ability of GNNs to model session data. Besides, the methods (i.e.,
GCE-GNN, S2-DHCN, COTREC) which capture different levels (inter- and intra- level)
of information achieve better results than SRGNN, which only consider intra-session
information. It demonstrates the usefulness of different levels of information for
predicting the user’s intention in SBR.

� Our proposed model SGC-GNN outperforms all the baselines on all datasets. In
particular, on both Tmall and RetailRocket, our model achieves significant improvement
compared to the other methods, showing the effectiveness of the proposed model. The
improvement of the SGC-GNN model against the baselines mainly comes from three
aspects. The first one is the proposed global context session graph (GCSG). By
introducing a global context vector as representative nodes for each session on the cross-
session graph, GCSG can help learn the relationship between every two items in a
session and the high-order relationships between non-adjacent items in different
sessions. Thus, each node can obtain much information and learn richer node
representations. The second is using a unified model to improve the recommendation
performance of the current session. Moreover, the last one is using self-supervised
contrastive learning to improve the robustness of the model. At the same time, other
cross-session approaches suffer from reduced model robustness due to the large amount
of noisy information introduced by the construction of cross-session graphs.

Table 2 Performances of all comparison methods on three datasets.

Method RetailRocket Tmall Diginetica

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20

FPMC 25.99 13.38 32.37 13.82 13.10 7.12 16.06 7.32 15.43 6.20 22.14 6.66

GRU4Rec 38.35 23.27 44.01 23.67 9.47 5.78 10.93 5.89 17.93 7.73 30.79 8.22

NARM 42.07 50.22 24.88 24.59 19.17 10.42 23.30 10.70 35.44 15.13 48.32 16.00

STAMP 42.95 50.96 24.61 25.17 22.63 13.12 26.47 13.36 33.98 14.26 46.62 15.13

SR-GNN 43.21 26.07 50.32 26.57 23.41 13.45 27.57 13.72 38.42 16.89 51.26 17.78

GCE-GNN 47.83 28.07 55.82 28.63 28.01 15.08 33.42 15.42 41.16 18.15 54.22 19.04

SGNN-HN 48.88 29.27 56.70 29.81 29.97 16.64 36.30 17.04 40.82 17.95 54.19 18.87

S2-DHCN 46.15 26.85 53.66 27.30 26.22 14.60 31.42 15.05 40.21 17.59 53.66 18.51

COTREC 48.61 29.46 56.17 29.97 30.62 17.65 36.35 18.04 41.88 18.16 54.18 19.07

SGC-GNN 50.56* 30.14* 58.77* 30.71* 36.09* 20.83* 41.62* 21.19* 41.97* 18.58* 55.49* 19.33*

Notes:
Best performing method is shown in bold.
The second best performing method is shown with an underline.
* Indicates the statistical significance for p < 0.01 compared to the best baseline method with paired t-test.

Chu and Jia (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1055 12/20

http://dx.doi.org/10.7717/peerj-cs.1055
https://peerj.com/computer-science/


Ablation study
To investigate the contributions of each component in SGC-GNN, we developed three
variants: GNN-NC, SGC-GNN-NL and GC-GNN. In GNN-NC, we removed context
vectors and the self-supervised learning (SSL) module. In SGC-GNN-NL, we removed the
session-level graph OSG. GC-GNN represents the version without the SSL module. We
show the results of these variants compared to full GCS-GNN in Table 3 on two datasets
Tmall and RetailRocket. We can observe that when the global context vectors are removed,
there is a significant decrease in both metrics. It shows that the global context vectors
are very helpful to performance improvement. Also, the SSL module effectively improves
the model’s performance. Without the SSL module, the two metrics have different degrees
of decrease on both datasets.

Impact of initialization of context vectors
To investigate the effectiveness of the initialization method of context vectors, we
compared it with the average pooling initialization. From the results in Fig. 4, we can see

Table 3 Ablation experiments.

Method Tmall RetailRocket

P@20 MRR@20 P@20 MRR@20

GNN-NC 38.09 18.76 58.28 30.56

GC-GNN 40.39 20.67 58.76 30.62

SGC-GNN-NL 41.45 21.17 58.70 30.46

SGC-GNN 41.62 21.19 58.77 30.71

Figure 4 Impact of initialization method of context vectors.
Full-size DOI: 10.7717/peerj-cs.1055/fig-4
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that the initialization method we used for context vectors works significantly better than
the average pooling initialization, proving the effectiveness of our proposed initialization
method. Our proposed context vector initialization method assigned different weights to
each item in the session instead of simply averaging the aggregates. The learned
representation is more effective as a global representation of the session.

Impact of self-supervised learning
We introduced a hyper-parameter λ to control the magnitude of self-supervised learning.
To investigate its influence, we reported the performance with a set of representative λ
values in {0, 0.01, 0.1, 0.3, 0.5, 0.7, 1} on Tmall and Diginetica. According to the results
presented in Fig. 5, the recommendation task achieves good gains when jointly optimized
with the SSL task. The proposed self-supervised contrastive learning module performs data
augmentation on the cross-session graph and then imposes InfoNCE loss on the generated
global context vectors, enabling the model to learn more essential features and make it
more robust.

Impact of OSG module

To investigate the impact of the ratio of OSGmodule, we report the performance with a set
of representative μ values in {0, 0.1, 0.3, 0.5, 0.7, 1} on RetailRocket and Diginetica. From
the results in Fig. 6, we can see the effectiveness of the OSG module, while the model
achieves better performance when the ratio μ takes a small value. With a unified model, we
can aggregate the item embedding learned from the global and session levels to improve
the current session’s recommendation performance.

Figure 5 Impact of the ratio of self-supervised learning loss.
Full-size DOI: 10.7717/peerj-cs.1055/fig-5
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Efficiency
We evaluated the training efficiency of SGC-GCN and its variant GC-GNN. Since
COTREC and DHCNmodels require an older version of the environment to run, we chose
to compare the efficiency with the SRGNN, SGNN-HN, and GCE-GNN methods. For a
fair comparison, we set the batch size to 100 and the hidden size to 100 for all methods
instead of putting them to 1,024 and 256, respectively, because large batch size can cause
GCE-GNN to run out of memory. All experiments were conducted on a single Nvidia RTX
A4000 GPU and the same computation environment. All methods were trained with 10
epochs, and we reported the average training time per epoch. The results are shown in
Table 4.

From Table 4, we can observe that SGC-GCN performs worse than other methods on
the Tmall dataset, but on the Diginetica dataset, our model has about the same time as
other methods. Both SGC-GNN and GCE-GNN models build larger session graphs
containing multiple session information. Still, the GCE-GNN has a more complex
structure, making it suffer from the out-of-memory problem when performing on

Figure 6 Impact of the ratio of OSG module. Full-size DOI: 10.7717/peerj-cs.1055/fig-6

Table 4 Performances of average training time(s) per epoch.

Method Tmall RetailRocket Diginetica

SRGNN 282 1,519 606

SGNN-HN 283 339 559

GCE-GNN 169 – 953

GC-GNN 343 448 604

SGC-GNN 447 549 766
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RetailRocket on our RTX A4000 GPU. Moreover, if we consider the model GC-GNN that
removes the self-supervised contrastive learning, its time consumption is similar to that of
SRGNN and SGNN-HN. However, the difference in the training time of SGC-GNN is
acceptable considering the performance improvement.

CONCLUSION
Existing graph-based recommendation methods have difficulty modeling the relationship
between non-adjacent items and introduce noisy information in constructing the global
graph, which reduces the robustness of the model. In this study, we proposed a self-
supervised global context graph neural network model SGC-GNN to solve this problem. In
the model, we used global context vectors as a bridge for passing information between non-
adjacent items in different sessions, allowing the model to learn a richer representation of
nodes. At the same time, to address the problem of introducing a large amount of noisy
information and thus reducing the robustness of the model due to the construction of
cross-session graphs, we designed a self-supervised contrastive learning module that
effectively improves the robustness of the model by augmenting the data and imposing
InfoNCE loss on the global context vectors as an auxiliary loss of the model. Finally, we
combined session-level information with global-level information through a unified model
to enhance the feature presentations of items. Experimental results and analysis
demonstrate the superiority of the proposed model.
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