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ABSTRACT
Due to its high prevalence and wide dissemination, breast cancer is a particularly dan-
gerous disease. Breast cancer survival chances can be improved by early detection and
diagnosis. For medical image analyzers, diagnosing is tough, time-consuming, routine,
and repetitive. Medical image analysis could be a useful method for detecting such a
disease. Recently, artificial intelligence technology has been utilized to help radiologists
identify breast cancermore rapidly and reliably. Convolutional neural networks, among
other technologies, are promising medical image recognition and classification tools.
This study proposes a framework for automatic and reliable breast cancer classification
based on histological and ultrasound data. The system is built on CNN and employs
transfer learning technology and metaheuristic optimization. The Manta Ray Foraging
Optimization (MRFO) approach is deployed to improve the framework’s adaptability.
Using the Breast Cancer Dataset (two classes) and the Breast Ultrasound Dataset
(three-classes), eight modern pre-trained CNN architectures are examined to apply the
transfer learning technique. The framework uses MRFO to improve the performance
of CNN architectures by optimizing their hyperparameters. Extensive experiments
have recorded performance parameters, including accuracy, AUC, precision, F1-score,
sensitivity, dice, recall, IoU, and cosine similarity. The proposed framework scored
97.73% on histopathological data and 99.01% on ultrasound data in terms of accuracy.
The experimental results show that the proposed framework is superior to other state-
of-the-art approaches in the literature review.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Neural Networks
Keywords Breast cancer, Convolutional neural network (CNN), Deep learning (DL), Metaheuris-
tic optimization, Manta-Ray foraging algorithm (MRFO)

INTRODUCTION
With over two million cases diagnosed globally in 2020 and about seven hundred thousand
deaths, breast cancer is classified as the most lethal female disease (Sung et al., 2021).
By 2040, the number of patients is anticipated to rise to 4.07 million, with 1.4 million
deaths (Global Cancer Observatory, 2020). With approximately 26% of women affected
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worldwide, it is regarded as the first cancer type to cause death. However, detecting and
diagnosing breast cancer in its early stages can enhance survival rates by up to 80% (Yu et
al., 2022). Clinicians must identify suspicious tumors after segmenting them to diagnose
breast abnormalities. As the number of breast cancer patients climbs, clinicians will
find it increasingly difficult to accurately detect the disease in a short time (Oza et al.,
2022). For medical image analysts, the diagnosis process is complex, time-consuming,
and monotonous. Medical image analysis is one of the most exciting research areas
that have gained significant attention in academia and the medical sector, allowing for
the detection and treatment of various illnesses, including breast cancer (Dewangan et al.,
2022; Zerouaoui & Idri, 2022; Chowdhury et al., 2022;Mohamed et al., 2022). Breast cancers
are classified into five stages according to Peiris et al. (2015). The stages progress from pre-
cancerous to metastatic or advanced cancer. Digital mammography is a tool for identifying
early-stage breast cancer with no need for surgery (Demb et al., 2020). Withmammography
screening, radiologists can detect cancers in mammogram images with smaller diameters
and seemingly random places. The ability of mammography to detect significant early
signs has resulted in a 15% reduction in breast cancer deaths (Løberg et al., 2015). Breast
ultrasound is a regularly used diagnostic modality in clinical practice (Pourasad et al.,
2021). Breast cancer is caused by epithelial cells surrounding the terminal duct lobular
unit. Cancer cells inside the basement membrane of the draining duct and the basement
membrane of the terminal duct lobular unit are referred to as in situ, or non-invasive cancer
cells (Jabeen et al., 2022). The presence of axillary lymph node metastases is an important
factor when selecting prospective therapy for breast cancer (Sun et al., 2020). Ultrasound
imaging is one of the most commonly used test materials for detecting and characterizing
breast disorders. It is a common imaging method for mammography and radiological
cancer diagnostics.

Artificial intelligence (AI) technology has lately been used to aid radiologists in detecting
breast cancer more quickly and accurately utilizing mammography (Zhang et al., 2021).
Radiologists may concentrate on discrete or localized areas, but AI-based systems analyze
mammograms as a whole at the pixel level and have spatially long-range memory. AI
strategies for enhancing mammographic detection of breast cancer have been widely
studied, involving several issues and challenges. The use of artificial intelligence (AI)
in mammography analysis is widely thought to make the computer-aided diagnosis
(CAD) process more interesting, effective, and objective. Earlier CAD systems relied on
handcrafted features to recognize suspicious bulk using traditional machine learning
algorithms (Muramatsu et al., 2016; Virmani et al., 2016; Yassin et al., 2018; Li et al., 2017).
Manual feature extraction has led to a higher number of false positives (Dhungel, Carneiro
& Bradley, 2017). Because the image has numerous details, identifying the optimal set of
features for recognition becomes quite difficult. Deep learning methods have overcome the
shortcomings of traditional machine learning approaches by learning an object’s attributes
during the training phase (Rupapara et al., 2022; Gardezi et al., 2019).

In recent decades, convolution neural networks (CNN) have been used in CAD systems
for breast cancer diagnosis. It functions as a decision-making mechanism by giving extra
information to discriminate between malignant and benign tumors (Oza et al., 2022). The
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CAD can potentially increase the overall accuracy, sensitivity, and specificity of breast
lesion diagnosis. In addition, this approach cuts down the number of false positives caused
by human mistakes. Several researches that discuss the use of CAD systems to diagnose
breast cancer have been published in the literature, some of which have already passed
clinical testing (Yu et al., 2022; Bruno et al., 2020). This study introduces a framework
for reliable breast cancer classification based on histopathological and ultrasound data
using CNN and Transfer Learning (TL) (Agarwal et al., 2021). The Manta Ray Foraging
Optimization (MRFO) algorithm is used for parameters andhyperparameters optimization.
The following points outline the current study’s contributions:

– Presenting a novel CNN-based framework for automatic and reliable breast cancer
classification based on histopathological and ultrasound data.

– Applying Transfer Learning using eight modern pre-trained models.
– Optimizing CNN and Transfer Learning hyperparameters via MRFO algorithm to
achieve the best configurations for each pre-trained model and better classification
performance.

– The hyperparameters of the CNN architecture do not need to be set manually, making
the proposed framework more adaptable.

– The results reveal that the worthiness of the proposed framework exceeds most related
research in terms of accuracy and other criteria.

The rest of the article is organized as follows: In ‘Background’, the background of
deep learning, CNN, and metaheuristic optimization are introduced. ‘Related Studies’
reviews the related studies of breast cancer classification. In ‘Methodology’, the approach
is described, as well as the proposed framework. In ‘Numerical Results and Analysis’, the
experimental results are examined and debated. Finally, in ‘Conclusions’, the article is
concluded.

BACKGROUND
This section presents comprehensive preliminaries for the most relevant subjects and
methodologies employed in this study. Convolutional neural network (CNN), transfer
learning (together with the pre-trained CNN networks utilized in this study), metaheuristic
optimization, and the MRFO optimization technique are among the subjects covered.

Convolutional neural network (CNN)
Hinton invented the term ‘‘deep learning’’ in 2007 to describe machine learning models
for high-level object representation, although it was not widely acknowledged until late
2012 (LeCun, Bengio & Hinton, 2015). Deep learning gained prominence in the field of
computer vision after a deep learning technique based on a convolutional neural network
(CNN) won the most well-known computer vision competition, ImageNet (Krizhevsky,
Sutskever & Hinton, 2012). CNN is a deep learning system inspired by the human brain’s
visual cortex and seeks to mimic human visual function (Sarvamangala & Kulkarni, 2021).
CNN is a significant advancement in image comprehension, including image classification,
segmentation, localization, and detection. The fundamental reason for CNNs’ extensive
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adoption is their efficiency in image recognition. The CNN takes an image as input and
produces classification categories such as cancer or non-cancer. Local shift-invariant
interconnections connect the layers. CNN is a multi-layer generative graphical model
that employs pixel values in images as input information rather than features generated
from segmented objects, obviating the need for feature calculation or object segmentation.
CNNs, like human neurons, are made up of convolutions with learnable weights and
biases. Convolutional layers, activation functions, pooling, and fully-connected layers are
the primary building blocks of CNNs, as depicted in Fig. 1.

Transfer learning
Training and testing data should be in the same feature space, according to a key idea in
many machine learning (ML) algorithms. This hypothesis, however, may not hold true
in various real-world applications. For example, there are instances where training data
is prohibitively expensive or difficult to obtain (Baghdadi et al., 2022). As a result, high-
performance classifiers trained using increasingly available data from different domains
are required. This strategy is known as transfer learning (TL) (Agarwal et al., 2021). When
the target domain has limited data, but the source domain has a large dataset, TL performs
brilliantly. The process of obtaining information from a source domain DS that contains a
learning task TS and applying that knowledge to enhance a learning task TT is informally
described as TL. In a target domain, DT, where DS is not the same as DT or TS is not the
same as TT (Zhuang et al., 2020; Iman, Rasheed & Arabnia, 2022).

CNN architectures
This section highlights the CNN architectures pre-trained to perform transfer learning.
Among several designs, InceptionV3, Xception, EfficientNetB7, NASNetLarge, VGG19,
SeNet154, DenseNet201, and ResNet152V2 are discussed since they were used in this work.

InceptionV3: With transfer learning, InceptionV3 achieved high classification accuracy
in numerous biomedical applications (Ashwath Rao, Kini & Nostas, 2022; Al Husaini et
al., 2022). The symmetric and asymmetric construction components of the InceptionV3
model include convolutions, average pooling, max pooling, concatenations, dropouts, and
fully connected layers (Szegedy et al., 2016). Batch normalization is employed frequently
throughout themodel and for activation inputs. In addition, InceptionV3 employs Softmax
to compute Loss, Max-pooling for spatial pooling, and FC for final classification.

Xception: Xception, which stands for Extreme version of Inception, was proposed as
an expansion of the Inception architecture that was fully built on depth-wise different
convolutions rather than conventional convolutions (Chollet, 2017). The use of depth-wise
distinct convolutional layers in the CNN network simplifies network computations. This
aids in learning the efficient features from images and improves model performance.

EfficientNetB7: The core building component of EfficientNet architecture is Mobile
Inverted Bottleneck Convolution (MBConv) (Sandler et al., 2018). The number of these
MBConv chunks varies within the EfficientNet network family. From EfficientNetB0
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Figure 1 General deep learning architecture for image classification.
Full-size DOI: 10.7717/peerjcs.1054/fig-1

through EfficientNetB7, depth, breadth, resolution, and model size increase, as does
accuracy. In terms of ImageNet accuracy, EfficientNetB7, outperforms prior state-of-the-
art CNNs (Tan & Le, 2019). Parameters like filter size, stride, and channel count divide
the network architecture of EfficientNetB7 into seven blocks. As a result, EfficientNet is a
popular image classification and segmentation tool.

NASNetLarge: The neural architecture search techniques develop the Neural Architecture
Search Network Large (NASNet-Large) (Zhang, Wu & Zhu, 2018). It comprises two types
of layers or cells: Normal Cells and Reduction Cells. The Reduction Cell decreases the
width and height of the feature map along the forward route, whereas the Normal Cell
keeps these two dimensions the same as the input feature map. Each Normal/Reduction
Cell is made up of several blocks. Each block is constructed from a series of popular deep
CNN operations with varying kernel sizes.

VGG19: The VGG-19 deep learning algorithm is a 16-layer network with three FC layers
(Simonyan & Zisserman, 2014). Maxpool, FC, Relu, dropout, and softmax layers are among
the 41 total layers. VGG tackled the large-size filter impact by replacing it with a stack of
(3times3) filters. However, the calculation complexity is increased by using small-size
filters.

SeNet154: Squeeze-and-Excite Networks provide a building element for CNNs that
improves channel interdependencies at nearly no computational cost (Hu, Shen & Sun,
2018). Aside from providing a significant speed improvement, they are also simple to
include in current systems. The Squeeze and Excitation Network, in essence, proposes
a novel channel-wise attention mechanism for CNNs in order to improve their channel
interdependencies. They learn to use global information, boosting advantageous features
while ignoring others.

DenseNet201: Dense convolution network (DenseNet) is a pre-trained deep learning
model that employs feedforward to connect each layer to all subsequent levels (Huang et
al., 2017). A feature map is included in each layer of the model. The feature map of each
layer serves as the input for the following layer. It allows optimum information transfer
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inside the network by connecting all levels directly. DenseNet’s key benefits are that it
drastically reduces the number of parameters, reduces gradient runaway, improves feature
diffusion, and encourages feature reuse.

ResNet152V2: A Residual Network (ResNet) is a CNN architecture composed of several
convolutional layers. Previous CNN configurations reduced additional layers’ efficiency.
As a result, ResNet has many layers and is highly performant (He et al., 2016). The main
difference between ResNetV2 and the previous (V1) is that, before adding a weight layer,
V2 performs batch normalization on it. Consequently, ResNet performs well in image
recognition, illustrating the significance of a wide range of visual recognition tasks.

Metaheuristic optimization
Optimization is a critical procedure for making the best use of various resources. It is
a necessary step in any field of study. Several strategies have been developed to address
various optimization challenges (Meraihi et al., 2021). Each algorithm employs a particular
acceptable technique for certain problems and efficiently solves themwhile being ineffective
for others (Abualigah et al., 2022). However, the vast majority of them fall into one of two
groups. The conventional approaches, such as gradient descent and Newton (Wang et
al., 2021), fall under the first category. These approaches are basic and straightforward in
general, but they only yield a single solution every iteration, which is time-consuming. The
strategies in the second category, known as metaheuristic (MH), tend to escape the limits
of traditional methods (Alshinwan et al., 2021). Nowadays, MH optimization methods
are highly appealing due to their particular benefits over traditional algorithms. MH is
used to identify high-quality solutions to a wider range of challenging real-world scenarios
since it can handle multi-objective multi-modal, and nonlinear formulations. These MH
strategies are generally inspired by nature, physics principles, and human behavior. The
primary classes of MH include natural phenomena-based, swarm-based, human-based,
and evolutionary-based techniques (Abualigah et al., 2022). Natural phenomena-based
approaches imitate natural phenomena such as spirals, rain, wind, and light (Ewees et al.,
2021; Şahin, Dinler & Abualigah, 2021). The swarm-based methods mimic the behavior of
animals, birds, fish, and other swarms when they are looking for food (Sharma & Kaur,
2021; Zhao, Zhang & Wang, 2020). As optimization methods, human-based methods
mimic human behavior (Moosavi & Bardsiri, 2019; Khishe & Mosavi, 2020). Finally, the
mechanism of evolutionary-based approaches is inspired by emulating the notions of
natural genetics, which is employed to replicate the principle of natural genetics (Tzanetos
& Dounias, 2021; Bentéjac, Csörgo & Martnez-Muñoz, 2021). These approaches rely on the
operators’ crossover, mutation, and natural selection.

Manta ray foraging optimization
Manta Ray Foraging Optimization (MRFO) (Zhao, Zhang & Wang, 2020) is a swarm MH
optimization algorithm. It was inspired by the manta rays’ foraging activity when acquiring
their food. Chain foraging, cyclone foraging, and somersault foraging are three strong
and sophisticated foraging tactics evolved by manta rays. Chain foraging emulates the
fundamental activity of food hunting. The hunting manta rays form a chain to capture

N Baghdadi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1054 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1054


all the plankton on the way. Manta rays consume plankton, which is regarded as a food
resource. The chain leader of the manta ray guides the chain as it has the best solution.
This process decreases the risk of losing plankton and increases food hunted. When a high
plankton density is located, The manta rays swim in a spiral pattern towards the plankton
during cyclone foraging. The spiral route is determined by the location of plankton and
the relative position of a manta ray in relation to its front agent. This mechanism produces
a vertex in the eye of a cyclone, allowing manta rays to capture the plankton easily.
Somersault foraging starts by considering the plankton’s best position as a pivot. Then, the
searching manta ray performs backward somersaults before rolling around the pivot. Later
on, the leader, manta ray, updates its location with the best location so far. Despite their
uncommon nature, these foraging activities are exceedingly effective.

RELATED STUDIES
Most breast cancer detection strategies have relied on machine learning or deep learning
to classify cases into binary or multi-class classifications. Accuracy, precision, recall, and
F1-score performance indicators are all tracked using these methodologies. Breast cancer
diagnosis and categorization have recently become the subject of substantial investigation.
Wang et al. (2016) proposed a deep learning-based approach for automatically detecting
metastatic cancer using entire slide images of sentinel lymph nodes. To improve the
training set, they included patches from normal lymph node regions that the system had
initially misclassified as cancer. The method used a 27-layer deep network architecture and
achieved 98.40% classification accuracy.Han et al. (2017b) developed a deep learning-based
breast cancer multi-classification approach. The structured model worked brilliantly on
a large-scale dataset (averaging 93.2% accuracy). This indicates the proposed strategy’s
strength in terms of providing a useful tool for breast cancer multi-classification. Han et
al. (2017a) employed a deep learning framework to distinguish between different types of
tumors in breast ultrasound imaging. The training data used ten-fold cross-validation to
find the optimal values. The networks had a 91% accuracy rate.

Jannesari et al. (2018) used pre-trained deep neural networks and fine-tuned them to
distinguish between several cancer types such as breast, bladder, lung, and lymphoma. This
method was then applied to the BreakHis database to categorize breast cancer subtypes.
They were able to perform breast tumor binary classificationwith 96.4% accuracy.Golatkar,
Anand & Sethi (2018) created a two-stage system for categorizing tissue images into four
groups: normal, benign, in situ, and invasive. First, they employed a pre-processing
technique to select only important regions from tissue images for training and testing.
Next, they employed transfer learning to train the patch-level classifier and majority
voting to classify images. The average accuracy across the four classifications was 85%,
with carcinoma vs. non-carcinoma classification accuracy of 93%. Fujioka et al. (2019)
employed a CNN to classify breast mass images obtained from ultrasound. The CNN
model had an accuracy of 92.5%. Compared to radiologists, the CNN model performed
better in the binary classification of breast tumors based on ultrasound.

Hijab et al. (2019) investigated three deep learning variations for ultrasound (US) images
for computer-aided recognition of breast cancers. To improve accuracy, they fine-tuned
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and employed the VGG16 pre-trained model. The accuracy of the results ranges from
79 to 97%. Singh et al. (2020) embraced the notion of employing transfer learning in
breast cancer, where they worked on unbalanced data from the WSI dataset and employed
VGG-19 with other classifiers such as logistic regression, random forest, and other dense
layers. As a result, they were able to achieve maximum accuracy of 90.30%. In their study,
Ayana, Dese & Choe (2021) focused on transfer learning methods applied to ultrasound
breast image classification and detection utilizing pre-trained CNN models. Furthermore,
their examination of some of the most regularly utilized transfer learning approaches
highlights the potential for future study in this area. In their research, Khamparia et al.
(2021) proposed a hybrid transfer learning model incorporating MVGG and ImageNet.
They used the WSI dataset to test their model, and its accuracy was 94.3%. They also
employed image segmentation and 3D mammography throughout their study, which
helped them get superior results.

Choudhary et al. (2021) conducted extensive experiments with three significant pre-
trained CNNs, including VGG19, ResNet34, and ResNet50. They attained an accuracy
of 91.25% using the VGG19 pruned model, outperforming early techniques on the same
dataset. Alzubaidi et al. (2021) proposed a solution to the data scarcity problem in medical
imaging. The authors employed many unlabeled histopathological images of breast cancer
to train the CNNmodel. The model was fine-tuned before being trained on a small labeled
breast cancer dataset. The authors attained a 97.51% overall accuracy with this method.
The authors also used new double transfer learning, which resulted in a 97.7% accuracy.
Dewangan et al. (2022) developed a technique for early-stage detection of breast cancer.
Initially, the system is trained using the acquired MRI breast image dataset. Following
that, the pre-process function was used to eliminate the training faults. Consequently, the
pre-processed data was supplied into the classification layer, and the feature extraction and
classification processes were completed. Finally, the proposedmodel’s findings demonstrate
its capability to efficiently detect breast cancer, whether benign or malignant, at an early
stage. As a result, the planned mechanism has attained 99.6% more accuracy.

Jabeen et al. (2022) created an approach for classifying breast cancer using US images.
The proposed approach deployed a DarkNet-53 deep learning model; the breast US data
is first augmented and then retrained. Following that, the pooling layer’s features were
recovered, and the best feature was selected using two different optimization strategies.
The selected attributes are then fused using a specific approach, and the classification was
performed using machine learning techniques. The suggested technique (using feature
fusion and Clustered Support Vector Machines(CSVM) classifier) achieved an accuracy
of 99.1%. Zerouaoui & Idri (2022) investigated 28 hybrid architectures for breast cancer
imaging classification using two datasets (BreakHis and FNAC). They used different
classifiers such as MLP, SVM, DT, and KNN, besides seven Deep Learning techniques
for feature extraction. The DenseNet201 was utilized by the three top-ranked hybrid
architectures that significantly outperformed other hybrid architectures. UsingMLP, SVM,
and KNN classifiers, they attained average accuracies of 93.85%, 93.21%, and 83.87%,
respectively. Chowdhury et al. (2022) developed a breast cancer classification system that
uses pretrained transfer learning models to extract fine-tuned characteristics prior to
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training on histopathological images. It assists users in classifying tissues by allowing them
to upload a single histopathological image at a time. The proposed model has achieved an
accuracy of 99.58%.

Mohamed et al. (2022) suggested a three-stage, fully automated breast cancer detection
method. First, the thermal images are decreased in size to speed up processing. Second,
the region of interest is retrieved automatically using the U-Net architecture. Third, they
proposed CNN architecture to classify breast tissues. Their model achieved a classification
accuracy of 99.33%. Lahoura et al. (2021) established a breast cancer detection system
based on cloud computing and Extreme Learning Machine (ELM) as a classifier. They
used the WBCD dataset to test multiple classifiers for breast cancer diagnosis. First, the
gain ratio approach was utilized to choose the most relevant features and reject extraneous
information. Second, numerous cutting-edge algorithms were implemented and compared
to ELM on the standalone system. Furthermore, the ELM model was implemented on the
Amazon EC2 cloud platform. The experimental results proved an obtained accuracy of
98.68%.

Senan et al. (2021) classified breast cancer based on transfer learning and histopathology
images. They created a network based on the AlexNet architecture. Transfer learning
was used to provide efficient and accurate classification. ImageNet information can
be transferred via the network as convolutional features for image histology problem
classification. Despite the minimal number of images in the target data set (BreaKHis),
they achieved 95% accuracy. Boumaraf et al. (2021) applied the transfer learning technique
to the VGG-19 architecture. It evolved into a block-wise fine-tuned architecture on
histopathology pictures after pre-training on ImageNet. Finally, they assessed the proposed
approach for magnification-dependent breast cancer classification using the BreaKHis
dataset. The best-obtained classification accuracies vary from 94.05% to 98.13% utilizing
the DL technique for binary classification.

METHODOLOGY
Based on histopathological and ultrasound findings, the current study describes a
framework for classifying breast cancer automatically and accurately with the help of
convolutional neural networks, transfer learning, and theMantaRay ForagingOptimization
for parameters and hyperparameter optimization. The proposed hybrid framework is
depicted in Fig. 2.
Figure 2 depicts the framework, which comprises two mechanisms. The model is

optimized and created with high state-of-the-art (SOTA) performance metrics in the first
learning and optimization mechanism. It consists of five phases: data acquisition, data
pre-processing, data splitting, classification and optimization, and production preparation.
The second mechanism is the production mechanism. In it, the patient will perform an
X-ray scan on the brain, and the scan will be classified using the first suggested classifier.
It should be diagnosed with one of ‘‘Healthy’’ or ‘‘Tumor’’. If the scan is ‘‘Healthy,’’
the patient has a healthy brain. If the scan is ‘‘Tumor’’, then the patient will perform an
MRI scan, which will be classified using the second suggested classifier to determine the
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Figure 2 The proposed hybrid breast cancer recognition framework.
Full-size DOI: 10.7717/peerjcs.1054/fig-2

tumor (i.e., cancer) type. The tumor can be ‘‘Meningioma’’, ‘‘Glioma’’, or ‘‘Pituitary’’. The
following subsections will discuss the inner details of each phase in the first mechanism.

Phase 1: dataset acquisition
The datasets used in this studywere obtained from two publicly available datasets onKaggle.
In summary, the current study depends on two different types of modalities. The first is
the histopathological slides, while the second is the ultrasound records. The first dataset,
Breast Cancer Dataset (BreaKHis) (Elmasry, 2021), is partitioned into two classes: ‘‘Benign’’
and ‘‘Malignant’’ where each category included 2,479 and 5,304 images respectively. The
second dataset, US images data (Fouad, 2021), is divided into three categories: ‘‘Benign,’’
‘‘Malignant,’’ and ‘‘Normal,’’ with 437, 210, and 133 images in each. The ‘‘Normal’’ class
includes cases where there is no tumor while the ‘‘Benign’’ class includes cases where there
is a tumor but is considered benign.

In both datasets, data augmentation is used prior to training to up-sample and equalize
the number of images per category. After equalization, the first dataset contained 10,608
images, with each class containing 5,304 images. Besides, the second dataset contained
1,311 images, with 437 images in each class. The specifications of the datasets used are
summarized in Table 1.

Phase 2: dataset pre-processing
The second phase pre-processes the datasets by applying four techniques. They are image
resizing, dimensional scaling, and data balancing.

Image Resizing: The used images are not equal in their dimensions. As a result, in
the RGB mode, a bicubic interpolation resizing technique should be used to the size of
(128×128×3).
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Table 1 The used datasets specifications summarization.

Dataset No. of
classes

Classes No. of images
(Before)

No. of images
(After)

Breast Cancer Dataset
(BreaKHis) Elmasry (2021)

2 ‘‘Benign’’ and
‘‘Malignant’’

7,783 10,608

Breast Ultrasound data
Fouad (2021)

3 ‘‘Benign’’, ‘‘Malignant’’,
and ‘‘Normal’’

780 1,311

Dimensional Scaling: It utilizes four different scaling techniques, namely (1)
normalization, (2) standardization, (3) min-max scaling, and (4) max-abs scaling. The
equations underlying them are shown in Eqs. (1)–(4) respectively where X represents RGB
image, Xoutput is the output scaled image, µis the image’s mean, σ is the standard deviation
of the image.

Xoutput =
X

max(X)
(1)

Xoutput =
X−µ
σ

(2)

Xoutput =
X−min(X)

max(X)−min(X)
(3)

Xoutput =
X

|max(X)|
(4)

Dataset Balancing: The dataset is imbalanced, which can enhance the misclassification
or overfitting in the training and optimization process. To eliminate this issue, a data
balancing technique should be utilized. The current study employs data augmentation
techniques. They use shifting (width and height), shearing, rotation, flipping (horizontal
and vertical axes), zooming, and brightness changes. Table 2 depicts the different utilized
data augmentation techniques and their configurations.

Data Splitting: There are three subsets in the dataset: training, testing, and validation.
The current study employs an 85% to 15% ratio. Initially, the entire dataset is divided
into training and testing subsets based on the defined ratio. Finally, the training subset is
divided into training and validation subsets based on the same defined ratio.

Phase 3: classification and optimization
The current phase optimizes the various transfer learning hyperparameters using the
MRFO metaheuristic population-based optimizer (e.g., dropout ratio, data augmentation
appliance, and scaling technique). The proposed mechanism seeks the best configurations
for each pre-trained transfer learning CNN model. This phase implements three internal
processes and repeatedly runs for a number of iterations equals Tmax . The processes are: (1)
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Table 2 The different implemented data augmentation techniques and the corresponding configura-
tions.

Augmentation technique Value

Rotation 30◦

Shear ratio 20%
Zoom ratio 20%
Width shift ratio 20%
Height shift ratio 20%
Brightness change [0.8:1.2]
Vertical flip X

Horizontal flip X

randomly create the initial population, (2) calculate the fitness function for each solution
in the population sack, and (3) update the population concerning the MRFO equations.
The process is summarized in Fig. 3 and discussed in detail in the current subsection.
Initially, the MRFO population sack is randomly created once at the beginning of the

classification and optimization phase. The number of solutions is Nmax and set to 10
in the current study. Each solution from the population sack is a vector with a size of
(1×D) where each element ∈ [0,1]. Each cell in a solution reflects a specific learning
hyperparameter (e.g., dropout ratio and batch size). The current study targets to improve
15 hyperparameters as shown in Table 3. The solution indexing (starting from 1 to 15)
and the corresponding hyperparameters definitions and ranges are presented in it. If data
augmentation is applied, D= 15 and if not, D= 7.

After that, the fitness (i.e., objective) function score of each solution in the population
sack is calculated. The objective function consists of three inner steps: (1) hyperparameters
mapping, (2) model creation and preparation, and (3) model training and evaluation.
The hyperparameters mapping step maps the solution into the corresponding actual
hyperparameters as defined in Table 3. How does the hyperparameters mapping happen
internally? A simple calculation is utilized to map the random numbers to the values of
the corresponding hyperparameters. This can be done using Eq. (5). For example, if it is
required to convert the model dropout ratio (i.e., the third element) from the solution
numeric value to the corresponding hyperparameter. The range of the model dropout
ratios to select from should be determined first (the current study uses the ‘‘ [0→ 0.6]’’
range). Then, from Eq. (5), if the random numeric value is 0.85 and we have a range from
0 to 0.6, then the value is 0+0.85× (0.6−0)= 0.51.

Value= Lower Bound+Solution[Element Index]× (Upper Bound−Lower Bound). (5)

The target pre-trained transfer learning model is created and compiled with these
mapped hyperparameters after mapping each element in the solution to the corresponding
hyperparameters. The current study uses theMobileNet,MobileNetV2,MobileNetV3Large,
VGG16, VGG19, Xception, DenseNet201, andNASNetMobile pre-trained transfer learning
CNNmodels. Their initial weights (i.e.,parameters) are setwith the ‘‘ImageNet’’ pre-trained
weights. The pre-trained transfer learningmodel will start the training process for a number
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Initialize the MRFO population randomly

Initialize the MRFO parameters

Start

Evaluate the objective function for each

solution in the population list

Find the best MRFO solution with the

highest objective function value

FalseTrue
rnd < 0.5

Apply the cyclone

foraging process

Apply the chain 

foraging process

Apply the somersault foraging process

t < TmaxEnd

Generate a random number (rnd)

Evaluate the objective function for each

solution in the population list

Find the best MRFO solution with the

highest objective function value

Evaluate the objective function for each

solution in the population list

Find the best MRFO solution with the

highest objective function value

False True

Figure 3 A flowchart summarization of the MRFO steps.
Full-size DOI: 10.7717/peerjcs.1054/fig-3
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Table 3 The solution indexing and the corresponding hyperparameters definitions and ranges.

Element index Corresponding hyperparameter definition Corresponding range

1 Training loss function Categorical Crossentropy,
Categorical Hinge, KLDivergence,
Poisson, Squared Hinge, and Hinge

2 Training batch size 4→ 48 (step= 4)
3 Model dropout ratio [0→ 0.6]
4 Transfer learning freezing ratio 1→ 100 (step= 1)
5 Weights (i.e., parameters)

optimizer
Adam, NAdam, AdaGrad, AdaDelta,
AdaMax, RMSProp, SGD, Ftrl,
SGD Nesterov, RMSProp Centered,
and Adam AMSGrad

6 Dimension scaling technique Normalize, Standard,
Min Max, and Max Abs

7 Utilize data augmentation
techniques or not

[Yes,No]

8 The value of rotation
(In the case of data augmentation).

0◦→ 45◦ (step= 1◦)

9 In the case of data augmentation,
width shift value.

[0→ 0.25]

10 The value of height shift if
data augmentation is applied

[0→ 0.25]

11 Value of shear in case
of data augmentation

[0→ 0.25]

12 Value of Zoom (if data
augmentation is used)

[0→ 0.25]

13 Flag for horizontal flipping
(if data augmentation is utilized)

[Yes,No]

14 (If augmentation of data has been applied),
the value of Vertical flipping flag

[Yes,No]

15 Range of brightness changes
(if data augmentation is applied)

[0.5→ 2.0]

of epochs set to 5 in the current study. After the learning (i.e., training), the pre-trained
transfer learning model is evaluated on the whole dataset for validation and generalization
purposes. The model’s performance is assessed based on different metrics (e.g., precision,
accuracy, recall, and F1-score). This study uses a variety of performance metrics illustrated
in Eqs. (6) to (11).

Accuracy (ACC)=
TP+TN

TP+TN +FP+FN
(6)

Precision (P)=
TP

TP+FP
(7)

Specificity (S)=
TN

TN +FP
(8)
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Recall (R)= Sensitivity=
TP

TP+FN
(9)

Dice Coef (DC).=
2×TP

2×TP+FP+FN
(10)

F1-score=
2×Precision×Recall
Precision+Recall

. (11)

TP represents the true positive, TN indicates the true negative, FN represents the false
negative, and FP indicates the false positive. After calculating the performance metrics
for each solution, the population solutions are sorted in descending order concerning the
objective function score. In other words, the best solution is located at the top to determine
Xbest , which is used throughout the process. After that, the population is updated using
the MRFO equations. The MRFO works on two branches: cyclone foraging (Eq. (12)) and
chain foraging (Eq. (13)). To determine which path to follow, a random value (∈ [0,1])
is generated, and the first branch is followed if the generated random value < 0.5 and
the second branch is followed otherwise. After updating the solution using either path,
each solution’s fitness function is reevaluated again, and Xbest is redetermined. After that,
somersault foraging (Eq. (14)) is performed. Again, each solution’s fitness function is
reevaluated, and Xbest is redetermined.

Xi(t+1)=



Xrand+ r×(Xrand−Xi(t ))+β×(Xrand−Xi(t )), if ((
t

Tmax
< rand) & (i= 1))

Xrand+ r×(Xi−1(t )−Xi(t ))+β×(Xrand−Xi(t )), if ((
t

Tmax
< rand) & (i> 1))

Xbest + r×(Xbest −Xi(t ))+β×(Xbest −Xi(t )), if ((
t

Tmax
≥ rand) & (i= 1))

Xbest + r×(Xi−1(t )−Xi(t ))+β×(Xbest −Xi(t )), if ((
t

Tmax
≥ rand) & (i> 1))

(12)

Xi(t+1)=


Xi(t )+ r×(Xbest −Xi(t ))+α×(Xbest −Xi(t )), if (i= 1)
Xi(t )+ r×(Xi−1(t )−Xi(t ))+α×(Xbest −Xi(t )), Otherwise (13)

Xi(t+1)=Xi(t )+S×(r2×Xbest − r3×Xi(t )) (14)

where Xi(t ) is the ith solution at iteration t , t is the current iteration number, r is a random
number ∈ [0,1], β and α are weight coefficients, and S is the somersault factor, r1 is a
random number ∈ [0,1], and r2 is a random number ∈ [0,1]. Algorithm 1 explains how
the population (that is, solutions) is updated using MRFO metaheuristic optimization.
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The proposed framework steps
Iteratively, the steps are computed over a maximum number of iterations Tmax . The
optimization iterations used the MRFO; the best possible model combination can then
be applied to any further analysis, such as the production mechanism as prescribed in
the framework. Finally, algorithm 2 summarizes parameter learning and hyperparameter
optimization.

NUMERICAL RESULTS AND ANALYSIS
This section presents the test results for various applied experiments. Furthermore, it
provides comments on the reported results. A summary of all experiment configurations
is provided in Table 4.

Experiments with the binary dataset
Table 5 summarizes the configurations of the binary dataset. Table 6 displays the confusion
matrix results concerning the binary dataset and the best solutions for each pre-trained
model after learning and optimizing the model. Based on these results, the Xception model
represents the lowest FP and FN values. However, EfficientNetB7 has the highest values
for FP and FN.

A list of the best solution combinations is presented in Table 7. According to the
analysis, five different models recommend using the KLDivergence loss. Moreover, the
Nesterov-based models are recommended by three models. Three models recommend the
min-max scalers. Different performance metrics can be derived by combining the values
reported in Table 6 and the learning history. There are two types of metrics presented.

The first set of metrics represents those that need to be maximized (e.g., Acc, F1-score,
P, Sensitivity, Recall, S, AUC, IOU, Dice, and Cosine Similarity). The second one indicates
the metrics that must be minimized (e.g., Logcosh Error, Mean Absolute Error, Mean
Squared Error, Mean Squared Logarithmic Error, and Root Mean Squared Error). Table 8
reports category metrics for the first category while Table 9 reports metrics for the second
category. It is obvious that the Xception pre-trained model is superior to others when it
comes to the classification of two-classes datasets. There is no difference between Recall
and Sensitivity regarding results or formulas.

Three-classes dataset experiments
The three-class dataset is summarized in Table 10. According to Table 11, the TP, TN, FP,
and FN of the best solutions are available after learning and optimizing each pre-trained
model. According to the results, the ResNet152V2 pre-trained model has the lowest FP and
FN values. Conversely, EfficientNetB7 has the highest FP and FN values. Table 12 shows
the optimal combination of each model. This study shows that five models recommend
Categorical Cross entropy Loss. Three models recommend standardization, and four
recommend normalization scalers. Three models recommend Adam as an optimizer.
Seven models recommended performing data augmentation, with six recommending
vertical flipping and five recommending horizontal flipping.

Different performance metrics can be derived from the values provided in Table 11
and the learning history. There are two types of metrics reported. The first aspect shows
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Algorithm 1: The population (i.e., solutions) updating process using the MRFO
metaheuristic optimizer
1 Function UpdateMRFOSolutions(solutions,scoresList ,model,trainX ,trainY ,validationX ,validationY ,testX ,testY )
// Sort the population scores.

2 SortMRFOSolutions(solutions,scoresList ) // Sort the scores list in descending order.

3 bestSolution,bestScore=ExtractFromSolutions(solutions,scoresList ) // Extract the best solution and score.

// Start the updating process using MRFO equations.

4 i= 1 // Initialize the manta-ray’ counter where i≤Nmax.
5 while (i≤Nmax ) do
6 if (rand < 0.5) then

// The cyclone foraging process (Equation 12).
7 if (t/Tmax < rand) then
8 randSolution= xL+ rand× (xU −xL)
9 if (i== 1) then

// Apply this equation if the current solution is the first one.
10 solutions[i] = randSolution+ r×(randSolution− solutions[i])+β×(randSolution− solutions[i])
11 else

// Apply this equation if the current solution is not the first one.
12 solutions[i] = randSolution+ r×(solutions[i−1]− solutions[i])+β×(randSolution− solutions[i])

13 else
14 if (i== 1) then

// Apply this equation if the current solution is the first one.
15 solutions[i] = bestSolution+ r×(bestSolution− solutions[i])+β×(bestSolution− solutions[i])
16 else

// Apply this equation if the current solution is not the first one.
17 solutions[i] = bestSolution+ r×(solutions[i−1]− solutions[i])+β×(bestSolution− solutions[i])

18 else
// The chain foraging process (Equation 13).

19 if (i== 1) then
// Apply this equation if the current solution is the first one.

20 solutions[i] = solutions[i]+ r×(bestSolution− solutions[i])+α×(bestSolution− solutions[i])
21 else

// Apply this equation if the current solution is not the first one.
22 solutions[i] = solutions[i]+ r×(solutions[i−1]− solutions[i])+α×(bestSolution− solutions[i])

23 i= i+1 // Increment the counter.

24 i= 1 // Initialize the manta-ray’ counter where i≤Nmax.

25 newScoresList = [] // Initialize the scores list.
26 while (i≤Nmax ) do
27 score=CalculateFitnessScore(model,solutions[i],trainX ,trainY ,validationX ,validationY ) // Calculate the fitness

score (i.e., accuracy) for the current solution.
28 if (score> bestScore) then
29 bestScore= score
30 bestSolution= solutions[i]

31 i= i+1 // Increment the manta-ray’ counter.

// The somersault foraging process (Equation 14).

32 i= 1 // Initialize the manta-ray’ counter where i≤Nmax.
33 while (i≤Nmax ) do
34 solutions[i] = solutions[i]+S×(r2×bestSolution− r3× solutions[i]) i= i+1 // Increment the counter.

35 i= 1 // Initialize the manta-ray’ counter where i≤Nmax.

36 newScoresList = [] // Initialize the scores list.
37 while (i≤Nmax ) do
38 score=CalculateFitnessScore(model,solutions[i],trainX ,trainY ,validationX ,validationY ) // Calculate the fitness

score (i.e., accuracy) for the current solution.
39 if (score> bestScore) then
40 bestScore= score
41 bestSolution= solutions[i]

42 i= i+1 // Increment the manta-ray’ counter.

43 return solutions // Return the updated population
44 End Function
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Algorithm 2: The suggested framework pesudocode
Input:model , dataset // The required model name and the dataset records

Output: best ,bestScore // The best overall score and solution

1 trainX ,validationX ,testX ,trainY ,validationY ,testY = SplitDataset(dataset ) // Partition the dataset into training,

testing, and validation portions concerning the defined split ration.

2 model =CreateTLPretrainedModel() // Create the initial transfer learning pre-trained CNN model.

3 solutions=GenerateInitialSolutions() // Generate the initial solutions randomly.

// Execute the learning MRFO hyperparameters optimization process for Tmax iterations.

4 t = 1 // Initialize the iterations’ counter where t ≤Tmax.
5 while (t ≤Tmax ) do

// Calculate the scores for each solution in the population sack.

6 i= 1 // Initialize the MRFO’s counter where i≤Nmax.

7 scoresList = [] // Initialize the scores list.
8 while (i≤Nmax ) do
9 score=CalculateFitnessScore(model,solutions[i],trainX ,trainY ,validationX ,validationY ,testX ,testY ) // Calculate

the objective function score (i.e., accuracy) for the current solution.

10 Append(score,scoresList ) // Calculate the score into the scores list.

11 i= i+1 // Increment the MRFO’s counter.

// Update the population using MRFO (Algorithm 1).
12 solutions=UpdateMRFOSolutions(solutions,scoresList ,model,trainX ,trainY ,validationX ,validationY ,testX ,testY )
13 t = t+1 // Increment the iterations counter.

14 best ,bestScore // Return the best score and the corresponding solution

Table 4 Common experiments configurations.

Configuration Specifications

Datasets Table 1
Apply dataset shuffling? Yes (Random)
Input image size (128×128×3)
Hyperparameters metaheuristic optimizer Manta-ray foraging algorithm (MRFO)
Train split ratio 85% to 15% (i.e., 85% for training (and validation) and

15% for testing)
MRFO population size 10
MRFO iterations count 10
Epochs number 5
O/P activation function SoftMax
Pre-trained models InceptionV3, Xception, EfficientNetB7, NASNetLarge,

VGG19, SeNet154, DenseNet201, and ResNet152V2
Pre-trained parameters initializers ImageNet
Hyperparameters Table 3
Scripting language Python
Python major packages Tensorflow, Keras, NumPy, OpenCV, and Matplotlib
Working environment Google Colab with GPU (i.e., Intel(R)

Xeon(R) CPU @ 2.00 GHz, Tesla T4 16 GB GPU,
CUDA v.11.2, and 12 GB RAM)

the metrics that need to be maximized (i.e., Acc, F1-score, P, Sensitivity, Recall, S, AUC,
IoU, DC, and Cosine Similarity). On the other hand, the second represents the metrics
that must be minimized (namely, Logcosh Error, Mean Absolute Error, Mean Squared
Error, Mean Squared Logarithmic Error, and Root Mean Squared Error). Table 13 reports
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Table 5 Binary dataset specific experiments configurations.

Configuration Specifications

Dataset source https://www.kaggle.com/anaselmasry/breast-cancer-dataset
Elmasry (2021)

Number of classes 2
Classes (‘Benign’ and ‘Malignant’)
Dataset size before data balancing ‘‘Benign’’: 2,479 and ‘‘Malignant’’: 5,304
Dataset size after data balancing ‘‘Benign’’: 5,304 and ‘‘Malignant’’: 5,304

Table 6 Confusionmatrix results concerning the binary dataset.

Model name TP TN FP FN

InceptionV3 10,288 10,288 320 320
Xception 10,363 10,363 241 241
EfficientNetB7 7,916 7,916 2,668 2,668
NASNetLarge 9,817 9,817 791 791
VGG19 10,308 10,308 300 300
SeNet154 10,171 10,171 413 413
DenseNet201 10,350 10,350 242 242
ResNet152V2 10,225 10,225 383 383

Table 7 Learning and optimization best solutions concerning the binary dataset.

Model name InceptionV3 Xception EfficientNetB7 NASNetLarge VGG19 SeNet154 DenseNet201 ResNet152V2

Loss KLDivergence KLDivergence Poisson KLDivergence Poisson KLDivergence Categorical
Crossentropy

KLDivergence

Batch size 12 44 28 12 12 36 32 48

Dropout 0.41 0.28 0.25 0.33 0.47 0.08 0.16 0.43

TL learn ratio 91 56 92 70 33 79 49 62

Optimizer AdaGrad AdaMax SGD Nesterov SGD SGD SGD Nesterov AdaGrad SGD Nesterov

Scaler Normalization Normalization MinMax Normalization Standardization MinMax MaxAbs MinMax

Apply augmentation Yes Yes No No No Yes Yes No

Rotation range 1 26 N/A N/A N/A 11 24 N/A

Width shift range 0.22 0.17 N/A N/A N/A 0.18 0.03 N/A

Height shift range 0.22 0.25 N/A N/A N/A 0.06 0.03 N/A

Shear range 0.25 0.08 N/A N/A N/A 0.14 0.12 N/A

Zoom range 0.24 0.13 N/A N/A N/A 0.16 0.17 N/A

Horizontal flip Yes No N/A N/A N/A No Yes N/A

Vertical flip Yes Yes N/A N/A N/A No No N/A

Brightness range 1.18–1.24 1.28–1.32 N/A N/A N/A 1.64–1.78 0.65–1.72 N/A

on category metrics for the first category, while Table 14 reports on category metrics for
the second category. Compared to others, the ResNet152V2 pretrained model is the best
when considering the dataset with three classes. Both Recall and Sensitivity reflect the same
results and formulas.
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Table 8 The binary dataset experiments with the maxmimized metrics.

Model name Accuracy F1 Precision Sensitivity Recall Specificity AUC IoU Dice Cosine
similarity

InceptionV3 96.98% 96.98% 96.98% 96.98% 96.98% 96.98% 99.14% 97.07% 97.47% 97.41%
Xception 97.73% 97.73% 97.73% 97.73% 97.73% 97.73% 99.50% 97.90% 98.17% 98.04%
EfficientNetB7 74.79% 74.79% 74.79% 74.79% 74.79% 74.79% 81.85% 74.95% 78.83% 80.26%
NASNetLarge 92.54% 92.54% 92.54% 92.54% 92.54% 92.54% 98.00% 91.55% 93.01% 94.02%
VGG19 97.17% 97.17% 97.17% 97.17% 97.17% 97.17% 99.65% 95.53% 96.45% 97.57%
SeNet154 96.10% 96.10% 96.10% 96.10% 96.10% 96.10% 99.03% 95.17% 96.04% 96.80%
DenseNet201 97.72% 97.72% 97.72% 97.72% 97.72% 97.72% 99.57% 89.33% 92.02% 96.98%
ResNet152V2 96.39% 96.39% 96.39% 96.39% 96.39% 96.39% 99.19% 94.92% 95.90% 96.91%

Table 9 The binary dataset experiments with the minimized metrics.

Model name Logcosh
error

Mean absolute
error

Mean squared
error

Mean squared
logarithmic error

Root mean
squared error

InceptionV3 0.011 0.038 0.024 0.012 0.156
Xception 0.008 0.027 0.018 0.009 0.135
EfficientNetB7 0.082 0.318 0.177 0.087 0.421
NASNetLarge 0.025 0.105 0.054 0.027 0.233
VGG19 0.010 0.053 0.022 0.011 0.150
SeNet154 0.014 0.059 0.030 0.015 0.172
DenseNet201 0.015 0.120 0.031 0.016 0.177
ResNet152V2 0.013 0.062 0.029 0.014 0.169

Table 10 Three-classes specific experiments configurations.

Configuration Specifications

Dataset source https://www.kaggle.com/ahmedfouad55/breast-ultrasound-
data Fouad (2021)

Number of classes 3
Classes (‘Benign’, ‘Malignant’, and ‘Normal’)
Dataset size before data balancing ‘‘Benign’’: 437, ‘‘Malignant’’: 210, and ‘‘Normal’’: 133
Dataset size after data balancing ‘‘Benign’’: 437, ‘‘Malignant’’: 437, and ‘‘Normal’’: 437

Graphical summarizations
Based on the experiments conducted on the suggested approach, Fig. 4 shows the best
combination of different alternatives.
As shown in Figs. 5 and 6, confusion matrices are presented for two-classes and three-class
datasets, respectively.

A graphical summary of the reported learning and optimization results is presented in
Figs. 7 and 8, respectively, using two- and three-class datasets.
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Table 11 Confusionmatrix results concerning the three-classes dataset.

Model name TP TN FP FN

InceptionV3 1191 2521 55 97
Xception 1267 2584 32 41
EfficientNetB7 875 2475 117 421
NASNetLarge 1184 2575 41 124
VGG19 1053 2471 121 243
SeNet154 1257 2572 36 47
DenseNet201 1204 2491 61 72
ResNet152V2 1294 2603 13 14

Table 12 The promising solutions concerning the three-classes dataset.

Model name InceptionV3 Xception EfficientNetB7 NASNetLarge VGG19 SeNet154 DenseNet201 ResNet152V2

Loss KLDivergence Categorical
Crossentropy

KLDivergence Categorical
Crossentropy

Categorical
Crossentropy

KLDivergence Categorical
Crossentropy

Categorical
Crossentropy

Batch size 28 4 24 4 24 8 44 4

Dropout 0.25 0 0.38 0 0.06 0.09 0.46 0

TL learn ratio 47 0 68 0 40 54 81 0

Optimizer RMSProp Adam AdaMax Adam AdaGrad SGD Nesterov SGD Adam

Scaler Standardization Normalization Standardization Normalization Standardization Normalization Standardization Normalization

Apply augmentation Yes Yes Yes Yes Yes No Yes Yes

Rotation range 13 0 6 0 3 N/A 28 0

Width shift range 0.12 0 0.22 0 0.04 N/A 0.11 0

Height shift range 0.11 0 0.2 0 0.1 N/A 0.16 0

Shear range 0.06 0 0.1 0 0.02 N/A 0.13 0

Zoom range 0.03 0 0.24 0 0.06 N/A 0.06 0

Horizontal flip No Yes Yes Yes Yes N/A No Yes

Vertical flip Yes Yes No Yes Yes N/A Yes Yes

Brightness range 1.03–1.07 0.5–0.5 1.35–1.59 0.5–0.5 0.93–0.94 N/A 1.25–1.37 0.5–0.5

Table 13 The three-classes dataset experiments with the maxmimized metrics.

Model name Accuracy F1 Precision Sensitivity Recall Specificity AUC IoU Dice Cosine
similarity

InceptionV3 94.41% 93.81% 95.34% 92.47% 92.47% 97.86% 98.80% 88.69% 90.95% 94.71%
Xception 97.09% 97.04% 97.55% 96.87% 96.87% 98.78% 99.03% 93.65% 94.98% 97.06%
EfficientNetB7 79.40% 74.33% 86.43% 67.52% 67.52% 95.49% 92.61% 69.70% 74.64% 81.80%
NASNetLarge 95.11% 92.15% 96.18% 90.52% 90.52% 98.43% 99.29% 87.78% 90.13% 94.30%
VGG19 85.49% 84.70% 89.24% 81.25% 81.25% 95.33% 96.89% 79.44% 83.17% 88.47%
SeNet154 96.93% 96.70% 97.16% 96.40% 96.40% 98.62% 99.48% 92.61% 94.19% 96.76%
DenseNet201 95.06% 94.73% 95.13% 94.36% 94.36% 97.61% 98.84% 94.31% 95.20% 95.76%
ResNet152V2 99.01% 98.96% 99.01% 98.93% 98.93% 99.50% 99.77% 98.28% 98.60% 98.97%

Related studies comparisons
The proposed approach is compared with other state-of-the-art approaches in Table 15. It
compares the whole systems as black boxes. In comparison to related studies, the present
study has demonstrated superior results.
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Table 14 The three-classes dataset experiments with the minimized metrics.

Model name Logcosh
error

Mean absolute
error

Mean squared
error

Mean squared
logarithmic error

Root mean
squared error

InceptionV3 0.016 0.090 0.033 0.016 0.183
Xception 0.009 0.050 0.019 0.009 0.139
EfficientNetB7 0.051 0.254 0.106 0.052 0.326
NASNetLarge 0.017 0.099 0.036 0.018 0.190
VGG19 0.033 0.168 0.069 0.034 0.263
SeNet154 0.010 0.058 0.021 0.010 0.144
DenseNet201 0.012 0.048 0.026 0.013 0.162
ResNet152V2 0.003 0.014 0.007 0.003 0.083
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Figure 4 Hyperparameters selection and best combinations graphical summarization.
Full-size DOI: 10.7717/peerjcs.1054/fig-4

CONCLUSIONS
Deep learning has been used to diagnose or detect diseases, much like radiologists
do. Another benefit of deep learning would be to double-check the areas radiologists
sometimes overlook, thus improving the accuracy of readings. This article presents a new
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Figure 8 Summarization of the learning and optimization experiments related to the three-classes dataset.
Full-size DOI: 10.7717/peerjcs.1054/fig-8

deep convolutional neural network (CNN) approach combining transfer learning with
the Manta Ray Foraging Optimization (MRFO) for analyzing histopathological slides
and ultrasound images. Optimizing CNN hyperparameters through MRFO increases the
performance of the framework. In addition, this approach uses the Manta Ray Foraging
Optimization (MRFO) method to drive down the run-time resource requirements of
the trained deep learning models, thus improving their adaptability and reducing their
run-time costs. Several pre-trained CNNs were used for our experiments, including
MobileNet, MobileNetV2, MobileNetV3Large, VGG16, VGG19, Xception, DenseNet201,
and NASNetMobile. The datasets used for the study are the Breast Cancer Dataset, which
is binary classified, and the Breast Ultrasound Dataset, which is classified into one of the
three classes: Benign, Malignant, and Normal. Several pre-training steps are undertaken
before the training process begins for each dataset, including data augmentation, image
resizing, dimensional scaling, and data balancing. For two-class datasets, the Xception
pretrained model is the best. However, when it comes to the three-classes data, the
ResNet152V2 pre-trained model is the best. The proposed framework scored 97.73%
on the histopathological data and 99.01% on the ultrasound data based on accuracy. In
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Table 15 Comparison between the suggested approach and related studies.

Study Year Dataset Approach Best
accuracy

Wang et al. (2016) 2016 Histopathological GoogLeNet DL 98.40%
Han et al. (2017b) 2017 Histopathological Structured DL 93.20%
Han et al. (2017a) 2017 Ultrasound GoogLeNet DL 90.00%
Jannesari et al. (2018) 2018 Histopathological DL 96.40%
Golatkar, Anand & Sethi (2018) 2018 Histopathological DL 93.00%
Fujioka et al. (2019) 2019 Ultrasound GoogLeNet DL 92.50%
Hijab et al. (2019) 2019 Ultrasound VGG16 DL 97.00%
Boumaraf et al. (2021) 2021 Histopathological VGG19 DL 98.13% and

88.95%
Senan et al. (2021) 2021 Histopathological AlexNet DL 95.00%
Current Study 2022 Histopathological Hybrid (MRFO and CNN) 97.73%
Current Study 2022 Ultrasound Hybrid (MRFO and CNN) 99.01%

comparison with state-of-the-art techniques, the proposed framework delivered superior
results.
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