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ABSTRACT
Speech emotion recognition (SER) systems have evolved into an important method
for recognizing a person in several applications, including e-commerce, everyday
interactions, law enforcement, and forensics. The SER system’s efficiency depends on
the length of the audio samples used for testing and training. However, the different
suggested models successfully obtained relatively high accuracy in this study.
Moreover, the degree of SER efficiency is not yet optimum due to the limited
database, resulting in overfitting and skewing samples. Therefore, the proposed
approach presents a data augmentation method that shifts the pitch, uses multiple
window sizes, stretches the time, and adds white noise to the original audio. In
addition, a deep model is further evaluated to generate a new paradigm for SER. The
data augmentation approach increased the limited amount of data from the Pakistani
racial speaker speech dataset in the proposed system. The seven-layer framework was
employed to provide the most optimal performance in terms of accuracy compared
to other multilayer approaches. The seven-layer method is used in existing works to
achieve a very high level of accuracy. The suggested system achieved 97.32% accuracy
with a 0.032% loss in the 75%:25% splitting ratio. In addition, more than 500
augmentation data samples were added. Therefore, the proposed approach results
show that deep neural networks with data augmentation can enhance the SER
performance on the Pakistani racial speech dataset.

Subjects Artificial Intelligence, Data Science, Natural Language and Speech
Keywords Speaker recognition, Data augmentation, Deep neural network, Multiple window size

INTRODUCTION
Speaker emotion recognition (SER) is an attractive study since there are still many issues to
address and many research gaps that need to be filled. However, deep learning (DL) and
machine learning (ML) approaches have tackled SER challenges, particularly in research
that employs speech datasets with enormous volumes of data. The amount of data is
increasing by the moment. Consequently, an expansion in the amount of data worldwide is
inevitable. Social websites, personal archives, sensors, mobile devices, cameras, webcams,
financial market data, and health data create hundreds of petabytes of data (Gupta & Rani,
2019; Khan et al., 2022a). By 2025, the World Economic Forum predicts that the world will
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create 463 exabytes of data every day. Finding the appropriate method to convert such a
large volume of data into useful information is difficult.

Therefore, artificial intelligence (AI) has been used in numerous fields of the latest
studies. Previously, speech recognition studies utilizing ML achieved a high degree of
precision by using the Gaussian mixture model (GMM) technique (Marufo da Silva, Evin
& Verrastro, 2016; Maghsoodi et al., 2019; Mouaz, Abderrahim & Abdelmajid, 2019), and
the hidden Markov model (HMM) technique (Veena & Mathew, 2015; Bao & Shen, 2016;
Chakroun et al., 2016; Maurya, Kumar & Agarwal, 2018). However, as the data increases,
the level of accuracy with these techniques drops rapidly, to the point where these
traditional ML approaches suffer from low accuracy and generalization issues (Xie et al.,
2018). Nevertheless, this technique provides a reliable strategy for addressing data
groupings, making it appropriate for various situations.

Several studies have been conducted regarding SER based on deep learning using
different methods, such as the deep neural network (DNN) (Seki, Yamamoto & Nakagawa,
2015; Najafian et al., 2016;Matjka et al., 2016; Dumpala & Kopparapu, 2017; Snyder et al.,
2018; Najafian & Russell, 2020; Rohdin et al., 2020; Khan et al., 2021; Amjad, Khan &
Chang, 2021b, 2021a; Khan et al., 2022b) and convolutional neural network (CNN)
methodologies used in the study (Ravanelli & Bengio, 2019) attained an overall accuracy of
85% with the TIMIT database and 96% with LibriSpeech. Using the deep learning
technique, An, Thanh & Liu (2019) obtained 96.5 percent accuracy and significantly
improved the ability to handle multiple issues in SER. However, DL requires a lot of
training datasets, which are challenging to gather and expensive. Therefore, this approach
is unsuitable for SER utilization because it will yield overfitting problems and may lead to
skewed data. The use of data augmentation (DA) is one solution to the problem of small
data in the SER study. A DA approach is a technique that can be used to create additional
training datasets by altering the shape of a training dataset. DA is helpful in many
investigations, such as digital signal processing, object identification, and image
classification (Wu, Chang & Amjad, 2020; Li et al., 2020; Amjad et al., 2022).

The DA technique has been extensively used in various fields of study because a few
samples in many different DA classes can help solve a problem more effectively (Zheng, Ke
& Wang, 2020). For example, multiple SER studies using DA (Schlüter & Grill, 2015;
Salamon & Bello, 2017; Pandeya & Lee, 2018) showed a reduction of up to 30% in
classification errors and obtained 86.194% accuracy. Data augmentation includes several
approaches that have been effectively used in various research, including generative
adversarial networks (GANs) and variational autoencoders (VAEs) approaches (Moreno-
Barea, Jerez & Franco, 2020). The suggested approach obtained accuracy using limited
data, with 87.7 percent. In another investigation, scientists employed an auditory DA
strategy to achieve an 82.6 percent accuracy for Mandarin-English code flipping (Long
et al., 2020). As presented in Ye et al. (2020) pitch shifting is frequently utilized in DA and
achieved 90% accuracy. In addition, Damskägg & Välimäki (2017) employed the time-
stretched data augmentation approach when performing DA-based fuzzy identification on
various audio signals. Aguiar, Costa & Silla (2018) incorporated Latin music’s noise usage,
shifting the pitch, loudness variation, and stretching the time to further enhance genre
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categorization. As a result, Rituerto-Gonzlez et al. (2019) reported an 89.45 percent
accuracy using the database (LMD). We propose DA because it is proven to increase the
quantity of the dataset so that it can help improve speaker recognition performance with
an accuracy rate of 99.76.

The proposed study presents a data augmentation method based on a seven-layer DNN
for recognizing racial speakers in Pakistan by utilizing 400 audio samples from multiple
classes of racial speakers in Pakistan. However, this kind of study may easily lead to
multiclass difficulties due to the many classes it includes. On the other hand, DNN
approaches are often utilized in SER (Nassif et al., 2019). In addition, DNN is also a
powerful model capable of achieving excellent performance in pattern recognition
(Nurhaida et al., 2020). The study was undertaken by Novotny et al. (2018) in conjunction
with Mel-frequency cepstral coefficients (MFCC) has shown the effectiveness of DNN in
SER and improved network efficiency in busy and echo conditions. Furthermore, DNN
with Mel-frequency cepstral coefficients has outperformed numerous other research
approaches on SER single networks (Saleem & Irfan Khattak, 2020). Additionally, DNN
has been effectively fusing with augmented datasets. The presented approach employs a
seven-layer neural network because the seven-layer technique yields the highest efficiency
and accuracy when used in previous works with an average precision above 90% (Liu, Fang
& Wu, 2016; Zhang et al., 2018; Li et al., 2019). Furthermore, including the Pakistani
speakers with many classes employing DNN with DA would improve the identification
efficiency of multiple emotional classes.

This article is divided into sections. The Introduction describes the significant issue and
the studies done by the speaker; ‘Related works’ includes many existing works that support
the proposed study; ‘Data augmentation’ describes data augmentation and several
methodologies that are used in the research. The next section discusses DNNs, and the
deep learning techniques employed. The methodology is covered in the next section,
followed by the research outcomes and a discussion. Finally, the ‘Conclusion’ section
covers various significant things about the conclusion of the research outcomes.

RELATED WORKS
The proposed study on multi-racial voice recognition was carried out in many nations, like
China (Nassif et al., 2019), Africa (Oyo & Kalema, 2014), Italy (Najafian & Russell, 2020),
Pakistan (Syed et al., 2020; Qasim et al., 2016), the United States (Upadhyay & Lui, 2018),
and India, through CNN and MFCC (Ashar, Bhatti & Mushtaq, 2020). It is a vital
technique that many researchers have chosen to enhance SER efficacy (Chowdhury & Ross,
2020).

In contrast, the limitations of multi-racial SER systems investigated in some studies
included limited speech data and a lack of emotional classes. Therefore, weak data training
methods may result from inaccurate outcomes. Nevertheless, some research in SER and
multi-racial SER systems, such as automatic Urdu speech recognition using HMM,
involves a 10-speaker category consisting of eight male and two female speakers with 78.2
percent accuracy. In addition, the study of multilingual, multi-speaker involves three
classes, namely Javanese, Indonesian, and Sundanese (Azizah, Adriani & Jatmiko, 2020).
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However, this investigation has limits regarding the number of emotional categories.
Various types of SER studies have been conducted. For example, Durrani & Arshad (2021)
used deep residual network (DRN) with a 74.7 percent accuracy rate. Another study
employing MFCC and Fuzzy Vector Quantization Modeling on hundred categories from
the TIMIT database gives 98% accuracy, higher than other approaches such as Fuzzy
Vector Quantization two and Fuzzy C-Means (Singh, 2018). The ML technique is still
utilized in conjunction. The classic approaches, such as the HMM, recognize four
Moroccan dialect speakers using 20 speakers; this research achieved a 90% accuracy rate
for speaker recognition (Mouaz, Abderrahim & Abdelmajid, 2019).

A single-layer DNN with a data augmentation approach was also utilized to investigate
the impact of stress on the performance of SER systems, obtaining an accuracy of 99.46%
with the VOCE database (Rituerto-Gonzlez et al., 2019). The VOCE database comprises
135 utterances from forty-five speakers. In addition, the GMM andMFCC with the TIMIT
database were utilized to recognize short utterances from 64 different regions and obtained
98.44% accuracy (Chakroun & Frikha, 2020). This accuracy is higher than the traditional
GMM. Another approach was employed in a study (Hanifa, Isa & Mohamad, 2020) that
used 52 recordings of Malaysian recorded samples utilizing the MFCC in the feature
extraction, with an accuracy of 57%. Along with machine learning, numerous works in
SER and multi-racial utilize the DL technique, regarded as a rigorous approach to SER. The
Deep Learning technique with a deep neural network is used with different techniques, one
of which is DA, as demonstrated in a study presented by Long et al. (2020) on the OC16-
CE80 dataset. This Mandarin-English mixlingual speech corpus successfully produced an
effective model for SER with an 86% accuracy. The above research has several similarities
with the proposed study: the dataset containing speakers from multi-racial backgrounds,
DA, and the MFCC feature extraction method. However, some preceding studies differed
from the proposed study in many ways, including the number of speech categories, the
length of the utterance, and the identification techniques utilized. Table 1 explains the
evolution of work on SER in further detail.

DATA AUGMENTATION
Researchers employ a method known as data augmentation to enhance the number of
dataset samples. DA is an approach for increasing the number of training datasets useful
for neural network training (Rebai et al., 2017) and has a major influence on deep learning
with limited datasets (Ma, Tao & Tang, 2019). Furthermore, DA is a useful method for
overcoming overfitting problems, enhancing model dependability, and increasing
generalization (Wang, Kim & Lee, 2019), which are common issues in machine learning.
Research based on deep learning with data augmentation techniques is critical for
improving prediction accuracy while dealing with massive volumes of data (Moreno-
Barea, Jerez & Franco, 2020). There are a few data augmentation methods, including
adding white noise into an original sample, shifting the pitch, loudness variation, multiple
window sizes, and stretching the time. The small size of the dataset is a problem when
utilizing deep learning approaches. The proposed approach used to overcome this issue is
to induce noise into the training data.
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Adding white noise: Adding white noise to a speaker’s data enhancements recognition
effectively (Ko et al., 2017). This approach involves the addition of random sound samples
with similar amplitude but various frequencies (Mohammed et al., 2020). Using white
noise in a speech signal increases the performance of SER (Schlüter & Grill, 2015; Aguiar,
Costa & Silla, 2018; Hu, Tan & Qian, 2018). Furthermore, when white noise is added to an
original sound gives a distinct sound effect, which increases the performance of SER.

Pitch shifting: is a commonly used method in an audio sample to increase or decrease
the original tone of voice. Pitch variations are performed using this technique without
affecting playback speed (Mousa, 2010). In addition, a method is utilized in pitch shifting
to increase the pitch of the original sound without changing the duration of the recorded
sound clip (Rai & Barkana, 2019). For example, various studies on singing voice detection
(SVD) (Gui et al., 2021), environmental sound classification (ESC) (Salamon & Bello,
2017), and domestic cat classification have shown that pitch shifting may be highly
effective for DA (Pandeya & Lee, 2018).

Time stretching: is a way to change the speed or length of an audio signal without
changing the tone. Instead, it is used to manipulate audio signals (Damskägg & Välimäki,
2017). This technique is suitable for analyzing auditory signals that comprise tone, noise,
and temporal elements. Numerous investigations used time stretching with other
approaches such as synchronous overlap, fuzzy, and CNN to increase the efficiency of the
suggested framework (Sasaki et al., 2010; Kupryjanow & Czyżewski, 2011; Salamon &

Table 1 Detailed description of datasets.

Reference Approach Database Classes Accuracy

Wang, Wang & Liu (2014) HMM and GMM S-PTH database 4 13.8% and 24.6%
error rate

Najafian et al. (2016) DNNs The First Accents of the British Isles
Speech Corpus

14 3.91% and 10.5%
error rate

Qasim et al. (2016) Support Vector Machine,Random Forest and
Gaussian Mixture Model

Recorded Pakistan ethnic speaker 6 92.55%

Salamon & Bello (2017) SB-CNN Urban- Sound8K 10 94%

Upadhyay & Lui (2018) Deep Belief Network FAS Database 6 90.2%

Singh (2018) Fuzzy Vector Quantization TIMIT 100 98.8%

Mouaz, Abderrahim &
Abdelmajid (2019)

HMM One layer Deep Neural Network VOCE Corpus Dataset 4 90%

Ashar, Bhatti & Mushtaq
(2020)

CNN Spontaneous Urdu dataset – 87.5%

Azizah, Adriani & Jatmiko
(2020)

DNNs Indonesian speech corpus 4 98.96%

Chakroun et al. (2016) GMM TIMIT 8 98.44%

Hanifa, Isa & Mohamad
(2020)

Support Vector Machine speaker ethnicity 4 56.96%

Hanifa, Isa & Mohamad
(2020)

DNN OC16 2 86.10%
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Bello, 2017). These studies used different techniques, such as the synchronous overlap
algorithm, fuzzy logic, and CNN, to improve the performance of the proposed model.

Multiple window size: Multiple window size features are retrieved from a windowed
signal called frames. The window strongly influences the obtained features retrieved from
the voice signal-based functions width since signals are often steady for limited periods
(Kelly & Gobl, 2011). Suppose the length of the window is relatively small. In that case,
insufficient training datasets are available to get an accurate spectrum for estimating the
signals. On the other hand, if the window’s length is set very wide, the signal may vary
significantly across the frame. Thus, determining the width of the window function is a
critical phase that is made more difficult by the lack of details about the original data
(Rabiner & Schafer, 2007; Zhang et al., 2019). Several studies have demonstrated that the
optimal window size selection contributes to the correlation between the acoustic
representation and the human perception of a speech signal (Nisar, Khan & Tariq, 2016;
Kirkpatrick, O’Brien & Scaife, 2006). Three tuples express a window function: width of the
window, offset, and shape. To extract a part of a signal, multiply the signal’s value at the
time “t,” signal[t], by the value of the hamming window at a time “t,” window[t], which is
expressed as: windowsignal[t] = window[t] � signal[t].

A windowed signal is utilized to create characteristics for emotion recognition. For SER,
a standard size window of 25 ms is employed to extract features with a 10 ms overlap
(Yoon, Byun & Jung, 2018; Tarantino, Garner & Lazaridis, 2019; Ramet et al., 2018). On
the other hand, some research has indicated that a larger window size improves emotion
identification performance (Chernykh & Prikhodko, 2018; Tripathi, Tripathi & Beigi,
2019). In addition, other studies have assessed the significance of step size (overlap window
size). However, SER analysis is conducted using a single-window (Tarantino, Garner &
Lazaridis, 2019; Chernykh & Prikhodko, 2018). Tarantino, Garner & Lazaridis (2019)
investigated the influence of overlap window size on SER. They discovered that a small step
size leads to a lower test loss. Chernykh & Prikhodko (2018), explored multiple window
widths ranging from 30 to 200 ms before settling on a unique 200 ms window for the SER
study.

METHODOLOGY
Deep Learning has been used to create a variety of solid approaches for SER. The DNN is
one of the most widely utilized deep learning approaches. In many SER studies, deep
neural networks are employed because they have several benefits over conventional
machine learning approaches. There are several benefits to using the DNN approach in
many scientific domains, including object detection, geographic information retrieval, and
voice classification (Seifert et al., 2017). The DNN-based acoustic model was used in
previous work to achieve high-level performance (Seki, Yamamoto & Nakagawa, 2015;
Snyder et al., 2018; Novotny et al., 2018; Saleem & Irfan Khattak, 2020).

The structure of a DNN approach is composed of input, hidden, dropout, and output
layers (Rajyaguru, Vithalani & Thanki, 2020). The deep neural network is an evolution of
the neural network (see Fig. 1), which is essentially a function in a mathematical measure
R: A ⇒ B that may be stated as follows.
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Input layer
The input layer comprises nodes that obtain the inputted data from variable A. These
nodes are directly connected to the hidden units. The generation of eleven input layer
features is generated after a preprocessing step utilizing the principal component analysis
(PCA) algorithm.

Hidden layer
The hidden layer is composed of nodes that obtain data from the first layer. Previous
studies have suggested that the volume of nodes in the hidden layer may be influenced by
the dimensions of the input and output layers. For example, in Fig. 1, the size of the hidden
neurons is 24.12, and 12 in the hidden units, which is the optimal number of deep neural
network characteristics based on previous studies.

Dropout (DO)
A dropout is a single approach utilized to generate a range of system designs that may be
used to address overfitting issues in the model. The dropout value ranges between 0 and 1.
Dropout is set to a size of 0.2 for each layer in Fig. 1, since DNN obtains the highest
efficiency with this value.

Figure 1 Structure of a deep neural network. Full-size DOI: 10.7717/peerj-cs.1053/fig-1
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Output layer
The output layer comprises nodes that access data directly from the hidden or input layer.
The output value provides a computation outcome from the A to B value. For example, the
two output layer nodes in 1 represent the number of groups. The proposed technique
improved the Pakistani racial speaker recognition accuracy. It was based on the seven-layer
DNN architecture with a data augmentation approach. Figure 2 illustrates the proposed
method’s architecture. The proposed SER using a seven-layer DNN-DA approach to the
multi-language dataset, as shown in Fig. 2, is a robust approach. First, a dataset is divided
into training data (75% of the dataset) and testing data (25% of the dataset). Then, the
training data is preprocessed by trimming audio signals with identical temporal lengths
and generating sample types with similar shapes and sizes. Moreover, four techniques of
the data augmentation procedure are performed on the dataset to enhance audio data.
Finally, the MFCC extracts and processes the features with a seven-layer DNN-DA for
classification. The testing dataset performs the same preprocessing steps, data
augmentation, and feature extraction using MFCC. Furthermore, the proposed approach
will be evaluated using testing data to see how accurate it is speaker recognition.

Figure 2 Structure of proposed approach. Full-size DOI: 10.7717/peerj-cs.1053/fig-2
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DATASET AND PREPROCESSING
This study utilized a dataset of Pakistan’s five most spoken local languages. The
information was obtained to adjust for the numerous ethnicities. Various online resources
were used to compile this dataset (Wang & Guan, 2008; Syed et al., 2020). This study aims
to gather data from areas of Pakistan where Urdu and its five primary ethnicities (Punjabi,
Sindhi, Urdu, Saraiki, and Pashto) are spoken. The audio samples were processed using
PRAAT software. The dataset for the Urdu language is summarized in Table 2. The dataset
is utilized only to recognize Urdu racials. The dataset contains 80 distinct utterances for
each ethnicity type with different levels of education, ranging from semi-literate to literate.
Each audio file is from an individual speaker, resulting in 80 distinct speakers per ethnic
group. Each clip is 30 s long, in mono channel WAV format, and sampled at 16 kHz of
Sindhi, Saraiki, and Pashto languages. Additionally, each utterance is distinct from others
in the dataset. The dataset includes sounds from 80 speakers of five racials, for 1,240 clips.

The dataset processing uses a segmentation process similar to that used for the dataset
of the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). This
multimodal recording dataset takes the form of emotional speech and songs recorded in
audio and video formats (Atmaja & Akagi, 2020). Experiments on RAVDESS were carried
out by Livingstone & Russo (2018), and they involved the participation of 24 professional
actors with North American accents. The research included speech and songs with various
facial expressions, including neutral, calm, happy, sad, angry, fearful, surprised, and
disgusted. In the data of Pakistani racial speakers, the complete audio utterances are
segmented once again using the approach that is described below:

� Modality 001 = only-audio, 002 = only-video, 003 = audio-video

� Classes: 001 = disgust, 002 = neutral, 003 = fearful, 004 = angry, 005 = happy,
006 = surprised, 007 = sad, 008 = calm

� Vocal: 001 = song, 002 = speech

� Intensity: 001 = strong, 002 = normal

� The racial of the speakers as a class from 01 to 5

� Repetition: 001 = First, 002 = second

� Speaker sequence number per tribe/region from 01 to 10

Table 2 Duration of audio speech data in hours.

Racial Number of male and
female speakers

Duration per
sample

Number of
samples

Nature of samples

Punjabi (Wang & Guan, 2008) 4 males and 4 females 42 s 500 samples Speaker and text independent

Urdu (Wang & Guan, 2008; Syed et al., 2020) 4 males and 4 females 42 s 500 samples Speaker and text independent

Sindhi (Syed et al., 2020) 32 males and 38 females 30 s 80 samples Speaker and text independent

Saraiki 42 males and 28 females 30 s 80 samples Speaker and text independent

Pashto 35 males and 35 females 30 s 80 samples Speaker and text independent
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Feature extraction
We employedMFCC in the proposed study since it is one of the most robust approaches to
extracting features from SER features. MFCC is the most widely used approach for
obtaining spectral information from a speech by processing the Fourier Transform (FT)
signal with a perception-based Mel-space filter bank. Additionally, in the proposed study,
Librosa is used to extract MFCC features. This Python library has functionality for reading
sound data and assisting in the MFCC feature extraction method. According to Hamidi
et al. (2020), the MFCC technique is shown in Fig. 3: The MFCC approach enhances the
audio sound input during the preemphasis phase and increases the signal-to-noise ratio
(SNR) enough to ensure that the voice is not influenced by noise. The framing mechanism
divides the audio signal into many frames with the same signal count. Windowing is the
technique of employing the window function to weight the output frame. The following
procedure is the DFT (discrete Fourier transform), which examines the frequency signal
derived from the discrete-time signal. Then, the MFCC obtained from the original
utterances is determined using the filter bank (FB). The wrapping of Mel Frequency is
often used in conjunction with a FB. A FB is a kind of filter used to determine the amount
of energy contained within a certain frequency range, Afrillia et al. (2017). Finally, the
logarithmic (LOG) value is obtained by converting the DFT result to a single value. Inverse
DFT is a technique for obtaining a perceptual autocorrelation sequence based on the linear
prediction (LP) coefficient computation. The MFCC technique was employed in this study
by setting frame lengths at 25 with a hamming window, 13 spectral and 22 lifter
coefficients, and 10 frameshifts. The MFCC approach enhances the audio sound input
during the preemphasis phase, increasing the signal-to-noise ratio (SNR) enough to ensure

Figure 3 Block diagram of the computation steps of MFCC.
Full-size DOI: 10.7717/peerj-cs.1053/fig-3
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that the voice is not influenced by noise. The framing mechanism divides the audio signal
into many frames with the same signal count. Windowing is the technique of employing
the window function to weigh the output frame. The following procedure is the DFT
(discrete Fourier transform), which examines the frequency signal derived from the
discrete-time signal. Then, the MFCC obtained from the original utterances is determined
using the filter bank (FB). The wrapping of Mel Frequency is often used in conjunction
with a FB.

Seven layer DNN
In this study, the rectified linear unit (Relu) activation function is utilized in conjunction
with the Adam optimizer (AO). Adam optimizer is used to improve the learning speed of
deep neural networks. This algorithm was introduced at a renowned conference by deep
learning experts Kingma & Ba (2017), with a 0.2% dropout rate. A deep neural network
comprises seven layers, with the structure shown in Fig. 4.

As seen in Fig. 4, the seven-layer architecture of the DNN consists of one fully
connected layer with 400 neurons on layer two, which is the expected volume of neurons
identified in our investigation. The following layer has just half of the neurons from the
preceding layer. Layer one is composed of dense functions that create a fully connected
layer. The second layer comprises 400 neurons composed of the dense and dropout
functions used in the neural network to avoid overfitting and accelerate the learning
process. The third layer comprises 200 neurons. The fourth layer comprises 100 neurons,

Figure 4 Structure of proposed approach. Full-size DOI: 10.7717/peerj-cs.1053/fig-4
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the fifth layer comprises 50 neurons, and the sixth layer comprises 25 neurons. It is also
composed of dense and dropout functions. Finally, the seventh layer comprises 10 neurons
with dense and dropout functions. At the same time, softmax activation is used as the
output layer. The seven-layer DNN architecture is employed in this work because it
provides the maximum level of accuracy compared to the three-layer DNN and five-layer
DNN.

Evaluation
Acted, semi-natural, and spontaneous datasets were employed in the proposed study. In
addition, the split ratio method with train test split assessment was used to evaluate
performance in ML. The proposed approach separates the data into training for matching
the ML architecture and testing the ML architecture. The most utilized ratio is splitting
training and testing data by 70%:30%, 80%:20%, or 90%:10%. Multiple factors determine
the split ratios, namely the compute costs associated with the model training, the
computational costs associated with testing the model, and data analysis. Accuracy is a
commonly used metric for assessing the extent of incorrectly identified items in balanced
and approximately balanced datasets (Atmaja & Akagi, 2020). It is one of the model
performance assessment methodologies often used in ML.

RESULTS AND DISCUSSION
This study utilized DA methods to evaluate a Pakistani racial speech dataset using a
44,100 mono sample rate. The testing efficacy of the seven-layer DNN-DA approach at
epoch 100 with batch size two is illustrated in Fig. 5. Testing a training dataset yields an
accuracy of 97.32% with a total loss of 0.03. As shown in Fig. 5, the total loss decreases
from epoch 1 to 100. However, it has remained unstable at epochs 20, 28, 38, 64, 73, and
77, with loss increases that automatically decrease precision efficiency at epochs 20, 28, 38,
64, 73, and 77. It eventually stabilized above 90% in the 88th epoch. The graph in Fig. 6
illustrates the outcomes of model testing utilizing data testing. Using 500 data wav files
shows that the seven-layer DNN-DA model produces a robust technique for SER. With
highest efficiency of 97.32% and a low loss rate of 0.032, the seven-layer DNN-DA model
produces a robust approach for speaker recognition and lacks overfitting in this model test.
A split ratio is also used to assess the proposed approach performance, as illustrated in
Table 3.

According to Table 4, when the split ratio is 75:25, the trained model achieves the
highest accuracy and the lowest loss level. As shown in Table 5, the accuracy of the results
decreases when the split ratio is 80:20. At the same time, the loss increases. Finally, when
the split ratio is 90:10, the accuracy results increase while the loss rate decreases. Table 6
results illustrate that testing with a large amount of training data is beneficial since it
exposes the model to many instances, allowing it to identify the optimal solution.

However, if we utilize an insufficient training dataset, the model will lack expertise,
resulting in inferior output during testing. The proposed approach will gain a more
profound understanding and increase the model’s generalizability by including many
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testing datasets. As shown in Tables 4–6, another test was conducted by adding 100 to 500
data samples to the original 400 wav data using the split ratio approach.

In the suggested method, a dataset with a data augmentation of 500 samples and a split
ratio of 75:25 obtained the highest performance with a low total loss. However, as the
sample of DA decreases, the SER model’s performance decreases. In another comparison,

Figure 5 Proposed model performance on training dataset.
Full-size DOI: 10.7717/peerj-cs.1053/fig-5

Figure 6 Proposed model performance on testing dataset.
Full-size DOI: 10.7717/peerj-cs.1053/fig-6
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accuracy improves when a large DA and a significant amount of training data are used.
Additionally, as seen in Table 7, the study has the highest accuracy performance compared
to numerous methodologies using ML and DL algorithms. The study performance on SER
in Table 7 demonstrates that the seven-layer approach we presented is practical. DNN-DA
is a robust approach for usage in SER that has achieved a high degree of accuracy. It is not
straightforward to get accurate prediction findings while researching several classes.
Certain aspects of multi-classes will be more challenging since they must discriminate

Table 4 The accuracy and loss comparison table includes augmentation data with 75:25 ratio.

Data augmentation Accuracy Loss

100 96.57 1.33

200 96.21 0.05

300 96.83 2.77

400 96.45 0.035

500 97.32 0.031

Table 5 The accuracy and loss comparison table includes augmentation data with 80:20 ratio.

Data augmentation Accuracy Loss

100 95.12 6.33

200 95.99 0.04

300 96.13 0.19

400 96.29 0.66

500 97.09 2.77

Table 3 Comparison table of loss at dividing ratio with accuracy.

Dividing ratio Classification accuracy Total loss

90:10 93.55 0.105

80:20 95.767 0.093

75:25 97.32 0.032

Table 6 The accuracy and loss comparison table includes augmentation data with 90:10 ratio.

Data augmentation Accuracy Loss

100 95.21 0.13

200 96.90 0.28

300 96.34 3.22

400 96.99 6.23

500 97.01 5.232
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between many classes while generating predictions (Silva-Palacios, Ferri & Ramírez-
Quintana, 2017). However, seven layer DNN-DA outperforms conventional machine
learning methods such as k-nearest neighbors (KNN), random forest (RF), multilayer
perceptron, decision tree, and DL approaches using three-layer DNN layer and five-layer
DNN, as demonstrated by the highest accuracy performance compared to other
approaches using three-layer DNN and five-layer layers DNN layer.

CONCLUSION
A study in SER that includes significant data is a challenging research issue; the Pakistani
racial speech dataset is comprised of utterance groups. Therefore, seven-layer DNN-DA is
the approach presented in this report, which combines the data augmentation technique
with a DNN to improve performance and minimize overfitting issues. Finally, some of the
contributions to our work include using a Pakistani racial speech dataset in this study.
Furthermore, DA can increase the amount of data by using white noise, variable window
widths, pitch-shifting, and temporal stretching methods to generate new audio data for the
segments. Furthermore, classification with deep neural networks of seven layers is
beneficial for improving the performance of the SER system when used with all Pakistani
racial speech datasets. In addition, the proposed model with the seven-layer DNN-DA
technique also has an accuracy advantage, similar to some approaches using conventional
ML and DL methods that also produce high accuracy performance.
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