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ABSTRACT
Deep learning (DL)models are very useful for human activity recognition (HAR); these
methods present better accuracy for HAR when compared to traditional, among other
advantages. DL learns from unlabeled data and extracts features from raw data, as for
the case of time-series acceleration. Sliding windows is a feature extraction technique.
When used for preprocessing time-series data, it provides an improvement in accuracy,
latency, and cost of processing. The time and cost of preprocessing can be beneficial
especially if the window size is small, but how small can this window be to keep good
accuracy? The objective of this research was to analyze the performance of four DL
models: a simple deep neural network (DNN); a convolutional neural network (CNN);
a long short-term memory network (LSTM); and a hybrid model (CNN-LSTM), when
variating the sliding window size using fixed overlapped windows to identify an optimal
window size for HAR. We compare the effects in two acceleration sources’: wearable
inertial measurement unit sensors (IMU) and motion caption systems (MOCAP).
Moreover, short sliding windows of sizes 5, 10, 15, 20, and 25 frames to long ones
of sizes 50, 75, 100, and 200 frames were compared. The models were fed using raw
acceleration data acquired in experimental conditions for three activities: walking, sit-
to-stand, and squatting. Results show that the most optimal window is from 20–25
frames (0.20–0.25s) for both sources, providing an accuracy of 99,07% and F1-score of
87,08% in the (CNN-LSTM) using the wearable sensors data, and accuracy of 98,8%
and F1-score of 82,80% usingMOCAP data; similar accurate results were obtained with
the LSTMmodel. There is almost no difference in accuracy in larger frames (100, 200).
However, smaller windows present a decrease in the F1-score. In regard to inference
time, data with a sliding window of 20 frames can be preprocessed around 4x (LSTM)
and 2x (CNN-LSTM) times faster than data using 100 frames.
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INTRODUCTION
HAR is used in a large and ever-growing number of applications (Ramanujam, Perumal &
Padmavathi, 2021). HAR ranges from gesture and pattern recognition to motion activity
by analyzing the discrete measurements from different types of sensors (e.g., wearable
sensors, video surveillance, motion caption system (MOCAP)). This recognition can be
achieved by implementing either machine learning (ML) or deep learning (DL) models
(Caldas et al., 2017). With the use of wearable sensors input, DL and ML models have been
implemented into several health fields of applications where real-time response is needed.
However, DL-based solutions have presented more advantages than ML-based solutions
in the engineering feature process, in the recognition of temporal or dynamic features
and its high performance (Ramanujam, Perumal & Padmavathi, 2021). These advantages
can benefit applications such as the detection of falls occurrence, an important approach
in the ML classification methods (Tripathi, Jalal & Agrawal, 2018). Therefore, DL-based
methodologies have been successfully implemented for fall detection and its relation with
other human activities and pose recognition, using long short-term memory network
(LSTM) (Chen et al., 2016; Musci et al., 2021), convolutional neural network (CNN),
deep neural network (DNN) and recurrent neural network (RNN) (Hammerla, Halloran
& Plötz, 2016), and other DL-based methods (Wu et al., 2022). In DL- and ML-based
methods, classification is used to predict a fall from an input sequence of body postures
(Hu et al., 2018). As the fall is detected the scope increments including other needs to be
treated using human activity recognition (HAR). Those oriented to sports (Zhuang & Xue,
2019) and rehabilitation (Panwar et al., 2019; Xing et al., 2020); as well as degenerative
diseases that involve loss of mobility such as Parkinson’s disease and knee osteoarthritis
(Slade et al., 2021; Tan et al., 2021), and in assisted living which presents solutions for
elderly people and also for people with visual impairments (Reyes Leiva et al., 2021).

Most HAR methodologies consist of four stages: data acquisition, data pre-processing,
feature extraction, and activity classification (Caldas et al., 2017). When using wearable
sensors as input, related works (Hirawat, Taterh & Sharma, 2021; Mohd Noorab, Salcic &
Wang, 2017) recommend that segmentation (a procedure used to divide datameasurements
into smaller fragments, i.e., sliding windows) be performed at the feature extraction stage.
Feature extraction is a vital part of the HAR process. It helps to identify lower sets
of features (factors) from input sensor data, reduces classification errors, and reduces
computational complexity (Nweke et al., 2018). Depending on the AI architecture chosen
to perform the classification, these fragments of data have to be processed to extract the
features that feed a classifier if using ML or pass directly as input of a DL model to classify
activities (Banos et al., 2014). This occurs because the feature extraction as segmentation is
a conventional feature learning approach, not a DL approach since the literature suggests
that data pre-processing is not compulsory in deep learning features to obtain improved
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results (Hammerla, Halloran & Plötz, 2016; Nweke et al., 2018). However, the window size
variation has been discussed widely for being a key to see how the data size and time span
affects recognition results. A large window size might include information of multiple
activities, and result in an increment of computation load due to the decrease in the
reactivity of the recognition system. Otherwise, with a small window size, some activities
might be split into multiple consecutive windows, and the recognition task will be activated
too often, without achieving high recognition results (Ma et al., 2020). Considering the
discrete sensor’s measurements as time series, a sliding window set is a way to restructure
a time series dataset as a supervised learning problem. Once restructured, the data works
as an input to the artificial intelligence model.

The window size variation is not a common approach to evaluate accuracy for HAR
methodologies based on DL using acceleration and other inertial sensor input. It is a more
common approach in conventional ML methods, but some authors define a window size
segmentation as pre-processing of input for HAR with DL methods. Mairittha, Mairittha
& Inoue (2021) performed data labeling for an activity recognition system using inertial
(acceleration and angular velocity) mobile sensing in both simple-LSTM and hybrid
CNN-LSTM using 5.12s window size (at 20 Hz). With overlapping, this window size
represents around 100 frames. On the other hand, Ebner et al. (2020) proposed a novel
approach based on analytical transformations combined with artificially constructed sensor
channels for activity recognition (acceleration and angular velocity). For this, the authors
use 2, 2.5, and 3s window size at 50 Hz, which represents of 100, 125 and 150 frames,
without overlapping, concluding that the differences in accuracy from window length were
hardly noticeable, with a very light tendency of a decreasing accuracy with higher widths. A
study of the evaluation of the window size impact onHAR for 33 fitness activities was found
(Banos et al., 2014). The authors tested different window sizes ranging from 0.25 s to 7 s in
steps of 0.25 s (not sampling rate defined) using four conventional classification models.
They concluded that the interval 1–2 s provides the best trade-off between recognition
speed and accuracy. Later, the same authors proposed the use of simultaneous multiple
window sizes with a novel multiwindow fusion technique (Hu et al., 2018). Other authors
experimented with the dynamic window size approach (Niazi, 2017; Ortiz Laguna, Olaya
& Borrajo, 2011). As Baños et al., (2015) mentioned, no clear consensus exists on which
window size should be preferably employed for HAR. If decreasing the window size allows
a faster activity detection but a small window size can rely on classification errors, how
small can a window be in order to keep the advantages of decreasing the window size and
maintain accuracy to improve the activity recognition, and therefore the applications that
require these vantages?

Deep learning models manage the feature extraction automatically, letting the computer
construct complex concepts from simpler concepts (Dhillon, Chandni & Kushwaha, 2018).
Therefore, it is not necessary to perform feature engineering before training the model,
and as a result, the data preparation becomes more straightforward. Deep learning
models can be classified into three types (Moreira, 2021): deep generative models, deep
discriminative models, and deep hybrid models. Deep generative models aim to learn
useful representations of data via unsupervised learning or to learn the joint probability
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distribution of data and their associated classes. Discriminativemodels learn the conditional
probability distribution of classes on the data, in which the label information is available
directly or indirectly. CNNandRNNare examples of this type ofmodel. Finally, deep hybrid
models combine a generative model and a discriminative model where the outcome of the
generative model is often used as the input to the discriminative model for classification or
regression (Funquiang Gu et al., 2021). For the currentHAR experiment, four deep learning
architectures, grouped by three deep discriminative and one deep hybrid model were
considered: a simple DNN; a CNN; a LSTM; and a hybrid model made of a combination
of a CNN-LSTM.

Although a simple DNN manages time-series data without using sliding windows, this
study includes the creation of sliding windows to give an equal input setup to each AI
architecture. CNN and LSTM models require an additional step to convert the problem
into a supervised learning problem, as the input data must have a three-dimensional
structure instead of a two-dimensional format that raw inertial sensors and motion capture
system data have (Brownlee, 2018). Also, DNNmodels create a mapping between the inputs
and class outputs of time-series data doing the feature engineering automatically (Yang,
Chen & Yang, 2019). Therefore, the novelty of this research is the combination of both:
automatic feature extraction process performed by DL architectures and sliding window
creation as pre-processing segmentation data in order to find an optimal window size that
provides the most accurate activity classification.

In the present study, three HAR activities have been considered: walking, sit-to-stand,
and squatting. The two firsts have been indicated to relate to most fall studies (Zia et al.,
2021); meanwhile, the squatting movement has been selected to test if the algorithm can
differentiate between similar movements (sit-to-stand). As a whole, they are examples of
simple human activities that serve us as a sort of laboratory to study how small can be
sliding windows to keep good performance. This would be an important step to face further
research on more complex HAR problems for which our results might be applicable, as
might be the capability to distinguish between correct and wrong movements for a given
person or to monitor the evolution of the performance when repeating a given activity.
As for analyzing the effect of the sliding window size on the AI architecture performance
larger and shorter sliding windows, different in about one order of magnitude, were
used: 200, 100, 75, and 50 frames fixed overlapped sliding windows and 5, 10, 15, 20, 25
also overlapped frames. They represent 2, 1, 0.75, 0.50 and 0.05, 0.10, 0.15, 0.20, 0.25 s
respectively, using a sampling frequency of 100 Hz. Besides, this study aims to find the
optimal window size to reduce latency and the processing cost.

MATERIALS & METHODS
Experiment setup & data pre-processing
To evaluate the performance of the proposed methodology in the recognition of human
activities, this was applied in the study of three very common daily movements, namely
gait, sit-to-stand, and squatting, for a population of 10 healthy subjects. The experimental
dataset was acquired at the Lisbon Biomechanics Laboratory using two systems, an
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Figure 1 Representative set of IMU signals from participant 1.
Full-size DOI: 10.7717/peerjcs.1052/fig-1

inertial measurement system (IMU) (MBIENTLAB, Inc., San Francisco, CA., USA)
and a high-end optoelectronic system that includes 14 infrared ProReflex 1000 cameras
(Qualisys, Göteborg, Sweden) using a sampling frequency of 100Hz. Before the acquisition,
each volunteer provided his agreement by signing the informed consent after a detailed
explanation of the study objectives and experimental protocol, previously approved by the
ethics committee of Instituto Superior Técnico (Ref. nr. 1/2020 (CE-IST)).

The three selectedmovementsmentioned above were recorded for 60 s using a frequency
of 100 Hz. For gait the volunteers walked barefoot with self-selected cadence. In the sit-
to-stand movement the volunteers were seated in a chair without a specific instruction;
after a few seconds the volunteers stand up also without specific instructions to increase
the variability of movement. For squatting, the volunteers performed the movement until
they reached approximately 90 degrees of knee flexion and then returned to the standing
position with the arms in 90 degrees flexion. The volunteers performed a series of all the
movements for 60 s.

The experimental dataset consisted of 304,135 samples for the IMU system and 315,334
for MOCAP and included three-axis acceleration for each sensor and marker placed in the
left ankle (lateral malleolus) and left wrist (posterior region), and a label indicating the
performed activity. The final dataset has six entries or features (x1, y1, z1, x2, y2, z2). The
label contained the three classes of expected activity (walking, sit-to-stand, squatting).

As shown in Fig. 1. From top to bottom are the signals that correspond to accelerations
in x, y, and z for each IMU sensor. The first three belong to the sensor that was placed in the
arm and the second to the ankle, respectively. Due to sit-to-stand being similar movements
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the acceleration in y2 which is notorious in green color for walking is not oscillating in the
two last activities because to do those activities the participant stayed almost static.

Considering that the data to evaluate the deep learning models needs to be split in
training and testing, two databases per system were created: one for training with the
raw data of eight volunteers and the other, with two different volunteers, for making the
predictions. Hence, the IMU dataset comprised a total of 281,161 training samples and
99,108 validation samples; and the MOCAP dataset included 247,804 and 67,530 samples
for training and validation respectively.

A detailed explanation of the experimental setup,marker set protocol, andpre-processing
steps can be consulted in (Jaén-Vargas, 2021).

Sliding windows creation
There are two main ways to create sliding windows, those based on dividing the sequence
following a time in seconds and those based on working with the samples (frames) of
the sequence. Moreover, windows can be classified into two types: fixed or adaptive; and
overlapping and non-overlapping. Windows are defined as fixed when they have the same
size during the whole sequence; on another hand, they are adaptive if their size changes
depending on special criteria when a movement occurs. Also, windows are overlapped
when the next window stays as part of the last sequence, in other words, an overlap occurs
between adjacent windows; on the contrary, it is named non-overlapping windows (Ma et
al., 2020; Dehghani et al., 2019).

A sliding window comprises three elements: samples, number of time steps (window
size), and features (inputs). First, a sequence is a broader sample in which there may
be one or more singular samples; second, time steps or what we denominated ‘‘window
size’’ corresponds to one observation in the sequence which may be included one or more
frames; and third, a feature is the input of the sequence, in this case: x1, y1, z1, x2, y2, z2
and corresponds to one observation as a time step (see Fig. 2). When the window slides
throughout the samples, a new phase is created.

In this study, the implementation of fixed overlapped sliding windows has been done
and is based on dividing all the samples in a window of size n. In particular, the dataset was
acquired with a sample rate of 100 Hz, with the first implemented window presenting a
duration in seconds of 1s, thus having a size of 100 frames. This approach has a reduction
in the window size (25, 20, 15, 10, 5 frames) or in other words, the time length decreases
(0.25, 0.20, 0.15, 0.10, 0.05s) in order to find the optimal window parameters.

For instance, to create a sliding window of size 5, the total number of samples is divided
by the timesteps, which include all the columns involved in the observation, resulting in
an input shape of (281156, 5, 6). As shown in Table 1, as the window size increases, the
total of samples decreases because the size of the window is subtracted from the total. In
other words, a greater number of samples per window size is observed when using a larger
window that slides from the beginning to the end of the time series.

Therefore, in this study, two sets of different windows have been created: one of shorter
lengths (5, 10, 15, 20, and 25 frames), and the other of longer lengths (50, 75, 100, and 200
frames), in order to compare the performance metrics (accuracy and F1-score) that are
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Figure 2 Sliding window schematic.
Full-size DOI: 10.7717/peerjcs.1052/fig-2

Table 1 IMU andMOCAP window sizes’ distribution for 8 people for training the model.

System Total number of
samples (8 subjects)

5 10 15 20 25

IMU 281161 (281156, 5, 6) (281151, 10, 6) (281146, 15, 6) (281141, 20, 6) (281136, 25, 6)
MOCAP 247804 (247799, 5, 6) (247794, 10, 6) (247789, 15, 6) (247784, 20, 6) (247779, 25, 6)

System Total number of
samples (8 subjects)

50 75 100 200

IMU 281161 (281111, 50, 6) (281086, 75, 6) (281061, 100, 6) (280961, 200, 6)
MOCAP 247804 (247754, 50, 6) (247729, 75, 6) (247704, 100, 6) (247604, 200, 6)

Notes.
1Window sizes for IMU and MOCAP.

achieved for each tested architecture of deep learning, thus allowing us to find the window
size that would be optimal to reduce the cost of processing.

Artificial intelligence models
These architectures were planned from simple to robust to see their performances varying
in the two sets of sliding windows mentioned above. The parameters were set as shown in
Table 2.

A schematic of the four architectures is presented in Fig. 3. First, a simple DNN was
implemented using fully connected layers. Three dense layers of 32 neurons were set, a
flatten layer and a SoftMax were used to get the output (see Fig. 3(1)). Second, CNN is
based on convolutions to capture dependencies among input data (Murad & Pyun, 2017).
A one-dimensional convolutional neural network (1D-CNN) was used within a filter and
kernel of size three; a dropout of 0.5 to minimize overfitting, a max-pooling layer of size
two, a flatten and a dense layer of eight neurons, and a SoftMax (see Fig. 3(2)). This type of
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Table 2 Parameters of each deep learning architecture.

Parameters DNN CNN LSTM CNN-LSTM

Layers with Neurons 3 Dense (32 neurons),
Flatten, SoftMax

1D-Conv (32 neurons,
filter=3 kernel=3),
MaxPooling (size=2),
Flatten, Dense (8 neu-
rons), SoftMax

LSTM (100 neurons),
Flatten, Dense (100
neurons), SoftMax

2 1D-Conv
(64 neurons,
filter=3 kernel=3),
MaxPooling (size=2),
Flatten, LSTM
(100 neurons),
Flatten, Dense (100
neurons), SoftMax

Dropout rate 0 0.5 0.5 0.5
Activation function ReLU ReLU ReLU ReLU
Optimizer Adam Adam Adam Adam
Loss function Sparse categorical

crossentropy
Sparse categorical
crossentropy

Sparse categorical
crossentropy

Sparse categorical
crossentropy

Batch size 64 32 64 64
Epochs 100 100 100 100

Notes.
2Software: Python, Tensor Flow, Google Colab.

Figure 3 (1) Deep neural network architecture. (2) Convolutional neural network architecture. (3)
Long short-termmemory architecture. (4) Hybrid model (CNN-LSTM) architecture.

Full-size DOI: 10.7717/peerjcs.1052/fig-3

architecture is recommended to learn detailed feature representations and patterns from
images (Gollapudi, 2019) but the 1D was used because the data is time series.

Third, LSTM is the architecture most often recommended to treat time series data
because it is the type of recurrent neural network (RNN) used to train the model over
lengthy sequences of data. Due to this, it aims to retain the memory from previous time
steps to feed the model (Goyal, Pandey & Jain, 2018). An LSTM architecture was used that
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comprises 100 neurons, a dropout of 0.5, a dense layer of 100 neurons, the SoftMax to
obtain the output as shown in Fig. 3(3)

Finally, a hybrid model named CNN-LSTM was chosen as the last architecture. This
model reads subsequences of the main sequence as blocks: CNN extracts features from
each block, and then allows the LSTM to interpret the features extracted from each block.
For this, a time distributed wrapper is needed to allow reusing of the CNNmodel, once per
each subsequence, and the CNN output serves as input to the LSTM, which provides the
final prediction. In other words, this hybrid model uses CNN layers for feature extraction
on input data and LSTMs to support sequence prediction (Yao et al., 2017). As shown in
Fig. 3(4), the hybrid model comprises a 1D-CNN with five layers and an LSTM with four
layers.

Performance metrics and evaluation
The performance is measured using the loss function sparse categorical cross-entropy.
This function is used when there are two or more label classes which are integers. In
our case, there are three labels or classes provided (0, 1, 2) for walking, sit-to-stand, and
squatting. Also, as the activation function rectified linear unit activation (ReLU) was
chosen. Regarding optimizers, the Adam algorithm was used which is a stochastic gradient
descent method that is based on adaptive estimation of first-order and second-order
moments.

To evaluate the classification performance of each deep learning model two metrics
were chosen: accuracy which corresponds to the ratio of the number of correct predictions
to the total number of input samples (Mishra, 2018); and the F1-score that combines two
measures defined in terms of the total number of correctly recognized samples, which are
known as precision and recall (Ordóñez & Roggen, 2016). A higher accuracy or F1-score
value implies a better performance in the model (Yan et al., 2020).

Despite accuracy is the conventional evaluation metric when problems have no class
imbalance (He & Garcia, 2019), another parameter that faces this problem needs to be
included due to this study presents class imbalance for MOCAP (see Fig. 4). For this,
the F1-score is considered which counts the class imbalanced by weighting the classes
according to their sample proportion. Due to constraints with the volume of acquisition
of the MOCAP system, the dataset for this system is not fully balanced. In particular, the
number of frames for the walking movement is 35% less than the big one as shown in
Fig. 4. For this, the F1-score is considered which counts the class imbalance by weighting
the classes according to their sample proportion.

In addition, DL models were also evaluated based on the inference time (the response
time of the model). The best inference time is indicated for instance, if a risk situation, the
system response time should be as low as possible (Sarabia-Jácome et al., 2020).

RESULTS
As mentioned in the Introduction section, the main focus of this study was to find which
is the most appropriate window size to obtain acceptable performance metrics with a low
inference time. First, a window size of 100 was tested considering the same frequency rate
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Figure 4 Class 0 is not equally balanced.
Full-size DOI: 10.7717/peerjcs.1052/fig-4

Table 3 Performance metrics in window sizes of 200, 100, 75, and 50 for IMU andMOCAP.

Model IMU 200 IMU 100 IMU 75 IMU 50

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1- score

DNN 0.99 95.64 0.99 91.85 0.99 89.38 0.98 88.41
CNN 0.99 94.91 0.98 91.35 0.97 92.66 0.94 90.36
LSTM 0.94 95.95 0.99 91.85 0.99 92.34 0.99 88.79
CNN-LSTM 0.99 96.84 0.99 99.97 0.99 91.17 0.99 90.82

Model MOCAP 200 MOCAP 100 MOCAP 75 MOCAP 50

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

DNN 1.00 89.07 0.99 87.19 0.99 86.43 0.99 83.89
CNN 0.99 89.49 0.98 86.30 0.98 88.60 0.96 87.57
LSTM 0.99 89.75 0.99 87.83 1.00 88.08 0.99 85.96
CNN-LSTM 0.99 89.89 0.99 88.63 0.99 88.14 0.99 86.20

that was used to record the three activities. Second, the window size was doubled (200
frames) and after that, the window size decreased using 75 and 50 samples. Due to there
were not relevant changes in accuracy and the F1-score (see Table 3) using the long ones,
a reduction in window size was registered using shorter (25, 20, 15, 10, 5).

For IMU data, the accuracy obtained surpasses 90.08% using a window of 20 frames in
advance, as shown in Table 4. Moreover, this result is better using the two last architectures:
the LSTM and the hybrid model, which both achieve 99%. On the other hand, for the
F1-score, an increment is observed using a window of 20 frames which is around 83.35%.
For the simplest networks (DNN and CNN) as the size of the window is smaller (5, 10, 15)
accuracy and F1-score are not high enough which would affect final predictions.

In regard to MOCAP data (see Table 4), accuracy is above 87% using windows from 10
frames to 25. Being 20 frames, which achieves 99% for LSTM and 98.88% for CNN-LSTM.
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Table 4 Performance metrics in window sizes of 5, 10, 15, 20, and 25 for IMU andMOCAP.

Model IMU 5 IMU 10 IMU 15 IMU 20 IMU 25

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

DNN 0.86 79.53 0.89 80.70 0.91 81.68 0.94 83.36 0.96 82.72
CNN 0.82 79.74 0.87 83.59 0.89 84.76 0.90 88.01 0.92 88.87
LSTM 0.91 80.80 0.96 82.22 0.99 83.47 1.00 85.18 1.00 86.93
CNN-LSTM 0.89 83.56 0.95 84.57 0.98 85.40 0.99 87.08 1.00 87.50

Model MOCAP 5 MOCAP 10 MOCAP 15 MOCAP 20 MOCAP 25

Accuracy F1- score Accuracy F1- score Accuracy F1- score Accuracy F1- score Accuracy F1- score

DNN 0.86 77.73 0.89 77.64 0.94 78.75 0.94 78.31 0.96 81.19
CNN 0.81 76.19 0.87 79.56 0.89 81.70 0.92 82.74 0.93 83.67
LSTM 0.93 74.60 0.96 77.48 0.99 78.60 1.00 80.57 1.00 82.21
CNN-LSTM 0.89 79.94 0.95 80.06 0.97 81.37 0.99 82.80 0.99 84.36

For the F1-score, the window which comprises the 20 frames results in 82.80% using the
CNN-LSTM model. The sliding windows smaller than 20 (15, 10, 5) have an F1-score
below 80%, therefore the prediction will be affected and won’t have high accuracy.

Moreover, Table 5 illustrates the precision, recall, and F1-score metrics values for the
four deep learning algorithms corresponding to each window size. As a result, a window
of 20 frames presents a precision between 85 and 87%.

Furthermore, Table 6 presents the sensitivity and specificity of the four DL architectures
tests. As is shown in Table 6, the window of 20 frames presents a sensitivity between 83
and 87%, and specificity from 91 to 93%.

In addition, inference time was calculated using an HP OMEN laptop with an AMD
Ryzen 7 4800H processor with Radeon Graphics 2.90 GHz. Also, it counts with 16GB RAM.
The inference time for all the window sizes was always under 1 ms. The LSTM model took
more time: around 0.4 ms using 100 frames and below 0.1 ms for a window size of 20;
followed by the hybrid model CNN-LSTM, CNN, and finally the DNN. Figure 5 shows the
inference time results using the different window sizes (5, 10, 15, 20, 25, 50, 75, and 100)
for each DL architecture. A disruption is observed on the window of size 15 for the LSTM
model. Also, in the window of 20 frames, the CNN architecture experienced an increase
too, but the rest of the architectures presented a decrease in this window size. On the other
hand, for MOCAP, a disruption is observed on window size = 15 for the CNN-LSTM
model, and a decrease is noted for 20 frames in all the architectures. However, a trend is
maintained, which means that as the window size (the number of frames) increases, the
inference time will increase.

Finally, a sliding window of 20 frames in data acquired using a sampling frequency of
100 Hz is the minimal size for obtaining a high accuracy (99% and 98% for LSTM and
CNN-LSTM), acceptable F1-score (85.18% and 87.07%), and with a low inference time
(below 1 ms) for HAR of 3 activities: walking, sit-to-stand, and squatting. Despite two
similar movements (sit-to-stand and squatting) were selected, the neural networks were
able to distinguish between them and classify them properly.
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Table 5 Recall and precision for IMU andMOCAP.

Model IMU 5 IMU 10 IMU 15 IMU 20 IMU 25

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

DNN 80.56 79.14 81.62 80.51 82.45 81.60 83.45 83.27 83.07 82.55
CNN 80.73 79.37 84.27 83.28 85.79 84.63 85.18 87.81 89.26 88.69
LSTM 81.08 80.60 82.30 82.16 83.89 83.67 85.17 85.19 87.00 86.88
CNN-LSTM 83.80 83.45 84.82 84.48 85.47 85.19 87.23 87.83 87.64 87.44

Model MOCAP 5 MOCAP 10 MOCAP 15 MOCAP 20 MOCAP 25

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

DNN 78,40 77.40 79.89 77.32 80.50 78.44 81.53 78.18 83.03 81.01
CNN 78.23 75.73 81.40 79.04 82.50 81.36 84.50 82.34 85.24 83.32
LSTM 76.56 74.23 79.78 77.15 81.41 78.45 83.56 80.29 84.62 82.06
CNN-LSTM 81.25 79.56 82.21 79.74 83.38 81.08 84.55 82.57 85.75 84.14

Model IMU 200 IMU 100 IMU 75 IMU 50

Precision Recall Precision Recall Precision Recall Precision Recall

DNN 95.68 95.64 91.84 91.86 89.67 89.29 88.46 88.43
CNN 94.90 94.92 91.43 91.34 92.68 92.66 90.53 90.32
LSTM 96.14 95.93 91.84 91.86 92.44 92.32 88.84 88.76
CNN-LSTM 96.84 96.84 99.97 99.97 91.20 91.15 90.98 90.75

Model MOCAP 200 MOCAP 100 MOCAP 75 MOCAP 50

Precision Recall Precision Recall Precision Recall Precision Recall

DNN 90.93 88.92 89.25 87.01 88.60 86.26 86.15 83.73
CNN 91.38 89.31 89.45 86.07 89.94 88.46 88.73 87.34
LSTM 92.05 89.68 90.28 87.61 89.96 87.89 87.96 85.80
CNN-LSTM 91.57 89.70 90.49 88.41 89.92 82.21 88.41 85.98

Figure 6 presents the accuracy and F1-score for IMU and MOCAP, using a sliding
window of 20 frames.

Figure 7 presents the effectiveness and efficiency of DL models varying window sizes.

DISCUSSION
The importance of sliding windows as a segmentation pre-processing tool in the input
of a classification neural networks especially for doing HAR is mentioned in (Attal et al.,
2015). Most of the studies consider the sliding window method by dividing all sequences
throughout time as mentioned in the Introduction section. On the contrary, this current
study considered analyzing the sequence based on frames in order to make a relation with
literature’s terminology. In Wang et al. (2018), differentiate the impact of window size for
motion mode recognition and pose. For motion, increasing the window size may affect the
cut-off window length and sacrifice the recognition speed. They suggest as performance
requirements a cut-off length of 6s with an F1-score beyond 99%. Also, if the focus is to
reduce the latency, a shortened window is needed and a reduction in accuracy is expected.

Jaén-Vargas et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1052 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1052


Table 6 Sensitivity and specificity for IMU andMOCAP.

Model IMU 5 IMU 10 IMU 15 IMU 20 IMU 25

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DNN 79.14 89.57 80.52 90.26 81.60 90.80 83.27 91.64 82.56 91.28

CNN 79.37 89.69 83.28 91.64 84.63 92.31 87.81 93.91 88.70 94.35

LSTM 80.61 90.30 82.16 91.08 83.67 91.83 85.19 92.60 86.89 93.44

CNN-LSTM 83.46 91.73 84.48 92.24 85.19 92.60 87.03 93.52 87.44 93.72

Model MOCAP 5 MOCAP 10 MOCAP 15 MOCAP 20 MOCAP 25

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DNN 77.40 88.70 77.32 88.66 79.06 89.53 78.18 89.09 81.01 90.51

CNN 75.73 87.87 79.04 89.52 79.04 89.52 82.34 91.17 79.04 89.52

LSTM 74.23 87.11 77.15 88.58 78.45 89.22 80.29 90.15 77.15 88.58

CNN-LSTM 79.56 89.78 79.74 89.87 81.08 90.54 82.57 91.28 79.74 89.87

Model IMU 200 IMU 100 IMU 75 IMU 50

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DNN 95.64 97.82 91.87 95.93 89.29 94.65 88.43 94.22

CNN 94.92 97.46 91.34 95.67 92.66 96.33 90.32 95.16

LSTM 95.93 97.96 91.87 95.93 82.16 91.08 88.76 94.38

CNN-LSTM 96.85 98.42 99.97 99.99 91.15 95.58 90.75 95.37

Model MOCAP 200 MOCAP 100 MOCAP 75 MOCAP 50

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DNN 88.92 94.46 87.01 93.51 86.26 93.13 83.73 91.86

CNN 89.31 94.66 86.07 93.04 88.46 94.23 87.34 93.67

LSTM 89.68 94.84 87.62 93.81 87.90 93.95 85.80 92.90

CNN-LSTM 89.70 94.85 88.41 94.21 87.94 93.97 85.98 92.99

Figure 5 Inference time comparison using different windows frames for IMU andMOCAP.
Full-size DOI: 10.7717/peerjcs.1052/fig-5
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Figure 6 Accuracy and F1-score for IMU andMOCAP using a sliding window of size 20.
Full-size DOI: 10.7717/peerjcs.1052/fig-6

For instance, a window between 2.5–3.5 s with an F1-score of around 95% was suggested
(Wang et al., 2018). In this current work, patterns and features have been extracted more
accurately using LSTM and CNN-LSTM. Also, the indicator of performance reflects an
F1-score that surpasses 80% for both types of data: IMU and MOCAP using a sliding
window of 20 frames (see Fig. 6), a window which is smaller than the used in Wang et
al. (2018). A reduction of cost processing was obtained when placing the trained model
in production, which is in agreement with other applications (Gupta, 2021) where the
proper selection of sliding windows (window size) is important to also ensure that clinical
information due to subtle changes are captured from the analyzed signal.

Furthermore, in Banos et al. (2014), says that 1 to 2 s correspond to the interval which
provides the best trade-off between recognition and accuracy. Thus, this current work
agrees with them because the highest accuracy was found in 100 frames or 1s. Also, that
work (Banos et al., 2014) analyzed the effects of window process on activity recognition
performance, thus, a reduction in window size was done obtaining the most precise
recognizer for very short windows being (0.25–0.5 s), the perfect interval for recognition
of most activities. This study is in accordance with Banos due to 20 frames (0.20 s)
corresponding to the most proper window size for the recognition of these three activities
(walking, sit-to-stand, and squatting).

Regarding other approaches to preprocess the data, in Gholamiangonabadi, Kiselov &
Grolinger (2020), mentioned that the features were obtained using four pre-processing
scenarios: using vector magnitude, sliding windows, vector magnitude and applying sliding
window to this data, and without any pre-processing. It concluded that the accuracy
increased with the incrementation of the value of sliding windows from 5, 10, 15, 20, and
50. Also, there were considered other techniques for evaluating the model: cross-Validation
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Figure 7 IMU vsMOCAP. (1) Inference time. (2) F1-score. (3) Accuracy. (4) Effectiveness. (5) Effi-
ciency.

Full-size DOI: 10.7717/peerjcs.1052/fig-7

and Leave-One-Subject-Out Cross-Validation (LOSOCV). The accuracy was incremented
from 85% to 98% using LOSOCV. In contrast, in this study, a train-test split was used for
the evaluation and the accuracy was similar to theirs.

Additionally, in Abbaspour et al. (2020) have shown the performance of four DL hybrid
models to do HAR. As a result, the models that include Bi-directional RNNs perform better
than the uni-directional RNNs. Also, regarding sensitivity, there was not huge difference
observed in all the models above 93%; however, specificity reached 99% for all the hybrid
models. In contrast, this current work tested CNN-LSTM uni-directional hybrid model
reaching better accuracy and F1-Score. In addition, the sensitivity for a window size of 20
in IMU was 87.03% and specificity was 93.52%.

In this study, the previous work (Jaén-Vargas, 2021) that considered a sliding window
of 100 frames (1s) has been completed. Performance metrics resulted in about 88% for
the F1-score but this implies more processing costs and does not vary as much as the
case when using a window of 20 frames enhancing an F1-score of 82.80% for MOCAP.
Moreover, for IMU data the F1-score obtained was 99% using 100 frames (1s) and 83.35%
using 20 frames (0.20s). As shown in Fig. 5, the window that presents a size of 20 has the
best accuracy per inference time. Also, despite the third and fourth architectures (LSTM,
CNN-LSTM) that imply more parameters resulted in the best solutions, since they have
the best accuracy, and the time is still considerably low to be used in real-time.

As for the inference time, in Mairittha, Mairittha & Inoue (2021)) it is calculated in
two of the models presented here: LSTM and CNN-LSTM. The inference times obtained
were 0.0106s and 0.3941s, respectively, resulting in LSTM’s is around 3X slower than
CNN-LSTM’s. On the contrary, in this current work, the inference time is in the order of
ms and was higher for LSTM than the hybrid model CNN-LSTM, being in a window of
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20, 0.0852 ms, and 0.0431 ms, respectively, which represents that LSTM is 2X faster than
CNN-LSTM. Comparing 100 frames with 20 frames, using a window of 20 frames the
LSTM is 4X and CNN-LSTM is 2X faster than in a window of 100 frames.

Furthermore, in order to discuss the better performance per inference time in this
work, the effectiveness and efficiency of DL’s models varying window sizes have been
calculated (see Fig. 7). As is shown in Figs. 7(4), effectiveness resulting from multiplying
the performance metrics: accuracy and F1-score, is noticed that around 20 frames the
accuracy surpasses 80% being LSTM as closed as CNN-LSTM architecture which this last
model achieves the best accuracy for IMU. However, for MOCAP the stabilization was
observed around 20 to 25 frames. Also, a disruption is reflected in 75 frames for both
systems (IMU and MOCAP) due may be to this particular window size overlapping two
different activities and this causes a decrease in efficacy. On another hand, in Figs. 7(5), the
efficiency which implies effectiveness per inference time, for IMU, the CNN presented the
highest efficiency about 57% using 25 frames but due to the inference time is low (order
of milliseconds) for the four DL architectures, the hybrid model (CNN-LSTM) is chosen
as the best because its stability over time. As it is the IMU’s case, for MOCAP, the CNN
model presented more efficiency, but the same stabilization that is shown in IMU from 20
frames is noticeable since 25 frames for MOCAP.

At last, this work explores the applicability of DL methodologies with sliding windows
to be used in HAR activities. The results obtained presented an excellent accuracy in the
identification of the tested models, even considering that two similar movements were used
in the learning and testing steps.Moreover, the time needed to identify themovements were
quite short, since all tested configuration presented values under 1 ms. These outcomes
allow the use of these methodologies in HAR in real-time. Additionally, this study shows
that accelerometer data can be efficiently used in the recognition of different human
movements. This issue is particularly relevant, as it can be implemented in technologies
used daily, such as the mobile phone, smart-watch, or any simple device developed using
an accelerometer.

As limitations, a fixed frequency was used in the data acquisition process, therefore
other results may be obtained if different frequencies are considered. Moreover, the
present study considers only 3 activities, so the network might be restricted. Hence, future
works may consider the analysis of a larger number of movements and also the analysis of
non-pathological and pathological.

Future research on more complex HAR problems for which our results might be
applicable, as might be the capability to distinguish between correct and wrong movements
for a given person, or to monitor the evolution of the performance when repeating a
given activity. Also, a test with other frequencies to obtain the optimal window size for
different systems, for instance in kinetics where depth cameras or video cameras with
human tracking are used, since these systems usually work with lower frequencies.
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CONCLUSIONS
The impact of using deep learning models as well as an appropriate size for the sliding
window aims in the recognition of human activities and affects the cost of processing. In
this study, after comparing the results for IMU and MOCAP data, it can be concluded
that it is not necessary to use big sliding windows to get high-performance metrics (good
prediction) because it will increment the cost of processing (inference time) and capability
of the response of any application that will create using the trained model. Hence, choosing
an adequate window size and the use of deep learning algorithms to interpret the sequences
comprised by the 3D acceleration of each system used are important to obtain a final
prediction.

Regardless of the dataset used: IMU or MOCAP data, using the more specialized deep
neural architectures (LSTM and CNN-LSTM) and a minimal overlapping window of 20
frames, lead to obtaining higher accuracy (above 90%), an F1-score (above 80%), and
an inference time (below 0.1 ms) for both systems. Furthermore, with the usage of large
sliding windows (100, 200 frames), there are almost no accuracy differences. However,
small sliding windows present a decrease in the F1-score.

Overall, this study presents an inference time less than 1 ms for sliding windows ranging
from 5 to 100 frames (0.05 to 1s) and tested for each DL architecture such as DNN, CNN,
LSTM, and CNN-LSTM. Hence, data segmented using a sliding window of 20 frames
can be preprocessed 4X (LSTM) and 2X (CNN-LSTM) faster than using 100 frames.
Consequently, this low inference time is suggested for real-time applications, for instance,
to detect given movements.

In addition, this work has been conducted using a fixed frequency of 100 Hz. Other
results will be obtained if variable frequencies are used (20, 30, and 50 Hz) because sliding
windows will vary.

Institutional Review Board Statement
The study was conducted according to the guidelines of the Declaration of Helsinki and
approved by the ethics committee of Instituto Superior Técnico (Ref. nr. 1/2020 (CE-IST),
10/01/2020).

ACKNOWLEDGEMENTS
Milagros Jaén-Vargas would like to thank Laboratório de Biomecânica de Lisboa (LBL) for
supporting in the data acquisition process.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the BeHealSy Program of EIT Health that promoted the
collaboration between the Universidad Politécnica deMadrid and the University of Lisbon.
In addition, it was supported by national funds through the Portuguese Foundation for
Science and Technology with references UIDB/50021/2020 andUIDB/50022/2020 (IDMEC

Jaén-Vargas et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1052 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1052


under the LAETA project). Also, Milagros Jaén-Vargas is supported for Instituto para la
Formación y Aprovechamiento de Recursos Humanos and Secretaría Nacional de Ciencia,
Tecnología e Innovación (IFARHU-SENACYT) grant (270-2018-968). Karla Reyes Leiva
received scholarship support from the Fundación Carolina (FC) and the Universidad
Tecnológica Centroamericana (UNITEC). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
BeHealSy Program of EIT Health.
Portuguese Foundation for Science andTechnology:UIDB/50021/2020,UIDB/50022/2020.
Instituto para la Formación y Aprovechamiento de Recursos Humanos and Secretaría
Nacional de Ciencia, Tecnología e Innovación: 270-2018-968.
Fundación Carolina (FC) and the Universidad Tecnológica Centroamericana.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Milagros Jaén-Vargas conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

• Karla Miriam Reyes Leiva conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

• Francisco Fernandes analyzed the data, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.
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