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ABSTRACT
The scarcity of high-quality annotated medical imaging datasets is a major problem
that collides with machine learning applications in the field of medical imaging analysis
and impedes its advancement. Self-supervised learning is a recent training paradigm
that enables learning robust representations without the need for human annotation
which can be considered an effective solution for the scarcity of annotated medical
data. This article reviews the state-of-the-art research directions in self-supervised
learning approaches for image data with a concentration on their applications in the
field of medical imaging analysis. The article covers a set of the most recent self-
supervised learningmethods from the computer vision field as they are applicable to the
medical imaging analysis and categorize them as predictive, generative, and contrastive
approaches. Moreover, the article covers 40 of the most recent research papers in the
field of self-supervised learning inmedical imaging analysis aiming at shedding the light
on the recent innovation in the field. Finally, the article concludes with possible future
research directions in the field.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Data Science
Keywords Self-Supervised Learning, Medical-Imaging, Imaging Modality, Contrastive Learning,
Pretext Task

INTRODUCTION
Medical image analysis is mainly concerned with processing and analyzing medical images
from different modalities to extract useful information that help in making precise
diagnoses (Anwar et al., 2018). Medical image analysis falls into four main tasks which
emerged from computer vision tasks and were tailored for the medical filed. These four
tasks are classification, detection and localization, segmentation and registration (Altaf et
al., 2019). Each of the mentioned tasks has its own methods and algorithms that help in
understating and extracting useful information from the medical images.

The recent advancements in the artificial intelligence (AI) field brought significant
improvements into the medical image analysis field by transforming it from a heuristic-
based into a learning-based approach (Ker et al., 2017). To elaborate, learning-based
analysis approaches aim at extracting useful information (features) that represent the
input images in a way that fits the target medical image analysis task. In addition, features
extraction can be accomplished manually (engineered) or automatically (learned) from
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the data (Sarhan et al., 2020). While manual feature extraction is the main concern of the
Statistical Machine Learning field, the Deep Learning field is mainly concerned with the
automatic extraction of features and it is highly preferred.

A convolutional neural network (CNN) is an example of deep learning models which
deals with grid-based data such as images to learn the latent features in a hierarchical
fashion from the fine level (lines and edges) to the complex level(objects). Mainly, seven
types of layers constitute the structure of CNN, namely, convolutional layer, pooling
layer, activation layer, fully connected layer, upsampling layer, dropout layer and batch
normalization layer (Yamashita et al., 2018). While both convolutional and pooling layers
are responsible for features’ extraction and aggregation, activation layer is responsible for
non-linear transformation. The fully connected layer is responsible formapping the learned
features into an output vector of a certain dimension in case of classification tasks. In other
cases, such as dense prediction, a transposed convolutional block is employed by the CNN
which acts as upsampling layer, which is responsible for mapping the learned features
into an output array of certain dimension (Zeiler et al., 2010). Lastly, both dropout and
batch normalization layers are responsible for regularization. The process of optimizing
the learnable layers in CNNs is accomplished through the gradient descent algorithm and
its variants which aim at minimizing the difference between the network’s output and the
ground truth labels (i.e., minimize a loss function).

CNNs have become a popular choice in the field of medical image analysis and provided
a tremendous progression into the various medical image analysis tasks due to their ability
to deal with images in their raw formats; and the performance they provide which can
be compared to the human performance at faster rates. Yet, CNNs are known to have an
enormous number of trainable parameters to be estimated, usually in millions, to capture
the underlying distribution in the input data. As a result, a relatively large amount of
annotated data is required to achieve a better estimation of these parameters and enable
performing supervised training (Mitchell, 2021).

Despite the remarkable success that CNNs have achieved in the medical image analysis
field, there are some obstacles that hamper their advancement. Initially, building a large
enough annotated medical dataset of high quality is expensive and time-consuming.
In addition, unlike the natural scene image data which may be annotated by less skilled
personnel,medical datasets require expert personnel with domain knowledge to accomplish
the annotation process. Moreover, the annotation process is prone to patients’ privacy
issues especially when working with specific disorders (Taleb et al., 2020). Collectively,
these factors render annotated data scarcity in terms of annotation and volume a major
obstacle for machine learning applications in the medical field.

As an alternative solution, the concept of transfer learning came to the top of the
table for situations where the amount of annotated data is relatively small. Transfer
learning is the process of employing the knowledge that has been learned in a source task
to another target task to improve the generalization and the performance (Goodfellow
et al., 2016; Torrey & Shavlik, 2010). The most common form of transfer learning, in
the machine learning community, is built upon pre-trained state of the art models
such as VGG (Simonyan & Zisserman, 2015), GoogleNet (Szegedy et al., 2015), ResNet
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(He et al., 2016a) and DenseNet (Huang et al., 2017) which are trained on the giant labeled
image datasets such as ImageNet (Deng et al., 2009). ImageNet includes approximately 14
million natural images that belong to 22,000 visual categories and 1,000 labels (Krizhevsky,
Sutskever & Hinton, 2012).

The employment of pre-trained models on ImageNet for medical applications is a
controversial issue for three reasons. Firstly, the extracted features from the natural images
domain may not be a good representation in the medical field due to the remarkable
difference in features’ distribution, resolution, and number of output labels between both
domains. Secondly, ImageNet pre-trained models are over-parameterized models in terms
of number of parameters when utilized for medical images analysis tasks. More clearly,
ImageNet pre-trained models are designed to predict 1,000 labels which makes them
require a larger number of parameters, especially in the last layers to fit the 1,000 classes.
On the other hand, in the case of medical images, the number of classes may not exceed
10 classes, and hence, smaller models can be sufficient (Holmberg et al., 2020; Raghu et al.,
2019). Thirdly, ImageNet pre-trained models are primarily trained on 2D images while the
vastmajority ofmedical imagingmodalities are 3D such as CT,MRI, andOCT. This renders
the pre-trained models on the ImageNet dataset an infeasible solution. Despite that, a set of
guidelines exists that mainly depends on the target dataset size and domain similarity when
dealing with ImageNet pre-trained models for different domains (Karpathy et al., 2016).
Other approaches have been proposed to overcome such problems where Self-Supervised
Learning is one of them.

Self-supervised learning is a recent learning paradigm that enables learning semantic
features by generating supervisory signals from a pool of unlabeled datawithout the need for
human annotation (Chen et al., 2019). The learned features from self-supervised learning
are used for subsequent tasks where the amount of the annotated data is limited. From
the unsupervised learning perspective, the self-supervised learning approach omits the
need for manually annotated data, while the supervised perspective in the self-supervised
learning approach is represented in model training with labels generated from the data
itself (Liu et al., 2021).

Two tasks characterize the learning pipeline in the self-supervised learning approach
which are the pretext task and downstream task. In the pretext taskwhere the self-supervised
learning actually occurs, a model is learned in a supervised fashion using the unlabeled
data by creating labels from the data in a way that enables the model to learn the useful
representation from the data. In the downstream task, the learned representations from
the pretext task is transferred as initial weights to the downstream task to accomplish its
intended goal (fine-tuning) (Holmberg et al., 2020). Figure 1 depicts the main workflow of
the self-supervised learning approach.

Self-supervised learning became a popular choice in the field of medical image analysis
where the amount of the available annotated data is relatively small, while the unlabeled
data is comparatively large. Several researches have demonstrated the effectiveness
of the self-supervised learning approach throughout various medical image analysis
tasks such as detection and classification (Lu, Chen & Mahmood, 2020; Li et al., 2021;
Sriram et al., 2021), detection and localization (Chen et al., 2019; Sowrirajan et al., 2021;
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Figure 1 Self-supervised learning main workflow. (top): Self-supervised learning scheme is applied by
training an auxiliary task using pseudo labels generated from a large unlabeled dataset. (bottom): The
learned representations are transferred from the pretext task to the down-stream task to accomplish the
training on small amount of data with ground truth labels.

Full-size DOI: 10.7717/peerjcs.1045/fig-1

Nguyen et al., 2020), and segmentation tasks (Taleb et al., 2020; Xie et al., 2020; Chaitanya
et al., 2020).

This paper aims at reviewing the state-of-the-art research directions in self-supervised
learning approaches for image data with a concentration on their applications in medical
images analysis. Annotated data scarcity is a major problem that hampers the advancement
of machine learning applications in the medical field, and self-supervised learning can act
as an effective solution for such a problem. Our main goal, in this paper, is to shed the
light on the recent innovations in the field of self-supervised learning in medical imaging
analysis by providing a high-quality overview of the recently developed methods in the
field to enable the reader to be familiar with such approach which is interesting and quickly
becoming the choice for several researchers in the machine/deep learning field.

The prospective audience of this article includes, in the first place, machine/deep
learning researchers and practitioners in medical images analysis and computer vision
fields. Further, researchers and practitioners from the medical field who are interested in
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medical imaging analysis via machine learning approaches form a second group of the
prospective audience. Lastly, any reader with an interest in machine learning applications,
in general, is considered as the third group of the prospective audience. It is worthy to
note that this survey was presented in a simplified manner to fit the various groups of the
prospective audiences.

Various researchworks, in the literature, have concentrated on self-supervised learning in
computer vision per se such as Jing & Tian, (2020), Liu et al. (2021),Ohri & Kumar (2021),
Jaiswal et al., (2021), while other researches briefly reviewed the role of self-supervised
learning in the analysis of medical images as part of deep learning applications in medical
image analysis such as Tajbakhsh et al. (2020), Chen et al. (2021a). To the best of our
knowledge, this is the first survey on self-supervised learning applications in the field of
medical images that aims at bridging the gap between computer vision andmedical imaging
fields. The key contributions of this paper can be summarized as follows:

• We provided a high-level overview of the state-of-the-art self-supervised learning
methods in the computer vision field as they are general-purpose methods that can
be used in the medical context. Further, we categorized these methods as predictive,
generative, and contrastive self-supervised methods.
• We covered and provided a high-level overview for a list of the 40 most recent and
impactful research works in the field of self-supervised learning in medical imaging
analysis. In addition, we categorized these works in the same way we categorized the
computer vision tasks. Further, we included an additional category called multiple-
tasks/multi-tasking to fit those researches that utilized multiple tasks simultaneously.
• We developed a GitHub repository (https://github.com/SaeedShurrab/awesome-self-
supervised-learning-in-medical-imaging) called Awesome Self-Supervised Learning in
Medical Imaging that would serve as a resource for the literature in the field which will
be updated continuously.

The rest of this survey is organized as follows: the ‘Survey Methodology’ summarizes
the literature selection methodology. ‘The Self-Supervised Learning Approaches’ provides
an in-depth overview of the self-supervised learning approach and its methods. The
‘Self-Supervised Methods in Medical Imaging’ reviews the recent self-supervised learning
methods in medical imaging analysis. The ‘Performance Comparison’ compares the
performance of the discussed self-supervised learning in medical imaging. The ‘Discussion
and Future Research Directions’ highlights some open challenges and the possible future
research directions in the field, while the last section concludes the paper. Lastly, AppendixA
lists the available implementation codes of the discussed research throughout this paper.

SURVEY METHODOLOGY
This section summarizes the methodology followed, by the authors, to search for
relevant literature on self-supervised learning applications in medical imaging analysis.
This methodology includes the determination of literature sources, search keywords,
inclusion/exclusion criteria, and papers selection criteria.
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Sources and keywords
The first step in our methodology is to select the main sources of literature that will be used.
As a result, we considered three bibliographic databases as primary sources of literature,
namely:

• IEEE Explore (http://ieeexplore.ieee.org/)
• ScienceDirect (https://www.sciencedirect.com/)
• Springer Link (http://link.springer.com/)

We focused our literature search on these resources as they include reputable journals
and conferences that are mainly concerned with machine learning applications in medical
imaging. On the other hand, we considered two additional sources of literature as secondary
sources which are:

• ArXiv Preprints (https://arxiv.org/).
• The related works sections in the selected papers.

For searching keywords, we opted the terms self-supervised learning in medical imaging,
pretext tasks in medical imaging, representation learning in medical imaging and contrastive
learning in medical imaging to investigate the selected resources.

Inclusion/exclusion criteria
Initially, we explored the literature in the field of self-supervised learning in medical image
computing over the period 2017–2021, as this is the period where self-supervised learning
started to creep into medical imaging analysis, with a high emphasis on the research works
from the period 2019–2021 and excluded any other works outside this period. Further,
we examined the titles and abstracts of the research articles resulting from querying the
selected resources to judge the relevance of search results. As a result, we considered only
research works that either have adopted a self-supervised learning approach directly to
solve medical imaging tasks or presented a novel self-supervised learning approach in
medical imaging that has not been seen before to our knowledge and excluded any other
works of less relevance to our target. For self-supervised learning approaches from the
computer vision field, we first explored the selected self-supervised learning research in
medical imaging analysis literature and selected those methods that have been frequently
used in the medical field even if they are not within the predefined period. We further
added some additional state-of-the-art methods that have not been explored directly in the
medical context and excluded any other methods. In addition, we kept refining our search
results by selecting research articles that are published in journals or conferences with an
impact factor of 3 or greater and excluded any other works published in venues with less
impact factor than our threshold. For ArXiv preprints, we considered only those works
cited in the selected published papers and excluded any other works. We further examined
the affiliation and the research portfolio of the authors of these preprints before including
their works. We also considered research works from outside the selected sources gathered
by exploring the related works sections of the selected papers that are directly relevant to
our target.
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Figure 2 Distribution of selected publications by year and category for self-supervised learning in
medical imaging.

Full-size DOI: 10.7717/peerjcs.1045/fig-2

Papers selection
As a result of the predefined inclusion/exclusion criteria, we settled on 15 self-supervised
learning approaches that have been developed on natural images and exploited in the
medical context. For self-supervised learning in medical imaging, we settled on 40 papers
that relate directly to self-supervised learning applications in medical imaging analysis.
Each of the selected papers has been reviewed thoroughly and a high-level overview is
developed that focuses on the innovation in the self-supervised learning approach and
presented throughout this survey. Figure 2 depicts the distribution by year and category
for the 40 papers in the field of self-supervised learning in medical imaging.

SELF-SUPERVISED LEARNING APPROACHES
The formulation of early self-supervised learning concepts appear in the work of Bengio et
al. (2007) by training deep neural networks in an unsupervised greedy layer-wise fashion.
The authors trained a single-layer auto-encoder for each layer one at a time (self-supervised
learning). After training each layer in the network separately, the resulting weights of each
layer are used as initial weights to train the whole network on the target task (fine-tuning).
One of the prominent downsides of the greedy layer-wise training approach is the inability
to secure a complete optimal solution by grouping sub-optimal ones (Goodfellow et al.,
2016). Further, the greedy layer-wise approach has been obsoleted by the emergence of
end-to-end deep neural models that can be trained in a single run (Mao, 2020). Despite
that, the greedy layer-wise methodology formed the nucleus for what so-called nowadays
self-supervised learning approach and opened the door for its applications in computer
vision, natural language processing, robotics, and other fields.

Pretext tasks play a central role in the self-supervised learning approach and act as its
backbone. While the downstream task may differ according to the researchers’ needs and
targets, the pretext task can be common among different downstream tasks. For example,
the same pretext task, e.g., convolutional auto-encoder, could be used to learn visual
features for two different downstream tasks with different data. This property makes it
helpful to categorize self-supervised learning approaches according to the nature of the
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pretext task. In this regard, we categorize self-supervised learning pretext tasks into three
main categories including predictive, generative, and contrastive tasks. Such categorization
aims at simplifying and grouping similar approaches together which in turn enables
achieving a better understanding of the methods of each category. The upcoming sections
introduce the reader to the most prominent methods for each category.

Predictive self-supervised learning
The predictive self-supervised learning approach aims at learning robust representations
from unlabeled data by treating the pretext task as a classification or regression problem.
More clearly, each unlabeled image is assigned a pseudo label, these labels are generated
from the data itself, which can be either categorical or numerical depending on the pretext
task design specifications. As a trivial example, applying a certain transformation to the
input image can be considered a pseudo label. Consequently, the role of the pretext task
is to predict this pseudo label correctly. It is worthy to note that pseudo labels must be
carefully generated in order to enable learning robust representations from the data. Many
predictive pretext tasks have been designed in the field of computer vision, the next sections
illustrate in detail some of these methods.

Exemplar CNN
Exemplar CNN is one of the earliest predictive self-supervised pretext models which was
proposed by Dosovitskiy et al. (2015). Learning a good representation of the input data
throughout the exemplar CNN method is hypothesized by the model’s robustness to the
applied transformations. To achieve this, a synthesized training dataset is created. This
dataset consists of patches of objects or parts of the object with a size of 32×32 pixels
which are cropped from the original images and they are called the exemplary patches.
Following that, a set of predefined transformations including translation, scaling, rotation,
contrast, and color adjustment are applied randomly to each generated patch as shown
in Fig. 3. Consequently, each seed patch along with its applied transformations forms a
surrogate class in the training dataset. Following that, a convolutional neural network is
trained to learn useful representations by learning to discriminate between the different
surrogate classes in the synthesized dataset.

Relative position prediction
Relative position prediction is another predictive pretext task proposed by Doersch, Gupta
& Efros (2015) that is inspired by the word embedding Skip-Gram model (Mikolov et al.,
2013) in natural language processing field. The main hypothesis of learning representations
by relative position prediction is to understand the spatial context of the objects in the
input image. The implementation details include dividing the input image into a 3×3
grid of patches as shown in Fig. 4. The central patch is considered an anchor patch, while
the remaining eight patches are considered query patches. To increase the complexity
and reduce the chance of learning shortcuts such as texture continuity and boundary
patterns, a set of solutions was introduced including the addition of gaps and jitters to the
patches, color channel processing by shifting certain channels to the gray-scale or partial
channel dropping to avoid the chromatic aberration effect. Consequently, a late-fusion
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Figure 3 Illustration of the generation of surrogate classes for self-supervised features’ learning with
exemplar CNN. (left): The marked patch in blue represents exemplary patch cropped from a certain im-
age in unlabeled dataset to serve as a seed for the surrogate class. The remaining patches are a set of ran-
dom augmentation operations applied to the seed patch to generate multiple images for the same surro-
gate class. (right): A convolutional model is employed to learn representation by classifying the generated
images into the specified surrogate classes. Image credit; upper: Frans Van Heerden, lower: Gary Whyte.

Full-size DOI: 10.7717/peerjcs.1045/fig-3

convolutional model is trained on a randomly sampled pair of patches of the central patch
and query patch to predict the relative position of query patches with respect to the central
patch.

Jigsaw puzzle
Solving a Jigsaw puzzle is another pretext task proposed by Noroozi & Favaro (2016)
and inspired by the earlier work of Doersch, Gupta & Efros (2015) for relative position
prediction. To solve a Jigsaw puzzle, a convolutional neural network is required to learn to
restore a set of disordered patches, e.g., nine patches, to their original spatial arrangement.
For this purpose, a special convolutional network called Context-Free Networks (CFN)
with Siamese architecture and shared weights was proposed by the authors as shown in
Fig. 5. To train the network, a shuffled imagewith a randompermutation of the nine patches
is fed to the network. But, for nine patches there is 9! = 362,880 possible permutations.
To avoid such a large solution space, the authors limit the number of permutations to
a predefined set of permutations with a certain index for each permutation. Lastly, the
defined architecture’s role is to produce a likelihood vector over the set of predefined
indices that maximize the probability of the input permutation.

Rotation prediction
Rotation prediction was first proposed by Komodakis & Gidaris (2018) to learn visual
representations in a self-supervised fashion. The main idea behind the rotation prediction
task is to learn a convolutional model that can recognize the applied geometric
transformation on the input image as shown in Fig. 6 in a simple classification problem.
Geometric transformations are represented by applying rotation angles by multiple of 90◦
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Figure 4 Illustration of self-supervised learning by relative position prediction task. (left): An image is
divided into nine patches where the central patch (the one without number) represents the anchor patch
and the remaining eight patches (delineated in dashed yellow lines) represent the query patches. (right): a
training example that consists of an anchor patch and query patch is passed to a late-fusion convolutional
model which share weights between the two branches to predict the position of the query patch with re-
spect to anchor patch. Image credit: Gabriele Brancati.

Full-size DOI: 10.7717/peerjcs.1045/fig-4

Figure 5 Illustration of a Jigsaw puzzle pretext task. (left): The Puzzle generation steps where an image
is cropped into a set of patches that constitute the main blocks of the puzzle. The generated patches are
shuffled according to a predefined set of permutations where each permutation has a specific index (per-
mutation number). (right): a Siamese network, with shared weights, takes the shuffled patches as input
according to certain permutation and classifies them to the respective permutation index. Image credit:
Mathilde Langevin.

Full-size DOI: 10.7717/peerjcs.1045/fig-5
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Figure 6 Illustration of rotation prediction pretext task. (left): Supervisory signals are generated from
the data by applying a rotation angle in the range (0◦, 270◦) with multiple of 90◦ degrees to the input
image. (right): The role of the network is to distinguish the applied rotation on the input image. Image
credit: Lilartsy.

Full-size DOI: 10.7717/peerjcs.1045/fig-6

to the input image whichmay fall into one of four categories including [0◦, 90◦, 180◦, 270◦].
The main intuition behind the rotation prediction task is that enabling the convolutional
network to learn to recognize the applied rotation to the input image is directly linked to
the model’s ability to learn the prominent objects in that image. To achieve this, the model
needs to recognize the type and orientations of these objects in relation to the dominant
geometric transformation to correctly learn the applied rotation. The same concepts hold
for the human way of recognizing the rotation applied to a certain object in an image. For
instance, to recognize a chair image which was rotated by 90◦, a human needs to recognize
the chair legs, base, back and their orientations. This way, rotation prediction enables
learning semantic features by recognizing the orientations of images.

Generative self-supervised learning
Generative self-supervised learning approach aims at learning the latent features in the
input data by treating pretext tasks as a generative problem. The intuition behind generative
pretext tasks is that the model can learn useful representations from unlabeled data by
learning to regenerate the same input data or by learning to generate new examples from the
same distribution of the input data. Generally, auto-encoder-based architectures generative
adversarial networks are utilized in this category. Several generative pretext tasks have been
proposed in the literature, the next sections illustrate, in detail, a few of these methods.

Denoising auto-encoders
Auto-encoders are special neural models whose main task is to reconstruct their input
(Goodfellow et al., 2016). The basic auto-encoder consists of two parts, namely, the encoder
network and the decoder network. The encoder network plays the role of compressing the
network’s input into a latent dimensional space, while the decoder’s role is to reconstruct
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Figure 7 Illustration of self-supervised features’ learning using image denoising. (left): A noisy image
is created by injecting noise to the original image. (middle) an auto-encoder model learns representations
by compressing the noisy image into a latent space (Z) via the encoder network, while the decoder tries
to reconstruct the compressed image from the latent space. (right): A denoised image close to the original
image. Image credit: Celine.

Full-size DOI: 10.7717/peerjcs.1045/fig-7

the compressed input from the latent space (Tschannen, Bachem & Lucic, 2018). After
training the network, the decoder is discarded while the encoder is kept for further
processing. Denoising auto-encoders are special models of auto-encoders proposed by
Vincent et al. (2008) for representation learning through learning to reconstruct a noise-
free output from noisy input. As shown in Fig. 7, a noisy version of the original image is
created by introducing certain types of noise including but not limited to Gaussian noise,
Poisson noise, Uniform noise, and Impulsive noise. The noisy image is then passed to the
auto-encoder to reconstruct the original image from the noisy image by minimizing the
reconstruction loss. The intuition behind denoising auto-encoder is related to the human
ability to correctly recognize the object type, in an image, even if a certain part of it is
partially corrupted. This situation is true as long as the partial corruption does not affect
the global view of the object. For a convolutional model, learning robust representations
is linked to the model’s ability to learn the semantic features that will enable restoring the
original image from a noisy version.

Image inpainting
Image inpainting or context encoder is a generative self-supervised pretext task proposed by
Pathak et al. (2016) that aims to learn rich representations by fill-in-the-blank strategy. The
intuition behind image inpainting is directly related to the human ability to complete the
missing part of the image by observing the patterns in the surrounding pixels. Technically,
part of the input image is cropped or masked, rather than introducing noise to it, and the
role of the network is to complete the cropped part. Further, three forms of masking are
proposed including central block, random blocks, and random region. An auto-encoder
network and channel-wise fully connected latent space is employed for this task as shown
in Fig. 8. In addition, a combined loss function that integrates both reconstruction loss
and adversarial loss (Goodfellow et al., 2014) is optimized throughout the training. The
reconstruction loss, L2, is meant to hold the overall structure of the input image and the
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Figure 8 Illustration of context encoder model for Self-supervised features’ learning. (left): An input
image is modified by masking part of the image. (right): The context encoder learns useful representations
by reconstructing the missing part in the masked image by minimizing the reconstruction and adversarial
loss. Image credit: Sam.

Full-size DOI: 10.7717/peerjcs.1045/fig-8

masked part, while the adversarial loss aims to improve the appearance of the predicted
masked part.

Image colorization
Generation of a colorized image from a gray-scale one was proposed by Zhang, Isola &
Efros (2016) as a solution for automatic image colorization problem and self-supervised
pretext task simultaneously. Lab color space is employed in this task rather than the RGB
color space as it reflects the human color perception where the L channel represents
the grayscale, while the a and b channels represent the color channels. Consequently, a
convolution network is trained by taking the L channel as an input, and the channels a
and b as supervisory signals—where the role of the network is to produce the input image
in Lab color space as shown in Fig. 9. Nonetheless, image colorization is multi-modal in
nature which means that the same object may have different valid colors e.g., apple may
be yellow, red, or green but not other colors. To compensate for this issue, the network
is designed to predict the probability distribution of the possible colors for each pixel. In
addition, a weighted cross-entropy Loss function is utilized to compensate for rare colors.
Then, the annealed mean of the probability distribution is computed to produce the final
colorization. The intuition behind the colorization task is that understanding the coloring
scheme of the objects in the input images will result in learning rich representations about
them.

Split-brain auto-encoder
Split-brain auto-encoder is another pretext task proposed by Zhang, Isola & Efros (2017)
and extended their earlier work on image colorization. Themain idea behind the split-brain
auto-encoder is to obtain useful representations by learning to generate a portion of the
data from the remaining data. By translating this idea to the image data in Lab* color space,
the gray-scale channel L can be generated from the color channels a and b and vice versa.
This process is accomplished through modifying the traditional auto-encoder architecture
by adding two splits to the network as shown in Fig. 10—where each disjoint split learns
the underlying representations from the input data as described previously. Eventually,
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Figure 9 Illustration of image colorization pretext task. An encoder–decoder model is trained to pre-
dict the colored image from a gray scale image. The input is the L channel in Lab color space, while the
channels a and b are used as supervisory signals. The last block indicates the color probability distribution
for each pixel in the output image. Image credit: Celine.

Full-size DOI: 10.7717/peerjcs.1045/fig-9

Figure 10 Illustration of split-brain auto-encoder pretext task. The input image X is separated by chan-
nels as color channels X1 and gray-scale channel X2. Two disjoint networks F1 and F2 are trained to predict
the missing components in their inputs. F1 predicts the gray-scale channel X̂2 from the color channels X1,
while F2 predicts the color channels X̂1 from the gray-scale channels X2. The outputs of both networks are
grouped to produce the recolored image X̂ . Image credit: Celine.

Full-size DOI: 10.7717/peerjcs.1045/fig-10

the output of both splits is aggregated throughout concatenation to produce the final
output of the network. The authors stated that learning from both gray-scale and color
channels simultaneously rather than single-channel as in colorization problems would
enable better representations learning. This is because the split-brain architecture is able to
learn color-related information which is not the case in the colorization task which learns
features only from gray-scale input.

Deep Convolutional GAN
Generative adversarial networks (GAN) are a class of deep learning generative models
that use random noisy input to generate new data which mimics the real training data.
Typically, GAN architecture consists of two networks, namely, the generator network
and the discriminator network. The role of the generator is to convert the random noisy
input into an imitation of the real data while the role of the discriminator is to distinguish
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Figure 11 Illustration of deep convolutional GAN architecture. (left): A generator network tries to gen-
erate fake images using random noisy vector. (right): A discriminator network takes the generated im-
ages from generator network as well as real images from the same distribution and classifies them as real
or fake until being not able to discriminate both sources. Image credit; upper: Beatrice Gemmi, lower:
Mike B.

Full-size DOI: 10.7717/peerjcs.1045/fig-11

whether the generator output is real or fake. Both networks are trained in a competing way
until the discriminator is not able to differentiate between real and fake images (Goodfellow
et al., 2014).

Deep convolutional GAN, or DCGAN for short, is an extension of GAN proposed by
Radford, Metz & Chintala (2016) as an unsupervised representations learning architecture
for image data. DCGAN is considered the first successful attempt to scale GAN with
convolutional neural networks as opposed to the earlier work of Goodfellow et al. (2014)
which is based on multi-layer perceptron architecture. Further, the authors provided
architectural guidelines for designing a stable DCGAN, such as replacing the pooling layer
with a stridden convolutional layer for discriminator, and fractionally strided convolution
for generator. Also, employing batch normalization (Ioffe & Szegedy, 2015) in the generator
and discriminator networks, removing fully connected layers, using ReLU activation
(Nair & Hinton, 2010) for all generator layers except the output layer which is Thanh
activation. LeakyReLU activation (Maas et al., 2013) was recommended for all layers
in the discriminator network. Figure 11 depicts the generator network architecture as
designed by the authors. The authors evaluated the quality of the learned features by
DCGAN discriminator by performing an image classification task which showed superior
performance in comparison to other unsupervised methods and opened the door for
exploiting GAN-based models in pretext tasks.

Bi-directional GAN
Bi-directional GAN (BiGAN) is another generative unsupervised learning architecture
proposed by Donahue, Krähenbühl & Darrell (2016) that extended the earlier work of
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Figure 12 Illustration of self-supervised features learning using bi-directional GAN. (lower left): A
generator network that generates a fake image G(z) from random latent space z . (upper left): An encoder
network that maps real image x into a latent space E(x). (right): The discriminator network takes as input
a tuple of latent space and an image; and classify them as real or fake.

Full-size DOI: 10.7717/peerjcs.1045/fig-12

Radford, Metz & Chintala (2016). BiGAN introduces an encoder E which maps an image x
back to latent space E(x) (called inverse mapping). The generator decodes random latent
space z to produce a fake imageG(z). Consequently, the discriminatorD takes, as an input,
a tuple of latent space and an image which may be either (G(z),z) or (x,E(x)) as shown
in Fig. 12. The role of the discriminator is to discriminate whether its input tuple is real or
fake. The intuition behind incorporating the latent space along with the input image is to
serve as free labels generated from the data without supervision in a similar way to learning
representations by full supervision. The authors stated that both E and G are completely
separated modules that do not communicate with each other during the training. Hence,
both modules should learn to invert each other to be able to beat the discriminator. When
training is complete, the learned representations, by the encoder, can be transferred to the
downstream tasks.

Contrastive self-supervised learning
Contrastive self-supervised learning is a recent representation learning approach that
aims at developing robust representations from the input data by learning to differentiate
between the similar (positive) pairs and the dissimilar (negative) pairs or by maximizing
the agreement between a pair of positive views depending on the design specifications of
the contrastive learning architecture. Positive examples are generated by applying a set of
random augmentations to an input image which results in two transformed views of the
same image, while negative examples are any other images different from the transformed
views. The positive examples are assumed to be slightly different but preserve the global
features of the input image which makes the similarity between them higher. Lastly, a
contrastive model is trained to maximize the similarity between the positive pairs and
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Figure 13 Illustration of features learning using contrastive predicting coding applied on image data.
(left): The input image is rearranged into a grid of overlapping patches of size 7× 7. Each crop is then en-
coded via a convolutional network genc (right): An auto-regressive model is used to make the predictions
in top-to-bottom fashion. Image credit: Ali Alcántara.

Full-size DOI: 10.7717/peerjcs.1045/fig-13

minimize it with the negative pairs in case of using them. The next sections illustrate five
contrastive learning approaches.

Contrastive predictive coding
Contrastive predictive coding (CPC), is a contrastive unsupervised representations learning
proposed by Van den Oord, Li & Vinyals (2018) that can fit not only image data but also
text, and audio. The main intuition behind CPC is to develop a compact representation
that maximizes the mutual information between the context C and the target X , rather
than predicting the target X directly from C as it is the case with generative models.
Such approach enables learning rich representations as it ignores low-level information
about the objects in the input data. The architecture of the CPC network consists of
three components, namely, an encoder network which is responsible for converting the
input into a compact latent variable Zt ; an auto-regressive network which is responsible
for producing the context Ct out of the encoded latent variables and generating future
predictions; and the contrastive loss function, which is called InfoNCE which is formulated
based on the noise-contrastive estimation loss function (NCE) (Gutmann & Hyvärinen,
2010).

To apply CPC on visual data (images), an input image of size 256×256 pixels is cropped
into patches of size 64x64 pixels with an overlap of 32 pixels with respect to the height
and width. This results in a grid of patches of size 7× 7. Consequently, each patch is
encoded via ResNet-101-v2 (He et al., 2016b) encoder into a vector Zt of size 1,024 while
the whole image forms 7×7×1,024 tensor as shown in Fig. 13. Following that, a PixelCNN
architecture (Oord et al., 2016) is employed as an auto-regressor that generates a context
vector Ct ∀ Z≤t which generate future predictions Zt+k in a top-down fashion and in a
way that maximizes the mutual information between the context and predictions. Lastly,
the InfoNCE loss function contrasts between the predicted patch and all other negative
patches; these may come from other locations in the input image or other images in the
same mini-batch. CPC V2 Henaff (2020) is the second version of CPC which comes with
several enhancements over the original CPC.
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Momentum contrast
Momentum contrast (MoCo) is another self-supervised contrastive learning approach
proposed by He et al. (2020). MoCo framework is inspired by dynamic dictionary-lookup
and queues ideas. The main intuition behind MoCo is to perform a lookup operation using
query image encoding in a dictionary that contains keys represented as images’ encodings.
Learning robust representations is enabled by learning to maximize the similarity between
the encoding of the query image and the encoding of its matching key; and to minimize the
similarity between the encoding of the query image and non-matching keys. Technically,
MoCo architecture consists of two networks, namely, query-encoder and momentum-
encoder as shown in Fig. 14. The query-encoder role is to generate a features vector q from
the query image xquery. Themomentum-encoder acts as a dictionary of data samples (whole
images or patches xkeyi ) generated from encodings ki of features’ vectors. Moco maintains a
dynamic dictionary which should be of large size and consistent. The dictionary is designed
as a queue of feature vectors’ encodings ki, where the present mini-batch enters the queue
while the outdated mini-batches leave the queue in a First-In-First-Out fashion. Moreover,
the dictionary size is not restricted to the mini-batch size but can be larger. On the other
side, as the keys of the dictionary are derived from a group of previous mini-batches, they
need to be updated regularly to maintain the consistency property. A momentum update
of keys based on values of parameters of the query-encoder is proposed by the authors
- where only the query-encoder parameters are updated by back-propagation, while the
momentum-encoder is updated consequently using moving average; this allows it to be
updated slowly and in a smoother fashion than the query-encoder. MoCo network is
trained by minimizing the InfoNCE contrastive loss function (Van den Oord, Li & Vinyals,
2018).

Simple framework for contrastive learning of visual representations
Another contrastive learning approach is the simple framework for contrastive learning
of visual representations, or SimCLR for short, which was proposed by Chen et al. (2020).
As its name implies, SimCLR depends mainly on two simple ideas including heavy data
augmentation techniques that result in correlated views for the same input, in addition to a
large batch size that includes a large set of negative examples. Furthermore, SimCLR omits
the need for additional functionalities as seen in CPC (Van den Oord, Li & Vinyals, 2018)
and MoCo (He et al., 2020). To elaborate more on the SimCLR approach, a set of random
transformations τ including cropping and resizing, flipping, rotation, color distortion,
and Gaussian blur are applied to the input image x which results in a pair of positively
correlated views of the same image (x̃i,x̃j) as shown in Fig. 15. Consequently, both views
are passed into a pair of convolutional encoders f (.), ResNet50 (He et al., 2016a), to learn
representations of both views, which are denoted as (hi,hj), respectively. Following that,
the generated representations are passed to a pair of projection heads g (.) which consist
of two dense layers with ReLU activation (Nair & Hinton, 2010) for the first layer; and
linear activation for the second layer. This results in a pair of feature vectors (zi,zj). Lastly,
the InfoNCE contrastive loss (Van den Oord, Li & Vinyals, 2018; He et al., 2020) named as
normalized temperature-scaled cross-entropy loss (NT-Xent ) by the authors is employed to
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Figure 14 Illustration of momentum contrast framework. Image credit; upper: Nubia Navarro, middle:
Lilartsy, lower: Mike B.

Full-size DOI: 10.7717/peerjcs.1045/fig-14

optimize the whole architecture based on the generated embedding (zi,zj) by maximizing
the agreement between the positive pairs of augmented images, while minimizing it for
other images in the same batch (negative samples). when training is complete, the dense
layers are discarded while the convolutional encoders are kept to be utilized in downstream
tasks.

Bootstrap your own latent
Bootstrap Your Own Latent (BYOL) is an implicit contrastive learning approach proposed
by Grill et al. (2020) that omits the need for negative samples during the training. More
clearly, BYOL architecture consists of two networks as shown in Fig. 16. The first network is
a trainable network, called Online Network, denoted by θ which consists of a representation
head fθ , a projection head gθ and a prediction head qθ . The secondnetwork is a non-trainable
and randomly initialized network, called Target Network, denoted by ξ and has the same
architecture as the Online Network except for the prediction head. Target Network acts
as a slow-moving average of the Online Network and is updated based on the gradients
update in the Online Network via the moving average. To train BYOL architecture, two
augmented views (x1,x2) are generated from the input image x by applying two different
augmentation operations (t , t́ ). Consequently, both augmented views pass to the two
networks for encoding (yθ ,yξ ) and representations generation (zθ ,zξ ), while zθ passes
through the prediction head to produce the prediction wθ for the subsequent computation.
Following that, both wθ and zξ are normalized via L2 norm and accordingly fed into
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Figure 15 Self-supervised features learning by SimCLR. Image credit: Nubia Navarro.
Full-size DOI: 10.7717/peerjcs.1045/fig-15

mean squared error (MSE) loss function for optimization rather than contrastive loss. It
is worth noting that the gradients flow back only over the Online Network and stopped
for Target Network as indicated in Fig. 16 by the term stop-grad which is updated with
the momentum equation as a function of the Online Networks parameters θ . Since the
target network acts as the moving average of the online network, the online representations
should be predicted of the target representations and vice versa. BYOL can learn semantic
features by minimizing similarity metrics between the output of each network. Hence, both
networks learn interactively from each other from the same image while omitting the need
for negative samples.

Swapping assignments between multiple views
While the previous contrastive methods are instance-discrimination-based methods,
Swapping Assignments between multiple views (SwAV) is a cluster-discrimination-
based method proposed by Caron et al. (2020). Two major elements form the core of
the SwAV method including a multi-crop augmentation strategy and the online clustering
assignment. The multi-crop strategy aims at generating multiple views of the same image
without increasing the memory and computational requirements during the training.
This is achieved through generating two global views with standard resolution crops,
e.g., 224×224, and V local views with smaller resolution crops, e.g., 96×96. This way,
a multi-crop strategy enables producing multiple views rather than just pairs without
affecting the computational and memory cost. Besides, each generated view undergoes
additional random transformations such as those implemented in SimCLR (Chen et al.,
2020). On the other side, unlike offline clustering assignment methods which require
a complete pass over the dataset to compute the clusters’ assignment which becomes
computationally intensive in the case of large datasets; Online clustering allows computing
clusters’ assignment by mapping the encoded views to a prototype vector C on the current
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Figure 16 Illustration of BYOL architecture. Image credit: Nubia Navarro.
Full-size DOI: 10.7717/peerjcs.1045/fig-16

batch by treating it as an optimal transportation problem (Sinkhorn–Knopp (Cuturi,
2013)).

Figure 17 depicts the complete SwAV architecture. Given an input image x , multiple
views of the same image are generated by applying a set of random transformation T
according to a multi-crop augmentation strategy resulting in xnt augmented views. For
simplicity, we will consider one global view x1 and one local view x2. Consequently, the
generated views are passed into convolutional encoders fθ , ResNet50 (He et al., 2016a) in
SwAV case, followed by two dense layers with ReLU activation (Nair & Hinton, 2010) to
generate feature vectors (Z1,Z2). In fact, the initial steps in SwAV do not differ significantly
from those of SimCLR (Chen et al., 2020) except in the augmentation strategy. Following
that, the feature vectors (Z1,Z2) are passed through a dense layerwith linear activation called
prototype layer C which is responsible for mapping the feature vectors into K learnable
prototypes (clusters) grouped in a matrix such that C = [c1,c2,....,cK ]. It is worth noting
that K value is not inferred but user-defined, while the C values represent the weights
matrix of the prototype layer. To compute clusters assignments online, only the features
of the current batch are used where Sinkhorn–Knopp algorithm is employed to generate
the cluster assignments (codes) (Q1,Q2) that represent the mapping of feature vectors into
clusters in a way that maximizes the similarity between them. Further, Sinkhorn–Knopp
enforces the equipartition constraint which prevents assigning all features into a single
cluster. Eventually, a swapped prediction problem is performed upon codes generation.
Intuitively, given two different views of the same image, they should maintain similar
information. Therefore, it is possible to predict the codes of one view from the features
vector of the other. This is achieved by minimizing the cross-entropy loss between the
code of one view and the softmax of the similarity of the features vector to all clusters. This
way, SwAV takes the advantage of contrasting clusters of data with similar features rather
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Figure 17 Illustration of SwAV framework. Image credit: Nubia Navarro.
Full-size DOI: 10.7717/peerjcs.1045/fig-17

than performing pair-wise comparison over the whole training sets as seen in the previous
methods.

To sum up, we opted to provide a high-level overview of each of the previously discussed
methods as this article is intended for self-supervised applications in medical imaging
which renders it prone to nonspecialist readers from the medical field. One more point
to mention is that despite the fact that these methods are developed on natural images,
they can be transferred to the medical imaging field as we will see in the next section. Such
property encouraged us to briefly discuss them before proceeding with the application of
self-supervised learning in medical imaging. Table 1 summarizes the discussed pretext tasks
according to their categories, while Table A1 provides an access to the code repository of
these works which is provided in Appendix A.

Resources in self-supervised learning
We provided a curated list of pretext tasks that acted as milestones in the history of
self-supervised learning in the computer vision field, however, the efforts in this research
area are not limited to those methods. As a result, we developed a list of self-supervised
learning resources that includes review articles, surveys, and papers as shown in Table 2
for those readers who need to enhance their understanding of the field. For in-depth
reviews about self-supervised learning, we highly recommend the readers to refer to one of
the following articles: Jing & Tian (2020) provided an extensive review of self-supervised
learningmethods for visual features learning from image and video data, andOhri & Kumar
(2021) provided a comprehensive review and performance comparison for a large list of
the most recent self-supervised learning approaches developed for image data. Further,
Schmarje et al. (2021) reviewed various deep learning methods for image classification
with fewer labels where self-supervised learning is one of their work dimensions. For
Contrastive learning, both Le-Khac, Healy & Smeaton (2020) and Jaiswal et al. (2021)
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Table 1 Summary of self-supervised learning pretext tasks.

No. Authors Category Method

1 Dosovitskiy et al. (2015) Predictive Exemplar CNN
2 Doersch, Gupta & Efros (2015) Predictive Relative position prediction
3 Noroozi & Favaro (2016) Predictive Jigsaw puzzle
4 Komodakis & Gidaris (2018) Predictive Rotation prediction
5 Vincent et al. (2008) Generative Denoising auto-encoder
6 Pathak et al. (2016) Generative Image inpainting
7 Zhang, Isola & Efros (2016) Generative Image colorization
8 Zhang, Isola & Efros (2017) Generative Split-brain auto-encoder
9 Radford, Metz & Chintala (2016) Generative Deep Convolutional GAN
10 Donahue, Krähenbühl & Darrell (2016) Generative Bi-directional GAN
11 van den Oord, Li & Vinyals (2018) Contrastive CPC
12 He et al. (2020) Contrastive MoCo
13 Chen et al. (2020) Contrastive SimCLR
14 Grill et al. (2020) Contrastive BYOL
15 Caron et al. (2020) Contrastive SwAV

Table 2 A summary of self-supervised learning resources.

No. Authors Type Title Venue

1 Jing & Tian (2020) Survey Self-supervised visual feature learning
with deep neural networks: A survey

IEEE Transactions on Pattern Analysis
and Machine Intelligence

2 Ohri & Kumar (2021) Review Review on self-supervised image
recognition using deep neural
networks

Knowledge-Based Systems

3 Schmarje et al. (2021) Survey A survey on semi-, self- and unsuper-
vised learning in image classification

IEEE Acsess

4 Le-Khac, Healy & Smeaton (2020) Review Contrastive representation learning: A
framework and review

IEEE Access

5 Liu et al. (2021) Review Self-supervised learning: Generative or
contrastive

IEEE Transactions on Knowledge and
Data Engineering

6 Jaiswal et al. (2021) Survey Survey on contrastive self-supervised
learning

Technologies

7 Jason Ren Papers list Awesome self-supervised learning Github
8 Ashish Jaiswal Papers list Awesome contrastive learning Github

provided a comprehensive survey on contrastive self-supervised methods for different
research areas such as computer vision and natural language processing. Liu et al. (2021)
summarized a set of generative and contrastive self-supervised learning approaches from
computer vision, natural language processing, and graph learning. To access these lists of
papers, readers may visit the following two repositories: Awesome-self-supervised-learning
(https://github.com/jason718/awesome-self-supervised-learning) which covers a curated list
of research articles for self-supervised learning from different research areas. In addition,
Awesome-contrastive-learning (https://github.com/asheeshcric/awesome-contrastive-self-
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supervised-learning) is a curated list of papers that is mainly dedicated to contrastive
learning methods.

SELF-SUPERVISED METHODS IN MEDICAL IMAGING
Primarily, there are two paths to follow when employing self-supervised learning in
medical images analysis (Chen et al., 2021a). The first path is to directly adopt one of the
pre-designed pretext tasks from the computer vision field as given in ‘Self-Supervised
Learning Approaches’ or alternatively develop modified versions of these tasks and employ
them in the medical context. On the other side, the second path exploits knowledge
from the medical domain and computer vision to design novel pretext tasks that target
medical images. We prefer to categorize self-supervised learning methods, which are used
in the medical field, in the same way we categorized self-supervised learning methods in
the computer vision field. Further, after exploring self-supervised learning literature in
medical imaging, we discovered that some researchers tend to utilize multiple methods
separately or collectively in a multi-tasking fashion. So, we added an additional category
called multiple-tasks/multi-tasking to fit such works.

Predictive methods in medical imaging
Inspired by relative position prediction (Doersch, Gupta & Efros, 2015) task, Zhang, Wang
& Zheng (2017) introduced slices ordering pretext task. Knowing that 3D medical images
such as CT and MRI scans can be represented as a group of successive 2D slices, such
property can be used as an auxiliary supervision signal to learn a good representation.
As a result, the authors treated the slice ordering task as a binary classification problem
by developing a Siamese convolutional architecture called Paired-CNN that receives two
successive slices and predicts their spatial order as below or above. The authors tested their
proposed task on fine-grained body part recognition (regression) as a downstream task.

Spitzer et al. (2018) proposed to predict the geodesic distance between two patches
located on the brain surface to learn a rich representation of the human brain. They trained
a Siamese architecture with two identical branches and weights sharing to accomplish this
task. The defined distance between two patches is the Euclidean distance while the ground
truth distance is computed manually from the input data. Besides the distance prediction,
the authors included the 3D location coordinates prediction of the input patches to the
same task which improved the accuracy and convergence of the predicted distances. Lastly,
their approach was evaluated on Cytoarchitectonic segmentation as a downstream task.

Bai et al. (2019) proposed anatomical position prediction pretext task from cardiac MRI
scans for segmentation purposes. As the cardiac MRI scans provide several cardiac views
from different orientations, e.g., short-axis, 2CH long-axis, and 4CH long-axis. Different
cardiac anatomical regions, e.g., left and right atrium and ventricle can be expressed using
these views. Such properties motivated the authors to define a set of anatomical positions
with respect to a certain view as bounding boxes and forced the network to predict these
anatomical positions. For the downstream task, a private dataset of 200 annotated cardiac
MRI scans was used for evaluation purposes.
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Li et al. (2020b) employed self-supervised learning to improve the pseudo-labeling
uncertainty estimation in semi-supervised medical images’ segmentation by proposing a
novel methodology called self-loop uncertainty. They adopted the Jigsaw puzzle pretext
task (Noroozi & Favaro, 2016) in their approach and introduced random patches’ rotation
with angles of [0◦, 90◦, 180◦, 270◦] to secure learning translation and rotation invariant
features. Further, they omitted the need for Siamese architecture as compared to the
original Jigsaw puzzle by combining the input patches into a single image for subsequent
permutation classification. Besides the labeled data, they leveraged unlabeled data for
uncertainty estimation in semi-supervised settings. Two different segmentation tasks were
considered for validating the methodology including nuclei segmentation and skin lesion
segmentation as down-stream tasks.

Taleb et al. (2021) presented another work that is inspired by Jigsaw puzzle-solving
(Noroozi & Favaro, 2016) that exploits multiple imaging modalities, e.g.: T1 and T2 scans
simultaneously called multi-modal Jigsaw puzzle. A significant improvement has been
brought to the original Jigsaw puzzle, besides the multi-modal settings, represented by the
employment of Sinkhorn network (Mena et al., 2018) for Jigsaw puzzle solving. Sinkhorn
network utilizes the Sinkhorn operator as an alternative to the Softmax function which
in turn enables solving the Jigsaw puzzle by learning a permutation task rather than
a classification task. They also introduced cross-modal synthesis data generation using
CycleGAN architecture (Zhu et al., 2017) to increase the amounts of data available for
self-supervision. On the downstream side, four tasks were utilized for method validation
including brain tumor segmentation, prostate segmentation, liver segmentation, and
survival days prediction (regression).

Zhuang et al. (2019) proposed a novel pretext task that is inspired by the early work
of Noroozi & Favaro (2016) on Jigsaw puzzle solving for 3D medical data called Rubik
cube recovery. Two operations constitute the Rubik cube recovery pretext task including
cube rearrangement and cube rotation. The same logic of the original Jigsaw puzzle task is
adopted in the Rubik cube recovery task with 3D input as a Rubik cube partitioned into a
3D grid of 2×2×2 sub-cubes rather than 2D input with respect to the rearrangement task.
To introduce additional complexity, the authors introduced the cube rotation process and
limited it to only 180◦ vertically and horizontally. This way, the authors secured learning
translation and rotation invariant features as opposed to the original Jigsaw puzzle task
which secures learning only translation-invariant features. Two downstream tasks were
used for evaluation purposes including brain hemorrhage classification and brain tumor
segmentation which showed competitive performance.

As an extension of the previous work, Zhu et al. (2020a) introduced the Rubik cube+
pretext task which adds an additional level of complexity to the Rubik cube recovery
problem represented as cube masking identification on the top of both cube rearrangement
and cube rotation. Masking identification operation can be viewed as randomly blocking
part of the information in a certain cube by masking. The intuition behind masking
identification is that robust features learning can be achieved by solving harder tasks.
Rubik cube+ was evaluated on the same downstream tasks from the previous work which
showed slight improvement.
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Table 3 Summary of predictive self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task

1 Zhang, Wang & Zheng (2017) Slices ordering Body parts recognition
2 Spitzer et al. (2018) Geodesic distance prediction Brain area segmentation
3 Bai et al. (2019) Anatomical position prediction Short-axis cardiac MRI segmentation long-axis cardiac MRI

segmentation
4 Li et al. (2020b) Jigsaw puzzle Nuclei Segmentation Skin lesions segmentation
5 Taleb et al. (2021) Jigsaw puzzle Brain tumor segmentation Liver segmentation Prostate

segmentation
6 Zhuang et al. (2019) Rubik cube Brain tumor segmentation Brain hemorrhage classification
7 Zhu et al. (2020a) Rubik cube+ Brain tumor segmentation Brain hemorrhage classification
8 Nguyen et al. (2020) Spatial awareness Organ at risk segmentation Intracranial Hemorrhage

detection

Nguyen et al. (2020) proposed spatial awareness pretext task that is able to learn semantic
and spatial representations from volumetric medical images. Spatial awareness is inspired
by the context restoration framework (Chen et al., 2019) but was treated as a classification
problem. For a certain 3D image, a single slice is selected in addition to a neighboring
slice in the range [−2,2] where this range represents the spatial index. Following that,
two patches of predefined dimensions are selected randomly and swapped between the
two slices T times. Lastly, a classification network is trained to predict if the input slice is
corrupted or not to learn semantic representations. Further, the network is trained to learn
the spatial index which enables learning spatial features.

Table 3 summarizes the predictive self-supervised learning methods in medical imaging.

Generative methods in medical imaging
Ross et al. (2018) adopted image colorization pretext task (Zhang, Isola & Efros, 2016) for
solving endoscopic medical instruments segmentation task from endoscopic video data.
The authors did not utilize the original architecture as in the colorization task, but instead,
a conditional GAN architecture was employed to encourage generating more realistic
colored images, while six datasets from medical and natural domains were used in the
evaluation of downstream tasks.

Chen et al. (2019) proposed a novel generative pretext task, called context restoration,
that is inspired by the early works of relative position prediction (Doersch, Gupta &
Efros, 2015) and context encoder (Pathak et al., 2016). The authors described the context
restoration task as a simple and straightforward method in which two isolated patches
are selected randomly and their positions are swapped. The swapping process repeats
itself iteratively to produce a corrupted version of the input image but preserves the input
image’s overall distribution. Following that, a generative model is employed to restore
the corrupted image to its original version. Three downstream tasks were used to test the
context restoration feasibility including fetal standard scan plane classification, abdominal
multi-organ localization, and brain tumor segmentation.
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Another work that is built on the same idea of context restoration is called Models
Genesis and is performed by Zhou et al. (2019) for 3D medical images. As opposed to the
context restoration pretext task, models genesis introduced four distortion operations,
namely, non-linear transformation using the Bézier transformation function, local pixel
shuffling which is similar to the swapping operation in context restoration but in 3D
settings, in-painting which is similar to context encoder method and out-painting which is
the inverse operation of in-painting. It is worth noting that each input volumeundergoes the
first two operations and only one of the remaining operations. Consequently, a generative
model is built to restore the distorted image to its original context. Six downstream tasks
were used to evaluate their method in terms of segmentation and classification tasks.

Matzkin et al. (2020) designed a self-supervised approach for bone flab reconstruction
that results from decompressing craniectomy (DC) operations using normal CT scans
rather than DC post-operative annotated CT scans. DC is the surgical procedure of
removing part of the skull due to different causes such as stroke and traumatic brain
injury. The authors designed a virtual craniectomy approach to simulate the DC from
normal CT scans that generate DC post-operative CT scans with bone flaps removed
from different parts of the upper head which in turn serve as input for the reconstruction
model. Consequently, two strategies were proposed to reconstruct the bone flab including
direct estimation as well as reconstruction and subtraction. Further, two architectures
were employed including U-Net (Ronneberger, Fischer & Brox, 2015) and denoising auto-
encoder (Vincent et al., 2008).

Hervella et al. (2020b) proposed a multi-modal reconstruction task as a self-supervised
approach for retinal anatomy learning. The main assumption is that different modalities
for the same organ can provide complementary information which enables learning useful
representations for the subsequent tasks. The authors proposed to reconstruct fundus
fluorescein angiography photos from color fundus photos using aligned pairs from both
modalities for the same patient’s eye. Further, U-net architecture (Ronneberger, Fischer
& Brox, 2015) is employed for the sake of completing the reconstruction task along with
structural similarity index map(SSIM) (Wang et al., 2004) as a loss function. Subsequent
research by the same authors experimented with their approach on different ophthalmic
oriented down-stream tasks such as retinal vascular segmentation (Morano et al., 2020),
joint optic disc and cup segmentation (Hervella et al., 2020a) and diagnosis of retinal
diseases (Hervella et al., 2021).

Holmberg et al. (2020) suggested that designing an effective pretext task for medical
domains must accurately extract disease-related features which are typically present in a
small part of the medical image. Hence, such condition makes traditional pretext tasks that
are dominated by the presence of larger objects in natural images ineffective for the medical
context. As a result, they developed a novel pretext task for ophthalmic diseases diagnosis
called cross-modal self-supervised retinal thickness prediction that employs two different
modalities including optical coherence tomography scans (OCT) and infrared fundus
images. Initially, retinal thickness maps are extracted from OCT scans by developing a
segmentation model using a small annotated dataset which then serves as ground-truth
labels for the actual pretext task. Following that, a model is trained to predict the thickness
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maps using unlabeled infrared fundus images and the predicted thickness map from the
previous step as labels. Learning disease-related features using the proposed approach has
been validated by three experienced ophthalmologists. Further, the quality of their task
was assessed on diabetic retinopathy grading using color fundus as a downstream task.

Prakash et al. (2020) adopted image denoising approach as a pretext task for nuclei
images’ segmentation. A special denoising architecture called Noise2Void (Krull, Buchholz
& Jug, 2019) was employed as a self-supervised pretraining method. Further, four scenarios
are evaluated for segmenting nuclei images including random initialization with noisy
images, random initialization with denoised images, fine-tuning with noisy images, and
fine-tuning with denoised images. The results showed the superiority of self-supervised
denoising as opposed to the random initialization.

Hu et al. (2020) adopted context encoder framework (Pathak et al., 2016) as a pretext
task along with DICOM meta-data as a weak supervision method to learn robust
representations from ultrasound imaging. On the top of the context encoder, the authors
introduced additional projection discriminator (Miyato & Koyama, 2018; Lučić et al.,
2019) network that produces a feature vector of the inpainted image which to be fed into
the classification head and projection head. The classification head classifies the context
encoder output as real or fake; while the projection head acts as a conditional classifier that
incorporates the DICOM meta-data as weak labels. For DICOM meta-data, two tags were
employed including the prop type and the study description as they directly relate to the
ultrasound semantic context.

Another extension to Rubik cube pretext tasks is performed by Tao et al. (2020) as Rubik
cube++ which introduced two substantial changes to the original Rubik cube problem.
On the first hand, they introduced the concept of volume-wise transformation which
bounds the sub-cubes rotation operation to the neighboring sub-cubes as in playing a real
Rubik cube game and as opposed to Zhuang et al. (2019) where the sub-cubes are rotated
individually. On the second hand, rather than treating the Rubik cube as a classification
problem, it has been treated as a generative problem using GAN-based architecture where
the generator’s role is to restore the original order of the Rubik cube before applying the
transformation, while the discriminator role is to discriminate between the correct and
wrong arrangement of the generated cubes. As a downstream task, Rubik cube++ has
been tested on two segmentation tasks including pancreas segmentation and brain tissues
segmentation.

Table 4 summarizes the generative self-supervised learning methods in medical imaging.

Contrastive learning in medical imaging
Jamaludin, Kadir & Zisserman (2017) exploited longitudinal spinal MRI scans as a self-
supervised contrastive learning task. This is supported by the fact that time-separated
scans from the same patient will share similar representations. As a result, they trained
a Siamese network that contrasts two vertebral bodies (VB) MRI scans separated by a
period of time. regardless of whether the two images belong to the same patient or not
by employing a contrastive loss function Chopra, Hadsell & LeCun (2005). Along with the
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Table 4 Summary of generative self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task

1 Ross et al. (2018) Image Colorization Surgical instruments segmentation
2 Chen et al. (2019) Context restoration Fetal image classification Abdominal multi-organ

localization Brain tumour segmentation
3 Zhou et al. (2019) Models Genesis Lung nodule segmentation FPR for nodule detection FPR

for pulmonary embolism Liver segmentation pulmonary
diseases classification RoI, bulb, and background
classification Brain tumor segmentation

4 Matzkin et al. (2020) Skull reconstruction Bone flap volume estimation
5 Hervella et al. (2020b) Multi-modal reconstruction Fovea localization Optic disc localization Vasculature

segmentation Optic disc segmentation
6 Holmberg et al. (2020) Cross modal retinal thickness prediction Diabetic retinopathy grading
7 Prakash et al. (2020) Image denoising Nuclei images segmentation
8 Hu et al. (2020) Context encoder Quality score classification Thyroid nodule segmentation

Liver and kidney segmentation
9 Tao et al. (2020) Rubik cube++ Pancreas segmentation Brain tissue segmentation

contrastive loss, they employed a categorical cross-entropy loss to classify the VB scans
into seven classes T1-S1. For the downstream task, they tested the pre-trained model on
the disc degeneration grading task which showed superior performance in comparison to
the random initialization.

Lu, Chen & Mahmood (2020) adopted contrastive predictive coding (van den Oord, Li &
Vinyals, 2018) along with multiple instance learning (MIL) (Ilse, Tomczak & Welling, 2018)
for the classification of breast cancer histology images. As a first stage, CPC is employed to
learn rich representations from breast cancer histopathological images rather than learning
features from scratch using the MIL network. The results showed superior performance as
compared to training from scratch and the ImageNet pre-trained model.

Contrastive predictive coding (Van den Oord, Li & Vinyals, 2018) is originally designed
for 2D data, Zhu et al. (2020b) extended the early work on contrastive predictive coding
in a way that enables handling 3D data by developing a new method called Task-related
CPC. Initially, supervoxels are generated using a simple linear iterative clustering method
(SLIC) (Achanta et al., 2012) from the input volume to detect the potential lesion areas.
Consequently, the sub-volumes that surround the generated supervoxels are cropped to
act as the input of the TCPC encoder network. A U-shape path around the center of
the generated supervoxel is employed as compared to the original CPC which employs a
straight path to achieve better characterization of the lesion. Further, the recurrent neural
network acts as the auto-regressor which generates the future predictions, while the whole
architecture is optimized using the InfoNCE loss (van den Oord, Li & Vinyals, 2018). Brain
hemorrhage classification and lung nodule classification tasks were utilized as downstream
tasks.

Xie et al. (2020) stated that self-supervised approaches, in general, and contrastive
approaches, in specific, are known to consider the global consistency of the input data
while ignoring the local consistency. The authors introduced the Prior-Guided Local
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(PGL) algorithm for 3D medical images’ segmentation which extended the early work on
the BYOLmethod (Grill et al., 2020) to consider the local consistency between the different
views of the same region. To achieve this, an additional block, called a prior-guided
aligner, is added on top of the projection head for both online and target networks used
in the original BYOL architecture. The role of the prior-guided aligner is to exploit the
augmentation information applied to the input image prior to guide-aligning the features
extracted from different views of the same region. Lastly, a local consistency loss function is
employed to minimize the difference between the aligned local features. Four downstream
segmentation tasks were employed for evaluation purposes, including liver tumors, kidney
tumors, spleen, and abdominal organs.

Li et al. (2020a) proposed patient’s feature-based Softmax embedding loss function to
learn modality and transformation invariant features as well as patients’ similarity features
using ophthalmic data in contrastive settings. Modality invariant features are learned
by combining color fundus photos with a synthesized fundus fluorescein angiography
photo of the former photo, while transformations invariant is represented by the ordinary
augmentation techniques of the color fundus photo. Such triplet of photos is assumed
to share similar features for the same patient. Consequently, to learn patients’ similarity
features, the triplet of each patient image is considered as a contrasting basis where the
features of the same patients are pulled together, while features from other patients are
pushed apart using the proposed loss function.

Sowrirajan et al. (2021) adopted the MoCo (He et al., 2020) approach to build self-
supervised pre-trainedmodels for chest X-ray classification problem. They used pre-trained
models on ImageNet (Deng et al., 2009) in a supervised fashion as initialization weights for
the self-supervised training to speed up the convergence. Further, they suggested that not
all augmentation strategies implemented in the original MoCo paper can fit into gray-scale
images. Instead, they settle only to use random partial rotation and horizontal flipping.
In addition, they tested their work on an external chest X-ray dataset to examine the
generalizability of their work on tasks from the same domain, which showed the possibility
of transferring the self-supervised learned knowledge to other related tasks.

Vu et al. (2021) proposed the MedAug approach as an augmentation strategy that
benefits from the patient meta-data when training MoCo framework (He et al., 2020)
as an extension of the early work performed by Sowrirajan et al. (2021). More clearly,
MedAug requires that the different views must come from the same patient, as such
images are expected to be rich in pathological features. In addition, MedAug considers
studying number and laterality as two additional conditions derived from the patient
meta-data. For the same patient, the study number represents images taken in different
sessions, while laterality represents the orientation as frontal or lateral. This way, MedAug
leveragedmedical knowledge to the learning algorithm rather than dependingmerely on the
transformations obtained by ordinary augmentation techniques to generate positive views.
MedAug was tested on pleural effusion classification from chest X-ray as a downstream
task.

Sriram et al. (2021) purely adopted MoCo (He et al., 2020) as an approach for COVID
patients deterioration prediction tasks. They used non-COVID chest X-ray images from
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different public datasets to train MoCo for the subsequent tasks. On the other side, the
authors defined three prediction tasks that indicate COVID patient deterioration including
single image prediction, oxygen requirements prediction, and multiple image prediction
as downstream tasks. The first two tasks are ordinary classification problems from a single
image; while the third one requires multiple time-indexed radiographs. A continuous
positional embedding module was employed to obtain representations from a set of
time-indexed radiographs. Another similar work performed by Chen et al. (2021b), which
adopted MoCo as a pretraining method, uses chest CT scans for COVID diagnosis via a
few-shot learning prototypical network (Snell, Swersky & Zemel, 2017) as a down-stream
task. Similarly, public non-COVID chest CT was utilized for MoCo training; and two
public COVID datasets were utilized for evaluation.

Chaitanya et al. (2020) provided two significant improvements to the SimCLR (Chen
et al., 2020) contrastive learning approach for 3D images segmentation by developing
domain-specific and problem-specific knowledge simultaneously. To elaborate more
on the domain-specific knowledge, the original contrastive loss (NT-Xent) maximizes the
similarity between a pair of transformed versions of the input image by augmentation alone
to obtain a global representation. Also, 3D medical images consist of a set of sequential
images that depict similar anatomical regions. Hence, such sequences can be exploited
as a positive pair to learn a global representation. On the other side for problem-specific
knowledge, a segmentation task that is considered a pixel-wise prediction problem requires
local representation. As a result, the authors introduced a local contrastive loss function that
helps learn a local representation based on the similarity between the local regions within
the input volume. It is worth noting that the proposed approach employs encoder–decoder
architecture, where the encoder is optimized with global loss while the decoder is optimized
with the local loss. Further, cardiac segmentation and prostate segmentation were employed
as downstream tasks.

Azizi et al. (2021) adopted a self-supervised contrastive learning approach in a medical
context in a way that combines learning features from both unlabelled natural images
and unlabelled medical images in a sequential fashion. To elaborate more, they adopted
SimCLR (Chen et al., 2020) and introduced novel contrastive learning calledmulti-instance
contrastive learning (MICLe) which is built on the same logic of SimCLR with minor
modifications. The main idea behind MICLe is to leverage the availability of multiple views
of a certain pathology from the same patient as the foundation for contrastive learning.
Such correlated views of the same patient are considered as positive pairs rather than
generating multiple views from the same image as in SimCLR. In their experiments, the
authors tested SimCLR on chest X-ray images dataset with fourteen classes, while MICLe
was tested on a Dermatology dataset with twenty-seven classes as a downstream task.

Table 5 summarizes the contrastive self-supervised learningmethods inmedical imaging.

Multiple-tasks/Multi-tasking in medical imaging
Tajbakhsh et al. (2019) experimented with three pretext tasks, namely, rotation prediction
(Komodakis & Gidaris, 2018), image colorization (Larsson, Maire & Shakhnarovich, 2017)
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Table 5 Summary of contrastive self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task

1 Jamaludin, Kadir & Zisserman (2017) Longitudinal spinal MRI Disc degeneration grading
2 Lu, Chen & Mahmood (2020) CPC Breast cancer classification
3 Zhu et al. (2020b) TCPC Brain hemorrhage classification Lung Nodule classification
4 Xie et al. (2020) BYOL Liver segmentation Spleen segmentation Kidney tumour

seg. Abdominal organs seg.
5 Li et al. (2020a) Feature-based softmax embedding PM classification AMD classification Diabetic retinopathy

detection
6 Sowrirajan et al. (2021) MoCo Tuberculosis detection Pleural effusion classification
7 Vu et al. (2021) MoCo Pleural effusion classification
8 Sriram et al. (2021) MoCo COVID patient prognosis
9 Chen et al. (2021b) MoCo COVID few-shot classification
10 Chaitanya et al. (2020) SimCLR Cardiac segmentation Prostate segmentation
11 Azizi et al. (2021) SimCLR Chest X-ray classification Skin lesions classification

and 3DPatch reconstruction (Arjovsky, Chintala & Bottou, 2017) on three differentmedical
image analysis tasks including false positive reduction for nodule detection in chest
CT scans, diabetic retinopathy severity classification, lung lobe segmentation and skin
segmentation. Due to the substantial differences among the utilized imaging modalities,
each of themwas assigned a specific pretext task.More clearly, image rotationwas employed
for both lung lobe segmentation and diabetic retinopathy classification, while colorization
was employed for the skin segmentation task and finally 3D patch reconstruction was
employed for nodule detection. Jiao et al. (2020) proposed temporal order correction and
spatio-temporal transformation prediction pretext tasks to learn good representations
from fetal ultrasound videos. For the first task, the order of the ultrasound video frames
is shuffled and the role of the task is to predict the correct order of the shuffled frames.
For the second task, certain affine transformations are applied to the input video and the
role of the task is to predict the applied transformations. To train both tasks jointly, the
authors proposed two strategies including a Siamese network with partial weights sharing
that learns two tasks simultaneously with one branch for each task. The second strategy is
called objective disentanglement which enables incorporating the proposed task into the
same input video and training the network to recognize both of them.

Li, Chen & Zheng (2020) combined two colorization-based pretext tasks into a single
multi-tasking framework called ColorMe to learn useful representations from scopy
images. In a similar way to the original colorization task (Zhang, Isola & Efros, 2016), the
authors proposed to predict red and blue channels from the green channel in an RGB scopy
images to obtain local features. On the other side, the authors proposed color distribution
estimation of the red and blue channels to force learning of global features. Then, both
tasks are trained jointly and evaluated on two downstream tasks, namely, cervix type
classification and skin lesion segmentation.

Taleb et al. (2020) suggested that rich representations can be learned from medical
images with 3D nature instead of 2D images. For this reason, they applied five pre-designed
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pretext tasks, namely, CPC (Van den Oord, Li & Vinyals, 2018), exemplar CNN (Dosovitskiy
et al., 2015), rotation prediction (Komodakis & Gidaris, 2018), relative position prediction
(Doersch, Gupta & Efros, 2015) and Jigsaw puzzle (Noroozi & Favaro, 2016) to be adaptive
with medical images of 3D nature. Their methods were tested on two 3D downstream
tasks which are brain tumor segmentation and pancreas tumor segmentation. Luo et al.
(2020) proposed a self-supervised fuzzy clustering network as a pretext task for color
fundus photo classification. The proposed approach consists of auto-encoder architecture
which is responsible for initial features learning from the input data as a first stage. In
addition, a clustering module that guides the self-supervision process is employed as a
second stage. After gaining the initial representations, the Fuzzy C-means algorithm is
utilized (Bezdek, Ehrlich & Full, 1984) on top of the encoder network to cluster similar
inputs into predefined clusters and update the encoder weights accordingly. The learned
weights, after the clustering phase is complete, are transferred to the downstream task.

Haghighi et al. (2020) introduced Semantic Genesis as an extension to the previous
work on Models Genesis framework (Zhou et al., 2019). Besides features learning by
restoration, the authors introduced two additional functionalities called self-discovery
and self-classification. Self-discovery is the first stage of the Semantic Genesis framework,
where an auto-encoder is trained to reconstruct the input images. Such steps help in
discovering a set of semantically similar patients who share similar anatomical patterns
by comparing their encoding vectors. Consequently, a random number of crops with
fixed coordinates are derived from those patients and assigned a numerical label that
denotes their positions. For the self-classification stage, a classification head, on the top
of the framework encoder, is employed to classify the extracted batches according to
their assigned labels. In addition, the same intuition of Models genesis is adopted in the
self-restoration phase but applied to the extracted patches rather than the whole image.
This way, Semantic Genesis enables learning semantically rich representations from similar
anatomical patterns. Seven downstream tasks were utilized for evaluation as classification
and segmentation tasks.

Zhang et al. (2020) introduced scale-aware restoration pretext task for 3D medical
images segmentation as an extension of Models Genesis framework (Zhou et al., 2019). In
addition to the transformation restoration as in Models Genesis, the authors introduced
scale discrimination property to the original model depending on the fact that desired
objects, e.g., tumors, appear in different sizes across different patients. And hence, cubes of
predefined sizes as small, medium, and large are generated and resized into a unified size
and then labeled according to their original cropping size. Consequently, the classification
head is included on the top of the encoder to accomplish the scale classification task; while
the whole architecture is responsible for the transformation restoration task. Brain tumor
segmentation and pancreas organs and tumors segmentation were used as downstream
tasks.

Dong, Kampffmeyer & Voiculescu (2021) developed a multi-task self-supervised learning
approach that combines both generative modeling and instance discrimination using
sequential medical data. Given a sequence of medical images for the same patient e.g CT,
an auto-encoder architecture, with a single encoder and two decoders, is responsible for
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learning representations by predicting the T steps precedent and successor slices of the
input slice which in turn enables learning the anatomical structural similarity between
different slices. In addition, an instance discrimination task is included to avoid learning
trivial features by generative modeling. To achieve this, an additional encoder is introduced
to the whole architecture that takes another input slice from the same patient and tries to
contrast it with the generative model input by minimizing the negative cosine similarity
between both inputs. It is worth noting that the second encoder shares the same weights
with the generative model whereas it does not go through the back-propagation process.

Koohbanani et al. (2021) proposed a self-path framework for histopathology images
which comprises three pathology-specific tasks, namely, magnification prediction,
magnification Jigsaw puzzle (JigMag), and Hematoxylin channel prediction in multi-
tasking settings. For the first one, patches with different predefined levels of magnification
are extracted whereas the task role is to predict the right magnification of the input image.
For JigMag, the generated puzzles for training include patches with different magnifications
levels for the same image, while the task role is to predict the right order of the puzzle. For
the latter task, out of a histopathological image stained with Hematoxylin and Eosin, the
role of the task is to predict the first channel from the stained image. Lastly, all proposed
tasks along with the downstream tasks are trained jointly in a multi-tasking fashion.

Zhang et al. (2021) developed a semi-supervised multi-tasking approach that combines
rotation prediction (Komodakis & Gidaris, 2018), Jigsaw puzzle (Noroozi & Favaro, 2016)
and SimCLR (Chen et al., 2020) in a unified framework called twin self-supervision based
semi-supervised learning (TS-SSL) for spectral-domain optical coherence tomography
(SD-OCT) classification. For the Jigsaw puzzle, the authors introduced patch rotation as
given in Li et al. (2020b), while for SimCLR the authors introduced supervised category-
wise contrastive loss, which considers all samples for a certain label as positive examples.
Consequently, the proposed approach is trained in an end-to-end fashion and semi-
supervised multitasking setting to learn representations by performing rotation prediction,
Jigsaw puzzle-solving, contrastive and supervised contrastive learning. The methods were
evaluated on multi-class and binary OCT classification tasks.

Li et al. (2021) suggested that rotation-oriented collaborative features learning would
provide a potent representation for fundus disorders. They simultaneously combined
rotation prediction (Komodakis & Gidaris, 2018) with multi-view instance discrimination
(Wu et al., 2018) to learn rotation-related and rotation-invariant features using fundus
color photography in an end-to-end fashion. Their approach was tested on two ophthalmic
diseases, namely, pathological myopia (PM) and age-related macular degeneration (AMD)
as a binary classification downstream task. Further, their approach showed that the
collaborative approach provided better results than using a single pretext task at a time.

Lu, Li & Ye (2021) designed two domain-specific pretext tasks for white matter tract
segmentation from diffusion MRI scans. The first task is concerned with predicting the
fiber streamlines density map of the white matter in the human brain which represents
the number of streamlines that pass through a voxel. On the other side, the second task is
concerned with imitating registration-based white matter tract segmentation by registering
the input data to a predefined white matter tract registration atlas. Further, both tasks
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Table 6 Summary of multiple-tasks/multi-tasking self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task

1 Tajbakhsh et al. (2019) Colorization rotation prediction 3D
patch reconstruction

Lung lobe segmentation FPR for nod-
ule detection skin lesions segmenta-
tion diabetic retinopathy grading

2 Jiao et al. (2020) Temporal order correction transfor-
mation prediction

Standard plane detection saliency pre-
diction

3 Li, Chen & Zheng (2020) ColorMe Cervix type classification skin lesion
segmentation

4 Taleb et al. (2020) CPC Jigsaw puzzle Exemplar CNN
Rotation Prediction Relative position
prediction

Brain tumors segmentation pancreas
tumor segmentation

5 Luo et al. (2020) Self-supervised fuzzy clustering Color fundus classification diabetic
retinopathy classification

6 Haghighi et al. (2020) Semantic Genesis Lung nodule segmentation FPR for
nodule detection liver segmentation
chest diseases classification brain tu-
mor segmentation pneumothorax seg-
mentation

7 Zhang et al. (2020) Scale-aware restoration Brain tumor segmentation pancreas
segmentation

8 Dong, Kampffmeyer & Voiculescu (2021) Multi-task self-supervised learning Whole heart segmentation
9 Koohbanani et al. (2021) Self-path histopathology image classification
10 Zhang et al. (2021) SimCLR Jigsaw puzzle Binary OCT classification multi-class

OCT classification
11 Li et al. (2021) Rotation prediction multi-view in-

stance discriminate
PM classification AMD classification

12 Lu, Li & Ye (2021) Fiber streamlines density map predic-
tion Registration imitation

White matter tract segmentation

are employed sequentially rather than independently as each of the proposed methods
focuses on part of the white matter properties, and hence, integrating them may provide
complementary information.

Table 6 summarizes the multiple-tasks/multi-tasking self-supervised learning methods
in medical imaging.

PERFORMANCE COMPARISON
This section compares the performance of the proposed self-supervised learning approaches
that have been discussed in the previous section. Mainly, the emphasis, in this section,
is on two tasks which are images classification and semantic segmentation as these two
tasks are the most common tasks in the discussed works. Further, this section reports the
performance of the proposed self-supervised learning approaches in medical images in
comparison to random initialization and transfer learning from ImageNetwhere applicable.
Lastly, this section considers only the benchmarks that havemore than two works evaluated
on them.
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Table 7 Performance comparison on LUNA 2016 dataset. Pretext tasks indicated with an asterisk (*) are reproduced by the same author. Pretext
tasks indicated with two asterisks (**) are implemented using different backbones.

No. Author Pretext task Category Random init.: AUC SSL: AUC

1 Zhu et al. (2020b) TCPC ∗∗ Contrastive 0.982 0.996
2 Zhu et al. (2020b) TCPC ∗∗ Contrastive 0.911 0.987
3 Haghighi et al. (2020) Semantic Genesis Multi-tasking 0.943 0.985
4 Zhou et al. (2019) Models Genesis Generative 0.942 0.982
5 Haghighi et al. (2020) Rubik Cube* Predictive 0.943 0.955
6 Haghighi et al. (2020) Context Restoration* Generative 0.943 0.919
7 Haghighi et al. (2020) Image Inpainting* Generative 0.943 0.915
8 Haghighi et al. (2020) Auto-encoder* Generative 0.943 0.884
9 Tajbakhsh et al. (2019) 3D patch Reconstruct. Generative 0.724 0.739

Table 8 Performance comparison on brain hemorrhage classification dataset. Pretext tasks indicated
with two asterisks (**) are implemented using different backbones.

No. Author Pretext task Category Random
init.: Acc (%)

SSL: Acc (%)

1 Zhu et al. (2020b) TCPC ∗∗ Contrastive 81.08 88.17
2 Zhu et al. (2020a) Rubik Cube+ ∗∗ Predictive 79.73 87.84
3 Zhuang et al. (2019) Rubik Cube Predictive 72.60 83.80
4 Zhu et al. (2020a) Rubik Cube+ ∗∗ Predictive 72.30 78.68
5 Zhu et al. (2020b) TCPC ∗∗ Contrastive 72.30 78.38

Table 9 Performance comparison on CheXpert dataset.

No. Author Pretext task Category ImageNet: AUC SSL: AUC

1 Sowrirajan et al. (2021) MoCo Contrastive 0.949 0.953
2 Vu et al. (2021) MoCo Contrastive 0.858 0.906
3 Azizi et al. (2021) SimCLR Contrastive 0.763 0.767

Classification tasks performance comparison
For the sake of performance comparison of the proposed methods from the previous
section on the classification tasks, three datasets are selected in which two of them are
public datasets which are Lung Nodule Analysis LUNA (Setio et al., 2016), and CheXpert
dataset (Irvin et al., 2019), while the third one is a private dataset which is BrainHemorrhage
classification dataset. For consistent comparison, the most common performance measure
among all proposed approaches is reported. The area under curve(AUC) for receiver
operating characteristic curve (ROC) is reported for both LUNA and CheXpert datasets,
while overall accuracy is reported for the brain hemorrhage classification dataset. Further,
all reported results are in terms of fine-tuning the whole model on the downstream
task rather than the results of the fine-tuning the classification layer. Table 7 reports the
results on the LUNA dataset while Table 8 reports the results on the brain hemorrhage
classification dataset, and Table 9 reports the results on the CheXpert dataset.
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Table 10 Performance comparison based on BraTS dataset.

No. Author Pretext task Category Random init.: DSC (%) SSL: DSC (%)

1 Zhou et al. (2019) Models Genesis Generative 90.68 92.58
2 Taleb et al. (2021) Jigsaw Puzzle Predictive 80.54 89.74
3 Zhu et al. (2020a) Rubik Cube+ Predictive 85.47 89.6
4 Chen et al. (2019) Context Restoration Generative 84.41 85.57
5 Zhang et al. (2020) Scale Aware Rest. Multi-Tasking 74.35 84.92
6 Chen et al. (2019) Image Inpainting* Generative 84.41 84.54
7 Taleb et al. (2020) 3D Relative Pos. Pred. Predictive 76.38 81.28
8 Taleb et al. (2020) 3D CPC Contrastive 76.38 80.83
9 Taleb et al. (2020) 3D Rotation Predictive 76.38 80.21
10 Taleb et al. (2020) 3D Jigsaw Predictive 76.38 79.66
11 Taleb et al. (2020) 3D Exemplar Predictive 76.38 79.46

It can be clearly observed from Tables 7, 8 and 9 that self-supervised learning approaches
provide better performance when compared to either training from scratch or using
ImageNet pre-trained models. In addition, designing new approaches or modifying
existing methods in a way that considers the properties of medical images provides
better performance than directly adopting pretext tasks from the computer vision field.
Contrastive learning based algorithms tend to show better results when compared to other
categories as shown in Table 7. However, this is not always the case where the TCPC
approach showed the best and the worst results on the brain hemorrhage classification
dataset when using different backbones as shown in Table 8. In Table 9, it can be clearly seen
that directly adopting pretext task from computer vision to themedical images analysis field
provides marginal improvements on the down-stream task as compared to the ImageNet
pre-trained models as given by both Sowrirajan et al. (2021) and Azizi et al. (2021). On
the other side, modifying computer vision tasks by incorporating medical knowledge, as
given by Vu et al. (2021), provided significant improvements on the performance when
compared to ImageNet pre-trained models.

Segmentation tasks performance comparison
Performance comparison on semantic segmentation tasks is reported on brain tumor
segmentation dataset (BraTS 2018) (Bakas et al., 2018). All listed works are compared with
respect to the Dice Score (DSC) as it is the most common performance among all works
on the same dataset. Lastly, all reported results are in terms of fine-tuning the whole model
on the downstream task.

Table 10 reports the results of the BraTS dataset. It can be clearly seen that the
performance of self-supervised learning based approaches significantly outperforms
training from scratch. In addition, it can be observed that the adopted methods from the
computer vision field do not provide better performance as compared to those methods
designed especially to suit the nature of medical images.
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DISCUSSION AND FUTURE RESEARCH DIRECTIONS
A variety of methods that employed self-supervised learning in medical imaging analysis
have been discussed in the previous section with respect to each category. Some of these
works adopted methods from the computer vision field. Other researchers proposed novel
approaches by incorporating medical knowledge into the design of the pretext task or
exploiting the unique properties of the medical images. This section discusses the salient
insights that can be derived from the previously discussed works.

Computer vision task in medical imaging
Despite the fact that computer vision and medical images analysis fields deal with image
data, there are fundamental differences in the characteristics of natural images and medical
images in terms of the number of channels, intensity, location, scale, and orientation. For
the number of channels, natural images are mainly 2D RGB images, while medical images
may be 2D gray-scale, 3D volumes, or 4D as volume over time dimension. For intensity,
the same object will nearly possess the same features under different intensity levels, e.g.,
the human face is the same under different intensities. On the other side, intensity holds
meaningful information in medical images, e.g., different tissues have different values
according to the Hounsfield scale in CT scans. For the location, objects in natural images
are not affected by changing locations, e.g., the human face holds the same features for
the same person in different locations. In medical images, object location has significant
indication with respect to certain pathology, e.g., Diabetic Macular Edema severity is
diagnosed by examining the Oedema presence with respect to the Fovea in OCT scans. For
scale, an object’s features in natural images are not significantly affected by the scale, e.g.,
the human face will not change significantly by changing magnification levels. In contrast,
scale is an important factor in some medical imaging modalities, e.g., in histopathological
images, different information can be obtained at different magnification levels. Eventually,
orientation in natural images is a significant factor for some applications, e.g., texts and
numbers orientation in optical character recognition applications. In medical images,
orientation may not be a decisive factor, e.g., tumors may have different non-predefined
shapes which in turn make them agnostic for orientations. In summary, medical images
have unique properties that distinguish them from the natural images that need to be
considered (Zhou et al., 2021).

The direct adoption of pretext tasks from the computer vision field, which have achieved
state-of-the-art results on natural images, may not necessarily give the same performance
in the medical images analysis field. Hence, knowing that medical images have unique
properties as compared to natural images, these propertiesmust be taken into consideration
when adopting pretext tasks from computer vision.

A variety of the discussed works considered the unique properties of medical images
when adopting pretext tasks from the computer vision field and modified these methods
accordingly. For instance, several works modified the existing methods to be able to deal
with the volumetric nature of the medical images rather than 2D images such as in Taleb et
al. (2020), Zhuang et al. (2019), Zhu et al. (2020a) and Zhu et al. (2020b). Other researchers
provided modifications to the existing methods to suit the nature of medical images in

Shurrab et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1045 38/51

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1045


terms of loss functions such as in Chaitanya et al. (2020), Li et al. (2020a), Xie et al. (2020),
and positive pairs selection for contrastive learning algorithms such as in Jamaludin, Kadir
& Zisserman (2017), Azizi et al. (2021), Chaitanya et al. (2020), Vu et al. (2021) and Li et al.
(2020a). Lastly, some researchers combined more than one computer vision task together
to enable robust representations learning such as in Zhang et al. (2021) and Li et al. (2021).
To sum up, pretext tasks adopted from computer vision need to be modified when adopted
in medical imaging analysis in a way that fits the unique characteristics of medical images.
Further, the previously mentioned differences between natural images and medical images
can be considered as design considerations for the research in the field.

Pretext tasks based on medical knowledge
Most of the presented works that proposed novel pretext tasks tend to be based on the
manipulation of the input image as well as the property of the images. Fewer works tend
to incorporate medical knowledge into their approaches such as in Hu et al. (2020), Lu, Li
& Ye (2021), Hervella et al. (2020a), Holmberg et al. (2020) and Vu et al. (2021). This may
be attributed to the fact that incorporating medical knowledge such as patient metadata,
cross-modal images, and disease-specific knowledge may limit the applicability of the
proposed self-supervised learning approach to a certain imaging modality and specific
disease and may limit its transferability to other tasks without the need to modify the core
of the proposed approach. On the other hand, exploiting medical images’ properties as well
as images manipulation as the bases for the design of pretext tasks provides a wider range
of applications for different imaging modalities that possess common attributes. Medical
knowledge incorporation with the design of pretext tasks is another research direction that
needs to be further explored to benefit from such available knowledge in designing self-
supervised learning approaches that are able to provide robust representations empowered
by the medical knowledge.

Pretext tasks design with multiple imaging modalities
Diagnosis of a certain disease or capturing a certain organ in the clinical practice may
be performed by using more than one imaging modality as they provide complementary
information. As an example, OCT scans and fundus color photos are used to diagnose
retina diseases. Several works that have been discussed in this survey considered such
property in their designs of pretext tasks such as in Holmberg et al. (2020), Hervella et al.
(2020b), Li et al. (2020a) and Taleb et al. (2021). While learning from a single imaging
modality can produce good representations, incorporating multiple imaging modalities,
in the design of pretext tasks, can offer learning rich representations. Hence, additional
research efforts need to be performed in this direction.

Data availability
Most of the presented works utilize either public or private datasets for the training
phase of the pretext tasks. Public datasets are known to be of small size except for
some modalities such as X-ray (Irvin et al., 2019; Wang et al., 2017), fundus (https:
//www.kaggle.com/c/diabetic-retinopathy-detection) color photo, and optical coherence
tomography (Kermany, Zhang & Goldbaum, 2018) which are available with a considerable
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number of images. On the other side, private datasets are not available to the research
community and are not easy to reach. Hence, there is a need for building large unlabeled
data pools that cover a wide range of imaging modalities to be available for the research
community to accelerate the application of self-supervised learning in the field. An
important point to consider, when developing an unlabeled medical images dataset,
is the data bias. More clearly, medical images datasets in general and medical images
datasets in specific tend to be biased toward the healthy cases, while fewer images represent
the abnormalities. Data bias must be avoided when developing self-supervised learning
methods to guarantee learning representations that are rich in pathological features.

CONCLUSION
Machine learning applications in medical imaging analysis require large amounts of high-
quality annotated data to develop robust models in a supervised fashion, which may not
be always available at our disposal. Annotated medical images are scarce and this acts as a
major problem that researchers, in the field of machine learning, encounter. Self-supervised
learning methods can significantly alleviate the problem of scarcity in annotated data, in
the field of medical images analysis, as it enables learning robust representations from
unlabeled data.

This is the first survey, to the best of our knowledge, that covers recent self-supervised
learning methods and their applications in the field of medical imaging analysis and cast
them into four categories, namely, predictive, generative, contrastive, and multi-tasking.
This survey extensively reviews 15 state-of-the-art self-supervised learning methods
from the computer vision field that have been extensively employed in the context of
medical imaging analysis. In addition, the survey covers the 40 most prominent self-
supervised learning applications in the field of medical imaging analysis for different
imaging modalities and medical conditions. Further, a comparative analysis is conducted
to highlight the best performers among the reviewed self-supervised learning approaches
in the medical images field when compared on a unified benchmark. Finally, this survey
summarizes the major patterns that can be observed from the discussed self-supervised
learning applications in medical imaging. Moreover, this survey emphasizes some of the
open issues in the field that requires attention from the research community.

APPENDIX A
Table A1 lists the implementation of the previously listed works from both computer
vision and medical image analysis who render their code publicly available. Further,
starred implementations represents the authors’ official code.
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Table A1 Implementation codes list.

No. Authors Pretext task Implementation

1 Dosovitskiy et al. (2015) Exemplar CNN caffe*
2 Doersch, Gupta & Efros (2015) Relative position prediction caffe*—pytorch
3 Noroozi & Favaro (2016) Jigsaw puzzle pytorch
4 Komodakis & Gidaris (2018) Rotation prediction pytorch*
5 Vincent et al. (2008) Denoising auto-encoder theano—pytorch
6 Pathak et al. (2016) Image inpainting caffe*—tensorflow
7 Zhang, Isola & Efros (2016) Image colorization pytorch*
8 Zhang, Isola & Efros (2017) Split-brain auto-encoder caffe*—tensorflow
9 Radford, Metz & Chintala (2016) Deep Convolutional GAN pytorch—tensorflow
10 Donahue, Krähenbühl & Darrell (2016) Bi-directional GAN theano*—tensorflow
11 van den Oord, Li & Vinyals (2018) CPC pytorch—tensorflow
12 He et al. (2020) MoCo pytorch*—tensorflow*
13 Chen et al. (2020) SimCLR tensorflow*—pytorch
14 Grill et al. (2020) BYOL tensorflow*—pytorch
15 Caron et al. (2020) SwAV pytorch*—tensorflow
16 Taleb et al. (2020) CPC

Jigsaw puzzle
Exemplar CNN
Rotation Prediction
Relative position prediction

tensorflow*

17 Li et al. (2021) Rotation prediction
multi-view instance
discriminate

tensorflow*

18 Sriram et al. (2021) MoCo pytorch*
19 Sowrirajan et al. (2021) MoCo pytorch*
20 Xie et al. (2020) BYOL pytorch*
21 Chaitanya et al. (2020) SimCLR tensorflow*
22 Zhou et al. (2019) Models Genesis tensorflow*
23 Haghighi et al. (2020) Semantic Genesis tensorflow*
24 Li et al. (2020a) Feature-based

softmax embedding
pytorch*

25 Holmberg et al. (2020) Cross modal retinal
thickness prediction

tensorflow*

26 Matzkin et al. (2020) skull reconstruction pytorch*
27 Zhang et al. (2021) TS-SSL tensorflow*
28 Prakash et al. (2020) Images denoising tensorflow*
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