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ABSTRACT
Background. The number of applications prepared for use on mobile devices has
increased rapidly with the widespread use of the Android OS. This has resulted in
the undesired installation of Android application packages (APKs) that violate user
privacy or are malicious. The increasing similarity between Android malware and
benign applications makes it difficult to distinguish them from each other and causes
a situation of concern for users.
Methods. In this study, FG-Droid, a machine-learning based classifier, using the
method of grouping the features obtained by static analysis, was proposed. It was
created because of experiments with machine learning (ML), deep neural network
(DNN), recurrent neural network (RNN), long short-termmemory (LSTM), and gated
recurrent unit (GRU)-based models using Drebin, Genome, and Arslan datasets.
Results. The experimental results revealed that FG-Droid achieved a 97.7% area under
the receiver operating characteristic (ROC) curve (AUC) score with a vector including
only 11 static features and the ExtraTree algorithm.While reaching a high classification
rate, only 0.063 seconds were needed for analysis per application. This means that
the proposed feature selection method is faster than all traditional feature selection
methods, and FG-Droid is one of the tools to date with the shortest analysis time per
application. As a result, an efficient classifier with few features, low analysis time, and
high classification success was developed using a unique feature grouping method.

Subjects Artificial Intelligence, Data Science, Mobile and Ubiquitous Computing, Security and
Privacy
Keywords Permission grouping, Size reduction, Android OS, Security, Malware detection

INTRODUCTION
Android OS is a mobile platform that was prepared by a group of developers. It has
dominated themobile operating systemmarket formany years. According to 2021 statistics,
it is used in more than 70% of mobile devices, and together with the iOS operating system,
it meets 98% of the entire market share (https://www.statista.com/statistics/272698/global-
market-share-held-by-mobile-operating-systems-since-2009/). Accordingly, the number
of application downloads worldwide is increasing rapidly and this trend is expected to
continue (https://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/).
There are many reasons for this widespread use of the Android operating system. It
has the appropriate functional infrastructure to access hardware resources. It is free
and open source platform and is equipped with a security framework that relies on the
Linux kernel (Khanna & Singh, 2016). However, since its security structure is based

How to cite this article Arslan RS. 2022. FG-Droid: Grouping based feature size reduction for Android malware detection. PeerJ Comput.
Sci. 8:e1043 http://doi.org/10.7717/peerj-cs.1043

https://peerj.com/computer-science
mailto:sinanarslanemail@gmail.com
mailto:sinanarslanemail@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/
http://doi.org/10.7717/peerj-cs.1043


on the application layer (Smalley & Craig, 2013), these devices become partially or
completely exposed to numerous security attacks, making them a routine target (Wang
& Li, 2021). In addition, the widespread use of mobile devices with Android OS,
the adoption of these devices by end users and the resulting of increasing market
share, has caused it to become the target of cyber hackers, especially web-based and
application layer-based attacks (https://www.businessofapps.com/data/android-statistics/;
https://securelist.com/it-threat-evolution-q1-2021-mobile-statistics/102547/).

When malicious applications access user mobile devices, they can engage in a series of
malicious activities, such as obtaining confidential information, seizing more authorized
user accounts, andmisusing the obtained certain level of security (Wang & Li, 2021). Google
Play has set up a permission-based system to control applications’ access to confidential
data. Users are asked to give permission before installation, taking into account the
resources of the application. Users must approve these permissions before installation to
use it. However, this-preapproval mechanism does not provide sufficient protection for
users, since users accept these permissions without detailed examination. As a result, users
accept all conditions in order to have free access to applications that offer the features they
demand (Ratibah Tuan Mat et al., 2021). For these reasons, there is a need to work on the
security mechanism that Google Play provides for users.

Different types of malware detection mechanisms have been proposed to address this
need in the security mechanism. These are the signature-based approach (Sihang et al.,
2020; Rahman et al., 2018), behavior-based detection software (Su et al., 2020; Saracino et
al., 2018; Chen et al., 2021), and machine learning-based approaches (Nguyen Vu & Jung,
2021; Lachtar, Ibdah & Bacha, 2021; Sihang et al., 2021). Among these, machine learning
and deep learning architectures have gained more popularity recently. Because in this
method, it is possible to obtain both a dynamic learning and development process and
good results against zero-day attacks. It is possible to create ML models that are open to
learning and development at the same speed for cyber attackers who try to overcome the
security mechanism with a new technique every day, and to produce promising solutions
for the detection of malware (Ou & Xu, 2022). In machine learning based approaches,
there is a dependency on the features used as input, classifier and learning architectures.
In this study, the size of the feature set and the effects of the features it contains in terms
of performance and efficiently in android malware detection mechanisms are focused.

There are many manual and automatic feature extraction methods. These methods
are basically divided into three groups, as static features, dynamic features, and hybrid
features (Handrick da Costa et al., 2020). Each of these features can be used to detect
different malicious activities. In addition, each feature can provide a distinctiveness in
detecting malicious applications. For this reason, different feature sets can be used in
studies in this field, and problem-specific feature vectors can be produced. The main
purpose is to provide fastest and highest classification success model with the best feature
set.

The contributions of this work in the following way:
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• Feature grouping based Android malware detection tool (FG-Droid) is a low runtime
and highly efficient machine learning model.
• The model groups permission-based features with a unique methodology and obtains
only 11 static features for each application.
• The model has 97.7% classification success in the tests and only needs 0.063 s for
analysis per application. This value is one of the best values among the models with
similar classification success. This value was obtained without using the GPU.
• The model selects fewer features than traditional feature selection methods (chi2,
f_class_if, PCA) and requires less processing time while showing higher classification
success than them.
• As a result, a model with high classification success and low analysis time with few
features has been revealed thanks to the proposed unique grouping.

The continuation of this study is organized as follows: In ‘Materials &Methods’, Android
application development infrastructure and similar studies on this subject are analyzed
separately for static and dynamic methos. The methodology of FG-Droid is explained in
detail in ‘Results’ and the experimental results are given comparatively in ‘Conclusions’. In
the last part, a general evaluation of the study is made and suggestions are made for future
studies. In addition, a FG-Droid permission grouping table is given as Appendix A before
the reference section.

MATERIALS & METHODS
Literature review
In this section, recent studies related with Android malware detection, feature generation
and selection, and static, dynamic, and hybrid approaches are discussed.

Static analysis
The features extracted as a result of the static analysis are basically obtained from the
Androidmanifest.xml in the APK package SMALI files. It is intended to extract features
without actually running applications and use them for classification. Permissions,
application programming interface (API) calls, intent filters, applicationmetadata, function
calls, and opcode are some of these features. Among these, permission and API calls are
more commonly used.

Permissions are one of the most researched and widely used features in malware analysis
because they form the basis of the android security architecture. Android applications
are installed on mobile devices after approval from the users. Since permission is the
first obstacle for cyber hackers to reach their malicious targets, many researchers (Sinan
Arslan, Alper Doğru & Barışçı, 2019; Shehata et al., 2020; Thiyagarajan, Akash & Murugan,
2020) have carried out permission-based analysis studies. Arp et al. (2014) evaluated the
permissions, API calls, hardware components, and intents in the application manifest
file together in their study in 2014. They classified the obtained static feature vector with
support vector machine (SVM). APK Auditor (Kabakus, Doğru & Çetin, 2015) is static
analysis tool running on a central server with signature database based on application
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analysis. When the system was tested with 6909 samples, it was able to detect malware
with 88% accuracy. The specificity value was 0.925. Syrris & Geneiatakis (2021) examined
malware detection based on machine learning and static analysis. The six best-known ML
techniques were evaluated in terms of both the classification rate and feature selection.
In the experimental results, it was shown that a high accuracy rate could be achieved
with a lower dimensional feature set, as in FG-Droid. Anastasia (Fereidooni et al., 2016)
is a classifier using machine learning (decision tree (DT), random forest (RF), SVM, etc.)
and a deep neural network. The static analysis tool was created to extract features such
as intent, system commands, permissions, and API calls. In the tests performed with a
dataset consisting of 11,187 benign and 18,677 malicious applications, a TP value of 97.3%
was obtained and the f-score was 96.0%. Droidmat (Wu et al., 2012) is another tool that
uses permissions, intents, API calls, and services to classify android APKs. Analysis was
performed using the K-neighbors algorithm. As a result, 91.82% f1 score was obtained.
Drebin (Razgallah et al., 2021) works with a large dimensional static feature vector, since
limited hardware resources pose problems for dynamic analysis. The extracted feature
vector was trained with SVM and a classification success of 94% was achieved. It was stated
that an average of 10 s was required for the analysis.

API calls is another feature that can be obtained as a results of static analysis. Because
applications need API callas to communicate with the device. Therefore, API calls can
be useful to understand the intent of applications. Many researchers (Jung et al., 2018;
Pektaş & Acarman, 2020; Sharma & Dash, 2014; Alazab et al., 2020) have targeted malware
detection using API calls. High classification success has been achieved in studies with API
calls, but there are approximately 32,000 different APIs on the Android platform (Ou &
Xu, 2022). This causes the feature vector to be very large size. In addition, a very limited
part of these features were used by applications. DroidAPIMiner (Aafer, Du & Yin, 2013)
uses package-level parameters in the feature vector to catch malicious API calls. As a result,
a 2.2% FP rate was achieved. MAMADroid (Onwuzurike et al., 2019), which analyzes the
API usage behavior of applications, is a more robust system for malware detection. It was
reported that the model has shown a high success rate in tests for many years. Taheri
et al. (Taheri et al., 2020) similarly used the feature vector produced by using API calls,
intents, and permission from training and prediction phases for 4 different classifiers.
Similarity calculation was made using Hamming distance and an accuracy value of 91%
was achieved. The static analysis method has been used in many other studies, such as
DroidSieve (Suares Tangil et al., 2017) and DroidDet (Zhu et al., 2018).

Although, static analysis is advantageous at certain points, is also has some
limitations (Bakour & Murat Ünver, 2018). It would not be possible to observe its behavior
at runtime. Code analysis of complex software takes time. It may not be possible to extract
static features based on the source code inn encrypted and obfuscated applications.

A summary of all studies using the static analysis methodology used in this study is
shown in Table 1.
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Table 1 Summary of current works on static analysis based in Android malware detection.

Ref Dataset Feature extraction Classification Classification
rate

Sec. for
identification
each app

Arp et al. (2014) Drebin Used permissions, sys.
Api calls, network ad-
dress

Machine learning 94% 10

Anastasia (Fer-
eidooni et al.,
2016)

Own dataset Api calls, network ad-
dress

ML(NB, RF, KNN) 96% 0.29

MamaDroid (On-
wuzurike et al.,
2019)

Drebin Api calls, call graphs SVM, RF, 1-NN, 3-NN 87% 0.7± 1.5

Taheri et al.
(2020)

Drebin,
Genome

Api calls, intents, per-
missions(21492 features)

FNN, ANN, WANN,
KMNN

90%–99% Very high

Apkauditor (Kabakus,
Doğru & Çetin,
2015)

Own dataset Permissions, services, re-
ceivers

Signature based 92.5% –

Syrris &
Geneiatakis
(2021b)

Drebin Static features ML(6 six classifiers) 99% –

Droidmat (Wu
et al., 2012)

Own dataset Intents, Api calls Signature based 91.83% –

Alazab et al.
(2020)

Own dataset Api calls ML (RF, J48, KNN, NB) 94.30% 0.2 –0.92

Pektaş & Acar-
man (2020)

Drebin, AMD,
Androzoo

Api calls SDNE (DNN model) 98.5% –

Shehata et al.
(2020)

Own dataset Activities, services, re-
ceivers, providers, per-
missions

RF 97.1% –

Thiyagarajan,
Akash & Muru-
gan (2020)

Androzoo Permissions(113) –
>PCA (10)

DT with PCA feature se-
lection

94.3% –

Proposed
Model

Drebin,
Genome,
Arslan

Permission groups ML, DNN 97.7% 0.063

Dynamic analysis
Dynamic features are extracted as a result of analyzing the situations in which Android
applications communicate with the operating systems or the network. System calls and
network usage statistics are the most basic features that give an idea about the APKs.
In addition, processor and memory space usage data, the status of the services running
instantaneously, some statistical data about the device (battery usage, screen-on time, etc.),
and information about the addresses reached by the systems calls and network packets are
important features for classification. Droidscope (Kwong Yan & Yin, 2012) is an efficient
and effective dynamic Android malware detection tool that works on Android devices by
extracting three-layer (hardware, operating system, anddalvik virtualmachine) system calls,
and performing semantic analysis at the operating system and code level. MADAM (Dini et
al., 2012) tracks kernel-level system calls and user-level usage statistics and activities to be
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able to describe and classify the behavior of a mobile application. ANDLANTIS (Bierma
et al., 2014) is a dynamic analysis tool that runs on a sandbox. It aims to detect malware by
analyzing system calls, footprints, and running behaviors. It requires 1 h for the analysis
of 3000 applications. (Chen et al., 2017) proposed a semi-supervised classifier that works
using dynamic API usage logs. They made use of both labeled and unlabeled data to obtain
application properties. They showed the results comparatively by classifying with SVM and
k-nearest neighbor (KNN). TaintDroid (Enck et al., 2014) is a dynamic tracer tool. It uses
Dalvik virtual machine to do this tracking. It tracks the usage of sensitive resources such as
the location, microphone, and camera. While revealing the traces of the applications due
to the virtual machine, it does not pose any danger on the real environment. This ensures
that data leaks are prevented and malicious software intentions are revealed.

Dynamic analysis-based approaches try to understand the intentions of mobile
applications by analyzing their behavior during running. For this reason, in some cases, it
can show higher recognition success than static analysis. However, in order to understand
a suspicious behavior, it must be run at least once and information must be collected
during this time. This means both creating a security problem for the device and additional
processing time (Bala et al., 2021). The presence of processor and memory limitations
of mobile devices complicates the applicability of dynamic analysis. However, running
applications on an emulator/sandbox may be sufficient for dynamic analysis. It was
accepted that it is possible to gather more information about the application by simulating
the so-called user behavior (Alzaylaee, Yerima & Sezer, 2020). Crowdroid (Iker, Urko &
Nadjm-Tehrani, 2011) is a behavior-based android malware detection tool that works in
client–server architecture. All system calls from the application are collected via the mobile
device and sent to a cloud server for analysis. With K-means, this data is processed and the
application is classified.

A single feature can capture certain aspects of an application. However, using more
than one feature together can be more advantageous in malware detection. Various studies
have been conducted with hybrid feature structures using combinations of both static
and dynamic features (Surendran, Thomas & Emmanuel, 2020; Martin, Lara-Cabrera &
Camacho, 2019; Tong & Yan, 2017). ProfileDroid (Wei et al., 2012) evaluates both static
and dynamic features such as Android permissions, features obtained as a result of code
analysis, and network usage statistics. Thus, a systematic study was aimed to establish a
cost-effective and consistent model.

Hybrid analysis
The features obtained because of static and dynamic analysis alone can capture only one
aspect of the applications. For this reason, it is possible to make a more accurate analysis
when more than one feature group is used together. Thus, it is possible to detect malware
with higher accuracy. NTPDroid (Arora & Peddoju, 2018) uses a hybrid feature vector
that combines permissions and network traffic. The FP-Growth algorithm is proposed to
obtain the commonly used thicknesses among applications. Experimental results showed
that it has an accuracy value of 94.25%. Arshad et al. (2018) proposed a model for Android
malware detection using static and dynamic analysis together. The model first extracts the
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requested permissions, used permissions, application components and suspicious API calls
by examining the APK file. Then, the application’s network usage statistics obtain system
calls as features. By combining these two feature groups, the feature vector of the application
is obtained and classified by SVM. Experimental results showed high malware detection
accuracy. OmniDroid (Martín, Lara-Cabrera & Camacho, 2019) is a hybrid feature vector
and machine learning classification tool that combines static and dynamic features based
on voting. In this study, the dependencies of static and dynamic features are taken into
account and the features go through an evaluation mechanism when combining them into
a single vector. AAsandbox (Bläsing et al., 2010) offers a two-stage analysis approach. First,
an image of the application is taken in offline mode and static and dynamic analysis is
performed on the sandbox. The entire system is hosted on the cloud server and suspicious
applications are detected. Tong & Yan (2017) proposed a different approach as a solution
to the long processing time problem of static analysis and the problem of dynamic analysis
to consume a lot of processing resources. The model can detect different types of malware
much more efficiently than other studies and achieves an average of 90% classification
success.

In the hybrid analysis process, there are models that use static and dynamic features
togetherwhile creating the feature vector, and there are studies inwhich hybrid classifiers are
used to classify a single feature type. Yerima, Sezer & Muttik (2014) proposed a composite
classification model to increase classification accuracy. In the composition classifier,
rule-based, function-based, tree-based, and probability-based classifiers are used together.
Thus, an average of 5% increase in success was achieved.

Methodology
In this section, the method used by the FG-Droid tool was explained in detail. The method
includes the stages of extracting features, grouping extracted features, updating feature
values, and testing on sample dataset.

Android application structure
Applications prepared for the Android OS are presented to users as a kind of compressed
file with the APK extension. The package includes files such as source code, manifest.XML,
libraries, resources, DEX file, and properties, as shown in Fig. 1. Applications are developed
in Java using the Android SDK. Applications whose source code is completed are converted
to Dalvik bytecode (DEX) together with other required files. A manifest file is an XML
that contains basic cookies for the applications, links to external files, and libraries such
as activities, receivers, and content providers. In addition, the permissions needed to
access device resources, target platform data are included in the manifest. External
resources such as videos, sounds, audios, images, and text files used by the application
are packaged in the APK file. As a result, a package is prepared that contains necessary
files to execute the entire working functions (Syrris & Geneiatakis, 2021). Prepared APK
packages are offered to users via Google Play Store or third party application distribution
platforms.More details for Android application development are provided on the developer
page (https://developer.android.com/docs).
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Figure 1 Structure of Android Apk (Syrris & Geneiatakis, 2021a).
Full-size DOI: 10.7717/peerjcs.1043/fig-1

Automatic feature extraction and pre-processing
The Android operating system works on an application-based. After the applications
are prepared, they are made into zip files, and their extensions are determined as
APK. These applications, which have similar file structures, can be run on the same
operating system (Android OS). The application package contains folders and files such
as androidmanifest.xml and class.dex, resources.arsc, lib, res. Androidmanifest.xml is
required for applications to run and contains some information (version, API level,
hardware, software information, etc.) and permissions declared by the application.

This study adopts a static analysis-based feature extraction approach for Android
malware detection. A series of steps were applied to extract the permission-based features
in the Androidmanifest.xml file, as shown in Fig. 2. First, a dataset consisting of benign and
malicious software was created. Applications are opened using the Jadx decompiler. Thus,
access to both the source code and the Androidmanifest.xml file needed in this study was
provided. A list of all permissions in the Androidmanifest.xml file is required to determine
the permissions requested by the applications and transfer them to the feature vector. This
study used a list consisting of 348 permissions in Android 11 API level 30.

The permissions in the manifest file and the permissions in the permission list were
compared and transferred to the feature vector with a value of 1 for used ones and 0
for unused ones. Thus, a feature vector of 1 × 349 dimensions was obtained for each
application. It should be noted that it is impossible to open all applications healthily
with reverse engineering. In this case, values such as NaN and space in the vector may be
present. These were checked, and related applications were filtered. There was no problem
in terms of malicious application labelling applications. However, it is critical to determine
whether benign apps are genuinely benign. For this reason, all benign applications were
rechecked on Virustotal. For this reason, high-speed and efficient feature extraction and
preprocessing were carried out. Those who did well in these tests were marked with B, and
applications from the Drebin and genome dataset were marked M. After these processes
were completed for all applications, they were combined into a single feature vector. As
a result, a feature vector of 7,266 × 349 dimensions was obtained. The resulting vector
was saved in a CSV file and converted into a usable form in the following steps. All these
processes were done with the exe file prepared in c# language.
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Figure 2 Automatic feature extraction and pre-processing flowchart.
Full-size DOI: 10.7717/peerjcs.1043/fig-2

Considering that there will be a need for high processing power in this large-sized vector
in machine learning models, it is subjected to feature grouping, the details of which we have
given in the next section. Since the values after the group are greater than 1, normalization
is performed with the normal distribution, and all values are scaled to the 0–1 range.

Proposed feature grouping and feature selection algorithm
The mechanism of accessing certain components or performing functions was based on
permissions in the Android operating system. Android applications request permission to
access and read information about calendar, location information, contacts, storage,
camera, microphone, various sensors. For example, it is possible to access contact
information on the device with the Android.permission.READ_CONTACT permission.
Permissions vary according to the device’s feature and functional capacity.

In this study, instead of a feature vector containing all permissions used in Android
architecture, a model called FG-Droid has been developed, which can achieve high
classification success with a very fast training and testing time by using fewer features.
For this purpose, a series of operations were carried out within the flow chart shown in
Fig. 3.

In the first stage of the model, a dataset containing 7,622 applications was created, the
details of which are given in Section 4. The permission-based features of these applications
have been extracted. At this stage, a training and test vector containing 349 features
was created. In order to shorten the training and testing times and to classify using less
processing time, operations were carried out according to the proposed algorithm for
grouping the features and reduction the size. Thus, a tool was created in which it was
possible to classify with less features. The standardization process was performed using
the normal distribution on the feature vector obtained after this step. The resulting data
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Figure 3 Flow-chart of proposed model.
Full-size DOI: 10.7717/peerjcs.1043/fig-3

set was divided into two separate parts to be used in the training and testing phases.
During the training phase, oversampling was performed using the SVM-synthetic minority
over-sampling technique (SMOTE) algorithm to resolve the sample number imbalance
between clusters, and training was carried out on deep neural network (DNN), recurrent
neural network (RNN), long short-termmemory (LSTM), and gated recurrent unit (GRU)
networks together with machine learning algorithms (Rf, Extratree, gradient boosting,
etc.). The resulting trained models were tested with previously separated test data and the
results were shown in comparison with commonly used metrics.

As can be seen in Fig. 3, the proposed feature grouping and selection method was carried
out after the application features are extracted. Thus, it was possible to work with a much
lower-dimensional feature vector not only in the training and testing phases, but also in all
processing steps. The details of feature grouping operations are as shown in Fig. 4.

The determination of groups was based on basic read/write operations (CRUD) in
computer systems and operations specific to mobile devices (Broadcast, Control, Bind).
These groups consisted of Access (A), Modify (M), Set (S), Update (U), Write (W), Read
(R), Get (G), Manage (Mn), Bind (Bd), Broadcast (B) and Control (C). The Android
permissions in each group are shown in Appendix A. Within the groups determined in
Appendix A, all of the features were first scanned and brought together on a group basis.
The values of these features were aggregated within each group, so that the existence of
the permission represents itself in the total. For example, instead of using 21 different
features in model trainings separately, they were combined under the Access (A) feature.
Thus, 21 properties were represented only by the Access (A) property. Although there are
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Figure 4 Proposed feature grouping and selection algorithm.
Full-size DOI: 10.7717/peerjcs.1043/fig-4

Figure 5 Pseudo-code of feature grouping and selection algorithm.
Full-size DOI: 10.7717/peerjcs.1043/fig-5

many permissions/features in the Android operating system, very few of them were used
in applications, so it is not necessary to use all of the features separately during training
and testing. In the Drebin dataset used in this study, the average number of permissions
requested for each application was five. Similarly, the average number of permit requests
in the Genome and Arslan datasets was six and five, respectively. In this case, a feature
vector created with five numbers 1 and 344 numbers 0. Instead, all of the permissions
were searched for each application, and they were combined under 11 feature groups after
grouping and aggregation. Thus, in the process starting as 349 features, a feature vector
with only 11 features was obtained for each application.

The feature grouping process was carried out using the code structure given in Fig. 5.
The feature vector of 7,622 × 349 dimensions taken as input was converted into a 7,622
× 11 dimensional vector, thus providing a much more efficient learning in training and
testing processes. The effect of the obtained vector on the results is shown in detail in
‘Results’.
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RESULTS
The performance of the proposed model is evaluated in terms of (1) the classification
success and (2) the time needed for training and prediction. A binary classification was
determined as benign and malicious. The tests were performed separately on machine
learning techniques (RF, DT, LDA, etc.), DNN, RNN, LSTM, and GRU networks, and the
results were given in detail. Thus, it was desired to show the effect of feature grouping and
reduction process used by FG-Droid application on the results.

Evaluation metrics and experimental setup
The experimental environment and evaluation criteria are very important to analyze the
performance of the machine-learning model. For the experiment, 70% of the data was split
for training and 30% for testing. area under the receiver operating characteristic (ROC)
curve (AUC), precision, recall, f-score, and accuracy values were calculated to evaluate the
performance of the proposed model. The calculation equations of these metrics are shown
below:

precision=
TP

TP+FP
(1)

recall=
TP

TP+FN
(2)

f-score=
TP

TP+FN ∗
TP

TP+FP
TP

TP+FN +
TP

TP+FP

(3)

accuracy=
TP+TN

TP+TN +FP+FN
(4)

TP is the number of truly malicious samples from those predicted as malware, FP is the
number of samples that are predicted to be malware that are not truly malicious. FN is the
number of samples that are predicted to be benign that are not truly benign and TN is the
number of truly benign samples from those predicted as benign.

The computer system architecture used in the development of the FG-Droid tool is as
shown in Table 2. It is very important in calculations regarding training and test times. All
comparative results were obtained using the same infrastructure.

Dataset
In studies on Android malware detection, it is not possible to reach sufficiently large,
homogeneously distributed, and reliable datasets. In this study, Drebin (https://www.sec.tu-
bs.de/~danarp/drebin/) and Genome (http://www.malgenomeproject.org/) datasets were
used for malware applications. The Drebin dataset contains 5,560 samples from 179
different application groups. A malicious dataset with 6,660 samples was created by taking
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Table 2 Computer system architecture.

Parameter Value

CPU Intel Core i5-10760
RAM 8 Gigabyte
Operating System Windows 10 Pro
Python version 3.7.6
Libraries Scikit learn, matplotlib, pandas, seaborn, numpy, imblearn

1,000 samples from the genome dataset. The Arslan (Arslan, Alper Doğru & Barışçı, 2019)
dataset was used for benign applications. In this dataset, the applications with the highest
number of downloads in Google Playstore were selected in various categories, and they were
subjected to security tests on virustotal.com (https://www.virustotal.com/gui/home/upload)
and a data set consisting of 960 applications that passed the test was created. During the
labeling phase of the datasets, Drebin and Genome were distributed as labeled, so no action
was taken on the malicious dataset. However, labeling in the benign dataset was made by
us to be used in this study. As a result, a dataset containing real-world applications and
examples that will not create noise for both malicious and benign applications has been
created.

Hyper-parameter tuning for best machine learning models
In order to achieve successful classification performance in a test environment where
each sample is represented by 11 features, 10 different machine learning techniques and
DNN, RNN, LSTM, and GRU networks were designed and tested. At the end of these
processes, hyper-parameter tuning was performed for the all classifiers.. Both GridSearch
and RandomSearch algorithms were used for the selection of the best parameters, and the
selection range of the parameters and selected parameters was as shown in Table 3. Thus,
it was possible to obtain the best rates for all classifiers in the tests.

Results for machine learning
After the feature-grouping algorithm used in the development process of the FG-Droid, the
results obtained in the tests using machine-learning techniques were as shown in Table 4
for 10 different classifiers.

As can be seen in Table 4, the accuracy rate is 90% and above, except for two algorithms,
and the highest classification rate was 92.5%. While a successful result such as 94.4% was
obtained in the precision value, recall, and f-score were 92%. As a result, a very high success
of 97.9% was achieved in the AUC score, which is the indicator of classification success
for both classes. This showed that it is not enough for permission-based applications to
remove the disruptive features in android malware detection and it is not necessary to
consider each permission as a separate feature. It was possible to reach the 97.9% success
level using only 11 features of the application. The effect of the FG-Droid tool is not in
the feature selection, but in grouping the features and ensuring that each permission is
represented under the group. It was possible to prevent the loss of the distinctiveness of the
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Table 3 Details of the hyper-parameters of all classifiers.

Classifier Hyper-parameter tuning range Selected values

KNeighbors n_neighbors: (1,20,1)
p: (1,5,1)
weights: (‘uniform’, ‘distance’),

‘n_neighbors’: 5
‘p’: 3
‘weights’: ‘uniform’

SVC C: [0.1, 1, 10, 100, 1000]
kernel: [‘rbf’,‘linear’]

C: 1,
kernel: ‘rbf’

GradientBoosting loss: [‘log_loss’, ‘deviance’, ‘exponential’]
‘‘learning_rate’’: [0.01, 0.025, 0.2]

loss:log_loss
‘‘learning_rate’’: 1.0

Random Forest n_estimators: [100, 200, 800, 2000]
criterion: [‘‘gini’’, ‘‘entropy’’, ‘‘log_loss’’]

n_estimators=100
criterion=‘gini’

XG Boost ‘max_depth’: [3, 5]
‘learning_rate’: [0.01, 0.1, 1, 10],

max_depth=5
‘learning_rate’=1.0

Extra Tree ‘n_estimators’: [200-2000]
max_features’: [‘auto’,‘sqrt’,‘log2’]
max_depth: [10-110]
Min samples split: [2,5,10]

‘max_features’: sqrt
‘n_estimators’: 1800
max_depth:30
Min samples split:10

Ada Boost ‘learning_rate’: [0.01, 0.1, 1, 10],
‘n_estimators’: [50, 500, 2000]

‘learning_rate’: 1
‘n_estimators’: 50

Decision Tree ‘criterion’: [‘gini’, ‘entropy’], criterion=‘gini’
Logistic Regression ‘C’: [1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03],

‘penalty’: [‘l1’, ‘l2’]}
C’: 1.0,
‘penalty’: ‘l2’

Linear Discriminant Analysis solver: [‘svd’, ‘lsqr’, ‘eigen’] ‘solver’: ‘svd’

Table 4 ML classification results with proposed feature grouping algorithm.

ML classifier algorithm AUC_score Precision Recall F-score Accuracy

KNeighbors 0.965 0.905 0.913 0.909 0.910
SVC 0.950 0.844 0.931 0.885 0.881
GradientBoosting 0.965 0.928 0.899 0.913 0.916
Random Forest 0.976 0.942 0.904 0.923 0.925
XG Boost 0.976 0.941 0.905 0.923 0.925
Extra Tree 0.979 0.944 0.909 0.926 0.929
Ada Boost 0.955 0.917 0.872 0.894 0.898
Decision Tree 0.970 0.939 0.901 0.920 0.922
Logistic Regression 0.881 0.790 0.816 0.803 0.803
Linear Discriminant 0.856 0.769 0.814 0.791 0.788

feature by selecting the feature. Thus, both the number of features were greatly reduced
and the effect of many features on classification was used under the group.

In order to improve the results, the cross-validation process on themodel was performed
using ‘‘RepeatedStratifiedKFold’’ function. The n_splits, n_repeats and random state were
chosen as 10, 3, and 123, respectively. The results obtained in repeated tests for all classifiers
are shown in Fig. 6. Accordingly, XGB, ET, RF and DT algorithms are more successful than
other classifiers at the average classification rate.
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Figure 6 Cross-validation graph for all ML classifiers.
Full-size DOI: 10.7717/peerjcs.1043/fig-6

Results for deep learning models
During the development of the FG-Droid, tests were carried out using deep learning
models. As stated before, the number of features decreases considerably with the proposed
grouping algorithm. The effect of the algorithm in deep learning models, which need to
use more features and more training examples in its basic structure, is very important.
These tests were carried out to observe whether the group-based feature vector would have
a negative effect on the classification performance in deep learning models.

As can be seen in Table 5, a lower classification success was achieved when compared to
the machine learning models, due to the reduction in the number of features. This decrease
occurred for all of the metrics. The highest level of success was achieved with the LSTM
(100,100) model with 92.2% for accuracy. The precision, recall, and f-score values were
94.4%, 91.6% and 93.9%, respectively. The highest value of 92.5%was obtained in the AUC
score, in which both classes were evaluated together. The learning curves for the models
with the highest classification rate for DNN, RNN, GRU, and LSTM are shown in Fig. 7.
For all of the models, learning took place very quickly, with training reaching its peak at 20
epochs. The test curve was parallel to the training curve. However, the learning rate slowed
down after 20 epochs. This slowdown was thought to be due to the need for more data to
continue learning. Repeating the tests with a larger dataset will allow FG-Droid to achieve
a higher AUC.

Comparison results and best classifier results details
In the FG-Droid development process, it was understood that the models in which the
proposed algorithm produced the most successful results were based on the machine
learning algorithms. Machine learning techniques have generally shown high success.

In order to evaluate the results with all classifiers, ROC curves were taken as shown in
Fig. 8. Accordingly, 97.0% and above AUC values were obtained in random forest, ET,
DT, and XGBoost algorithms. Obtaining a high classification value in different classifiers
strengthens the widespread effect of the proposed feature grouping approach. The highest
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Table 5 Deep learning models classification results with proposed feature grouping algorithm.

Deep learning models Auc_score Precision Recall F-score Accuracy Total number of
processed parameters

Epoch

DNN(30,30) 0.918 0.936 0.906 0.921 0.925 1352 50
DNN(30,30,30) 0.920 0.927 0.916 0.921 0.921 2282 50
DNN(30,30,30,30) 0.935 0.942 0.908 0.925 0.930 3212 50
DNN(100,100,100) 0.925 0.944 0.891 0.917 0.924 31702 50
DNN(300,300,300) 0.928 0.940 0.904 0.921 0.926 275102 50
RNN(10,10) 0.900 0.910 0.910 0.920 0.902 242 50
RNN(30,30) 0.916 0.928 0.891 0.939 0.918 1322 50
RNN(100,100) 0.867 0.899 0.830 0.863 0.875 11402 50
RNN(300,300) 0.887 0.905 0.865 0.885 0.895 94202 50
GRU(10,10) 0.910 0.918 0.897 0.907 0.908 712 50
GRU(30,30,30) 0.902 0.915 0.887 0.901 0.905 3932 50
GRU(100,100) 0.915 0.836 0.891 0.913 0.913 34102 50
GRU(300,300) 0.914 0.934 0.893 0.913 0.915 282302 50
LSTM(10,10) 0.920 0.939 0.891 0.914 0.918 902 50
LSTM(30,30) 0.909 0.890 0.908 0.908 0.910 5102 50
LSTM(100,100) 0.916 0.940 0.890 0.914 0.920 45002 50
LSTM(300,300) 0.916 0.937 0.892 0.914 0.920 375002 50

value of 97.7% was obtained with the ET classifier. This value represents high malware
detection. Achieving high classification success with only 11 features is valuable.

The effect of proposed feature grouping on learning and testing time
The proposed feature grouping-based algorithm performed a very large feature vector
size reduction and feature selection from 349 features to 11 features. Thus, the amount of
data was reduced by 30 times and a much simpler feature vector was obtained. This had
a serious impact on the training and test duration as well as on the classification result.
Having hardware limitations in mobile devices and the need for fast and efficient tools are
other advantages in choosing FG-Droid.

In the initial state of the created feature vector, in the case of using well-known feature
selection methods and in the tests made with the proposed feature grouping method, the
required times for training and testing were as shown in Table 6.

The results obtained when using known and feature selectionmethods, such as Extratree,
randomforest, chi2, f_classif, f_regression, and PCA, or without feature selection, are as
shown in Table 6. The FG-Droid tool reached a 97.7 AUC with only 11 features. The
minimum number of features required to obtain similar AUC values was 35. It was seen
that the increase in the number of selected features had a serious effect on both the training
and prediction time. FG-Droid was on average 700% faster in the training time than in the
model without any feature selection, while it was approximately 80% faster in the prediction
time. On the other hand, the best results were obtained with chi2 among the traditional
feature selection methods, and the proposed model was 45% faster in the training time and
23% faster in the testing time when compared to the chi2 method. As a result, by grouping
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Figure 7 (A–D) Learning curves of deep learning models.
Full-size DOI: 10.7717/peerjcs.1043/fig-7

the features with FG-Droid, the effect of the feature on the classification was not lost and
an efficient classification was made.

Comparison with similar works and discussion
A lot of work has been done in recent years on Android malware detection. These studies
basically used static analysis, dynamic analysis, or hybrid feature extractionmethods. While
some of these obtained features contributed positively to the classification performance,
some may have had no effect at all, and some may have had a deteriorating effect. For this
reason, it is beneficial to determine those features that contribute positively to the result
and to remove the others from the feature set. In this study, a feature grouping method
was proposed for the use of features extracted from static analysis in the classification.
FG-Droid used the feature vector consisting of grouped features and made classification
with the ExtraTree algorithm. Instead of selecting and removing features from the feature
vector, the approach of evaluating these features within the group was adopted. The Drebin
malicious dataset, which has been widely used for many years, was used in the tests for
FG-Droid.
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Figure 8 ROC curve of all ML algorithms with feature grouping.
Full-size DOI: 10.7717/peerjcs.1043/fig-8

Table 6 Training and testing time with different feature selection algorithms and proposed model.

Feature selection method Selected/Grouped
feature size

Training
time(s.)

Prediction
time(s.)

FG-Droid (proposed model) 11 0.344 0.063
Without feature selection 349 2.234 0.109
Feature importance with extra tree algorithm 46 0.609 0.078
Feature importance with random forest algorithm 45 0.594 0.078
chi2 35 0.500 0.078
f_classiif 35 0.519 0.078
f_regression 35 0.516 0.078
PCA 35 0.688 0.078

The results of recent studies and the test results of the FG-Droid are shown in Table 7.
When the studies were examined, it was understood that Drebin was widely used as a

dataset, and in some studies, Androzoo and original datasets were studied. Permissions have
generally been the most widely used feature in static analysis-based methodologies. These
features were used in the training and testing processes of various classifiers. Classification
successes vary between 91.0% and 99.0%. In the analysis time per application, the best
value was 0.008. When the studies were compared, it was understood that the tool with the
highest classification success and the best analysis time per application was the FG-Droid
recommended in this study. In the study conducted in 2021 with an analysis time of
0.008, the classification performance remained at the level of 91.0%. The analysis time of
FG-Droid of 0.063 s reveals that it is a very efficient model. The most important factor in
the emergence of this efficient model is of course working with a low number of features.
It works with a lower feature count than all the studies given in the table. In almost all
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Table 7 Similar works with proposed model.

Paper Dataset Feature extraction Feature selection or
grouping algorithms
and classification
methods

Classification
Performance

Sec. for
identification
each app

Ratibah Tuan Mat
et al. (2021)

Androzoo,
Drebin

Permissions Naïve Bayesian 91.10% –

Mohammed Arif et
al. (2021)

Androzoo,
Drebin

Permissions MCDM 90.54% (4 clas-
sification levels)

–

Millar et al. (2021) Drebin,
Genome

Opcode and permissions No feature selection,
classification with multi-
view deep learning

91.00% 0.008

Zhang et al. (2021) Drebin Text sequences of apps No feature selection.
Classification with Text
CNN

95.20% 0.28

Arp et al. (2014) Drebin Used permissions, sys.
Api calls, network ad-
dress

Machine learning 94% 10

Anastasia (Ferei-
dooni et al., 2016)

Own
dataset

Api calls, network ad-
dress

ML(NB, RF, KNN) 96% 0.29

MamaDroid (On-
wuzurike et al.,
2019)

Drebin Api calls, call graphs SVM, RF, 1-NN, 3-NN 87% 0.7± 1.5

Taheri et al. (2020) Drebin,
Genome

Api calls, intents, per-
missions(21492 features)

FNN, ANN, WANN,
KMNN

90%–99% Very high

Apkauditor (Kabakus,
Doğru & Çetin,
2015)

Own
dataset

Permissions, services, re-
ceivers

Signature based 92.5% –

Syrris &
Geneiatakis
(2021b)

Drebin Static features ML(6 six classifiers) 99% –

Droidmat (Wu et
al., 2012)

Own
dataset

Intents, Api calls Signature based 91.83% –

Alazab et al. (2020) Own
dataset

Api calls ML(RF, J48, KNN, NB) 94.30% 0.2 –0.92

Pektaş & Acarman
(2020)

Drebin,
AMD, An-
drozoo

Api calls SDNE(DNN model) 98.5% –

Shehata et al.
(2020)

Own
dataset

Activities, services, re-
ceivers, providers, per-
missions

RF 97.1% –

Thiyagarajan,
Akash & Murugan
(2020)

Androzoo Permissions(113) –
>PCA (10)

DT with PCA feature se-
lection

94.3% –

FG-Droid Drebin,
Genome,
Arslan

Permission groups ML, DNN 97.7% 0.063
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studies, feature selection is avoided and the processing time is compromised in order to
achieve high classification success. However, limited resources in mobile devices require
consideration in efficiency. In this study, the feature selection approach was handled from
a different perspective and instead of selecting features, a joint evaluation approach was
adopted.

CONCLUSIONS
The increase in mobile devices using the Android operating system has caused them to
be the target of cyber attackers. New types of malware are emerging every day, and new
methods have been proposed as a precaution. FG-Droid uses a permission grouping-based
approach to Android malware analysis. It has an AUC of 97.7% with 11 features for binary
classification. Using this newly proposed algorithm, 349 features extracted from Android
applications were grouped and reduced to 11 features. Thus, a much more efficient feature
vector was revealed. Drebin andGenomemalware datasets were used to observe the effect of
the model. With the success of the classification, a very efficient model was created with the
shortening of the training and prediction times. In the future, tests will be performed with
datasets containing more samples to further increase the classification success. Analysis
time per application is just 0.063 s, one of the best analysis times ever. In addition, since
a very fast method has been developed, it is aimed to present it with a platform that will
serve online. As a result, FG-Droid is expected to contribute positively to the security of
Android smart devices.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Recep SinanArslan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data, features for grouped permissions, are available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1043#supplemental-information.

Arslan (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1043 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1043#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1043#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1043#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1043


REFERENCES
Aafer Y, DuW, Yin H. 2013. DroidAPIMiner: mining API-Level Features for robust

malware detection in android. In: International conference on security and privacy in
communcation systems. 86–103.

AlazabM, AlazabM, Shalanginov A, Mesleh A, Awajan A. 2020. Intelligent mobile
malware detection using permission requests and API calls. Future Generation
Computer Systems 107:509–521 DOI 10.1016/j.future.2020.02.002.

Alzaylaee MK, Yerima SY, Sezer S. 2020. DL-Droid deep learning based android
malware detection using real devices. Computer and security 89:1–11.

Arora A, Peddoju SK. 2018. NTPDroid: a hybrid android malware detector using net-
work traffic and system permissions. In: 2018 17th IEEE international conference on
trust, security and privacy in computing and communications/12th IEEE international
conference on big data science and engineering (TrustCom/BigDataSE). Piscataway:
IEEE, 808–813.

Arp D, SpreitzenbarthM, Hübner M, Gascon H, Rieck K. 2014. Drebin: effective and
explainable detection of android malware in your pocket. In: Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS).

Arshad S, ShahMA,Wahid A, Mehmood A, Song H, Yu H. 2018. SAMADroid: a novel
3-level hybrid malware detection model for android operating system. IEEE Access
6:4321–4339 DOI 10.1109/ACCESS.2018.2792941.

Arslan RS, Alper Doğru İ, Barışçı N. 2019. Permission-based malware detection system
for android using machine learning techniques. International Journal of Software and
Knowledge Engineering 29:43–61 DOI 10.1142/S0218194019500037.

Bakour K, Murat Ünver H. 2018. The Android malware static analysis: techniques,
limitations and open challenges. In: 3rd international conference on computer science
and engineering (UBMK).

Bala N, Ahmar A, LiW, Tovar F, Battu A, Bambarkar P. 2021. Droidenemey battling
adversarial example attacks for Android malware detection. Digital communications
and networks. 1–10.

BiermaM, Gustafson E, Erickson J, Fritz D, Choe YR. 2014. Andlantis large-scale
android dynamic analysis. In:Workshop on Mobile Security Technologies (MoST).
1–8.

Bläsing T, Batyuk L, Schmidt A, Camtepe SA, Albayrak S. 2010. An Android Application
Sandbox system for suspicious software detection. In: 5th International Conference on
Malicious and Unwanted Software. 55–62.

Chen L, Xia C, Lei S, Wang T. 2021. Detection, traceability, and propagation of mobile
malware threats. IEEE Access 9:1–23 DOI 10.1109/ACCESS.2020.3046536.

Chen L, ZhangM, Yuan Yang C, Sahita R. 2017. Semi supervised classification for
dynamic android malware detection. ArXiv preprint. arXiv:1704.05948.

Handrick da Costa F, Medeiros I, Menezes T, Victor da Silva J, Lorraine da Silva I,
Bonifacio R, Narasimhan K, Ribeiro M. 2020. Exploring the use of static and

Arslan (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1043 21/24

https://peerj.com
http://dx.doi.org/10.1016/j.future.2020.02.002
http://dx.doi.org/10.1109/ACCESS.2018.2792941
http://dx.doi.org/10.1142/S0218194019500037
http://dx.doi.org/10.1109/ACCESS.2020.3046536
http://arXiv.org/abs/1704.05948
http://dx.doi.org/10.7717/peerj-cs.1043


dynamic analysis to improve the performance of the mining sandbox approach for
android malware detection. Journal of Systems and Software 183:1–14.

Dini G, Martinelli F, Saracino A, Sgandurra D. 2012.Madam a multi level anomaly
detector for android malware. In: International conference on mathematical methods,
models and architectures for computer network security. 1–17.

EnckW, Gilbert P, Han S, Tendulkar V, Chun B-G, Cox LP, Jung J, McDaniel P, Sheth
AN. 2014. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems 32:1–29.

Fereidooni H, Conti M, Yao D, Sperdutti A. 2016. ANASTASIA: Android mAlware
detection using Static analySIs of Applications. In: 2016, 8th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). 1–5.

Iker B, Urko Z, Nadjm-Tehrani S. 2011. Crowdroid: behavior-based malware detection
system for Android. SPSM 11:15–26.

Jung J, KimH, Shin D, Lee M, Lee H, Cho S-J, Suh K. 2018. Android malware detection
based on useful API calls and machine learning. In: IEEE First International Confer-
ence on Artificial Intelligence and Knowledge Engineering (AIKE). 175–178.

Kabakus AT, Doğru IA, Çetin A. 2015. APK auditor: permission-based Android malware
detection system. Digital Investigation 13:1–14 DOI 10.1016/j.diin.2015.01.001.

Khanna P, Singh A. 2016. Google android operating system: a review. International
Journal of Computer Applications 174(4):1–4.

Kwong Yan L, Yin H. 2012. Droidscope seemlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: 21st usenix conference on
security symposium. 29–32.

Lachtar N, Ibdah D, Bacha A. 2021. Toward Mobile Malware detection through
convolution neural networks. IEEE Embedded Systems Letters 13(3):1–4
DOI 10.1109/LES.2020.2995084.

Martin A, Lara-Cabrera R, Camacho D. 2019. Android malware detection through
hybrid features fusion and ensemble classifiers: the AndroPyTool framework and
the OmniDroid dataset. Information Fusion 52:128–142
DOI 10.1016/j.inffus.2018.12.006.

Millar S, McLaughlin N, Martinez del Rincon J, Miller P. 2021.Multiview deep learning
for zero-day Android malware detection. Journal of Information Security and
Applications 58:1–14.

Mohammed Arif J, Faizal Ab RazakM, TuanMat SR, Awang S, Nadiah Ismail NS,
Firdaus A. 2021. Android mobile malware detection using fuzzy AHP. Journal of
Information Security and Applications 61:1–11.

Nguyen Vu L, Jung S. 2021. Admat: a cnn-on-matrix approach to Android malware
detection and classification. IEEE Access 9:1–15
DOI 10.1109/ACCESS.2020.3046536.

Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G. 2019.
MAMADROID: detecting Android malware bu bulding markov chains of behavioral
models. Transactions on Privacy and Security 22(2):1–34.

Arslan (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1043 22/24

https://peerj.com
http://dx.doi.org/10.1016/j.diin.2015.01.001
http://dx.doi.org/10.1109/LES.2020.2995084
http://dx.doi.org/10.1016/j.inffus.2018.12.006
http://dx.doi.org/10.1109/ACCESS.2020.3046536
http://dx.doi.org/10.7717/peerj-cs.1043


Ou F, Xu J. 2022. S3 feature: a static sensitive subgraph-based feature for android
malware detection. Computer & Security 112:1–17.
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