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ABSTRACT
One of the significant purposes of building a model is to increase its accuracy within a
shorter timeframe through the feature selection process. It is carried out by determining
the importance of available features in a dataset using Information Gain (IG). The
process is used to calculate the amounts of information contained in features with high
values selected to accelerate the performance of an algorithm. In selecting informative
features, a threshold value (cut-off) is used by the Information Gain (IG). Therefore,
this research aims to determine the time and accuracy-performance needed to improve
feature selection by integrating IG, the Fast Fourier Transform (FFT), and Synthetic
Minor Oversampling Technique (SMOTE) methods. The feature selection model is
then applied to the Random Forest, a tree-based machine learning algorithm with
random feature selection. A total of eight datasets consisting of three balanced and
five imbalanced datasets were used to conduct this research. Furthermore, the SMOTE
found in the imbalance dataset was used to balance the data. The result showed that the
feature selection using Information Gain, FFT, and SMOTE improved the performance
accuracy of Random Forest.

Subjects Data Mining and Machine Learning, Data Science
Keywords Information Gain, SMOTE, FFT, Accuracy, Imbalance

INTRODUCTION
Higher accuracy and quicker processing time must be considered in order to build a
model. Unfortunately, those two are contradictory because any effort to increase the
accuracy of one affects the processing speed and accuracy of the other. Therefore, this
study determined the accuracy-performance and the required time to improve feature
selection by integrating Information Gain (IG), the Fast Fourier Transform (FFT), and
Synthetic Minority Oversampling Technique (SMOTE).

Random Forest is a classification algorithm based on the random selection of trees
(Gounaridis & Koukoulas, 2016; Prasetiyowati, Maulidevi & Surendro, 2020a; Prasetiyowati,
Maulidevi & Surendro, 2021), thereby making it uninformative as a tool used to build
the decision tree (Breiman, 2001; Prasetiyowati, Maulidevi & Surendro, 2021; Scornet, Biau
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& Vert, 2015). However, this process allows the selected feature to be uninformative.
Therefore, improving the feature selection process is necessary to make it informative
with a faster execution time. Several studies have proposed the feature selection process
for Random Forest (Adnan, 2014; Prasetiyowati, Maulidevi & Surendro, 2021; Sun et al.,
2020; Ye et al., 2013; Zhang & Suganthan, 2014), including the use of IG with a threshold
based on the standard deviation value (Prasetiyowati, Maulidevi & Surendro, 2021). Zhang
& Suganthan (2014) proposed a new method in Random Forest by increasing tree diversity
by combining a different rotation space at the root node. Ye et al. (2013) researched feature
selection for Random Forests using the stratified sampling method, and the results showed
the enhanced performance of Random Forest.

The number of features in a dataset varies from few to more than 100 features. However,
not all features are informative, irrelevant, and redundant (Lin, Hung & Wei, 2018);
therefore this affects the performance and accuracy (Chandrashekar & Sahin, 2014). One of
the methods used to solve this problem is the Information Gain (IG), an essential technique
for weighting the maximum entropy value (Chandrashekar & Sahin, 2014; Elmaizi et
al., 2019; Jadhav, He & Jenkins, 2018; Nguyen, Shirai & Velcin, 2015; Odhiambo Omuya,
Onyango Okeyo & Waema Kimwele, 2021; Singer, Anuar & Ben-Gal, 2020). According to
preliminary studies, IG reduced the entropy value before and after the separation process
and was used to determine the possibility of using or discarding an attribute. For instance,
those equal to or greater than a predetermined threshold value of 0.05 are selected in
the algorithm classification process (Demsǎr & Demsar, 2006; Yang et al., 2020). Sun et al.
(2020) used the calculation of the threshold value of 0.5 as a determination of the occurrence
of landslides. Landslides occur if the predicted value is greater than 0.5. Several other studies
use the calculation of the frequency of each feature to determine the threshold value as
a subset of the final features (Tsai & Sung, 2020). However, some also use the standard
deviation to determine the threshold (Prasetiyowati, Maulidevi & Surendro, 2021; Sindhu
& Radha, 2020).

Furthermore, the preliminary study shows that the standard deviation method, which
aims to determine the threshold value did not calculate the class balance in the dataset.
Therefore, this led to the development of several techniques to overcome this process. One
of which is using the Synthetic Minority Oversampling Technique, also known as SMOTE
(Chawla et al., 2002; Feng et al., 2021). SMOTE (Juez-Gil et al., 2021; Li et al., 2021; Mishra
& Singh, 2021; Zhu, Lin & Liu, 2017), an excellent oversampling technique that reduces
the risk (Chawla et al., 2002). However, SMOTE tends to cause problems when applied to
unbalanced multiclass data, with generalization acting as a more severe problem and one
of the minority classes to the majority (Zhu, Lin & Liu, 2017). The SMOTE stages are as
follows (Feng et al., 2021):
1. Prepares the number of synthetic minority class instances
2. Selects a minority class instance randomly
3. Uses the K-Nearest Neighbor (KNN) algorithm to get associated neighbors from the

selected instance
4. Combines minority and selected neighboring class instances to generate new synthesis

by random interpolation.
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Steps 2 and 4 are repeated until the desired amount is obtained.
This study followed previous studies (Prasetiyowati, Maulidevi & Surendro, 2021;

Prasetiyowati, Maulidevi & Surendro, 2020a; Prasetiyowati, Maulidevi & Surendro, 2020b).
The researchers began this study by using the Correlation-based Feature Selection (CBF) for
feature selection. This study resulted in the time required by the Random Forest (RF) that
was less than the study without performing the feature selection. However, the accuracy was
poor (Prasetiyowati, Maulidevi & Surendro, 2020a). In the second study, the researchers
continued to use the CBF. However, the dataset used in the study was the dataset that had
been transformed using the Fast Fourier Transform (FFT) and reverted by using the IFFT.
This study resulted in a better accuracy value than previous studies. The average accuracy
value for the dataset that had been transformed increased by 0.03 to 0.08% compared to the
original dataset (Prasetiyowati, Maulidevi & Surendro, 2020b). Even though the required
time in this second study was shorter than that of the RF without feature selection, the
total time did not include the time needed for transforming the dataset. The third study
used the gain information with the threshold based on the standard deviation, fixing the
required time and accuracy value (Prasetiyowati, Maulidevi & Surendro, 2021). This third
study resulted in better accuracy than the previous studies, and the required time was also
better. Nonetheless, the accuracy obtained from the study could not be superior to that
of RF without feature selection. This study was only superior in the aspect of required
time. The need for the increased accuracy value stimulated the researchers to implement
the FFT to the feature. Based on the previous studies, FFT could improve i the accuracy
value (Prasetiyowati, Maulidevi & Surendro, 2020b). In addition, this study also proposes
integrating Information Gain, Fast Fourier Transform (FFT), and Synthetic Minority
Oversampling Technique (SMOTE) algorithms to improve the accuracy of Random Forest
performance. The FFT is used to transform feature values into complex numbers consisting
of imaginary and real numbers, while the SMOTE is used for class imbalance problems
and increasing accuracy values. Features with real values are taken, and the median value
is calculated to determine the threshold. The stages or the roadmap of this study can be
seen in Fig. 1. We also use the confusion matrix to analyze accuracy (Sun et al., 2021; Zhou
et al., 2021).

This study is organized as follows: ‘Materials & Methods’ and ‘Results’ describe the
related research and proposed method. Meanwhile, the results and comparisons with other
methods and analyses are described in section ‘Discussion’. Finally, the research conclusion
is discussed in ‘Conclusions and Future Work’.

MATERIALS & METHODS
This study proposed a feature selection method using the median of Information Gain
(IG), transformed with Fast Fourier Transform (FFT) to obtain real and imaginary values.
However, the real values were taken to calculate the median of the IG, which are used to
determine the threshold (cut off) subsequent processes. The equation used to calculate the
IG value is shown in Eq. (1).

gain
(
y,A

)
= entropy

(
y
)
−

∑
Cεnilai(A)

Yc
y
entropy(yc). (1)
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The value c is an attribute, and Yc is a subset of y. The rule of Eq. (1) is the total entropy
y, obtained after splitting the data based on feature X.

In the next step, the Information Gain value is transformed using FFT as in Eqs. (2) and
(3).

X [k]=
∑N−1

n=0
X [n]W kn

N , k= 0,1,...N −1 (2)

whereW kn
N referred to as the twiddle factor, has a value of
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141 Furthermore, this study also proposes using SMOTE for multiclass datasets with only 2 classes, 

142 namely the minority and majority. The SMOTE only synthesizes the minor data to balance with 

143 the major, intead of  the minor. Furthermore, this study proposes the SMOTE repetition 

144 technique for all minor classes to approach  the same number of instances as the major class. The 

145 flow chart for the proposed method is shown in Fig.2.
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156 4. Chronic dermatitis class that consists of 52 instances. 

157 5. Pityriasis rosea class that consists of 49 instances. 

158 6. Pityriasis rubra pilaris class that consists of 20 instances. 

159 The steps of SMOTE proposal are:

160 1. Checking the minority class. 

161 In the Dermatology dataset, the minority class is the Pityriasis rubra pilaris class, as the 
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−j 2xknN , k= 0,1,...N −1. (3)

The IG transformed by FFT is a complex number consisting of imaginary and real
values. This study used the real value of the transformation results to calculate the median,
the middle value that divides data into two (half). The median equation is seen in Eq. (4).

Median= data
n+1
2

(4)

where n is the number of data determined from the real value of the IG. After obtaining the
median value, the next step is to cut off a threshold based on the median value. However,
when the IG value is greater than or equal to (>=) the median, it is included as the selected
feature.

Furthermore, this study also proposes using SMOTE for multiclass datasets with only
two classes, namely the minority and majority. The SMOTE only synthesizes the minor
data to balance with the major, intead of the minor. Furthermore, this study proposes
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the SMOTE repetition technique for all minor classes to approach the same number of
instances as the major class. The flow chart for the proposed method is shown in Fig. 2.

In Fig. 2, it is seen that the SMOTE process was conducted repeatedly based on the entire
minority class in the dataset. The example is in the dermatology dataset. The dermatology
dataset consists of 33 features, 366 instances, and six classes. Those six classes are:
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1. Seborrheic dermatitis class that consists of 61 instances.
2. Psoriasis class that consists of 112 instances.
3. Lichen planus class that consists of 72 instances.
4. Chronic dermatitis class that consists of 52 instances.
5. Pityriasis rosea class that consists of 49 instances.
6. Pityriasis rubra pilaris class that consists of 20 instances.
The steps of SMOTE proposal are:

1. Checking the minority class. In the Dermatology dataset, the minority class is the
Pityriasis rubra pilaris class, as the total instance is the least compared to others.
Therefore, the Pityriasis rubra pilaris class becomes the minority class.

2. Conducting the SMOTE.
3. The total instance in the Pityriasis rubra pilaris class doubles the number or becomes

40 instances.
4. Back to Step 1, if the Pityriasis rubra pilaris class still becomes the minority class,

continue to Step 2. If not, the total instance in other classes will be checked to determine
which one becomes the next minority class. This should be repeated until all classes
experience the SMOTE at least once and the total instance closes to the total instance
for the minority class.

Data preparation
This research was carried out using a computer with an Intel R©CoreTM i5 processor,
1.6 GHz CPU, 12 GB RAM, and a 64 bit Windows 10 Professional operating system.
The development environment was developed using Python, Matlab, and Weka 3.9.2.
Meanwhile, eight datasets were used in the UCI Machine Learning Repository (Dua &
Graff, 2019), including EEG Eye, Cancer (Dua & Graff, 2019), Contraceptive Method,
Dermatology, Divorce (Yöntem, Ilhan & Kılıc̨arslan, 2019), CNAE-9, Urban Land Cover
(Johnson, 2013; Johnson & Xie, 2013), and Epilepsy (Andrzejak et al., 2001). Information
and details of each dataset are shown in Table 1.

Each dataset was tested ten times using a random seed with the cross-validation (K-Fold
validation 10) process used for the selection of training and test.

RESULTS
This study conducted feature selection and SMOTE experiments using Weka machine
learning tools (version 3.9.2) and MATLAB. The required time and the accuracy
performance are divided into two parts: the proposed feature selection and the dataset
using the SMOTE process. The performance of the proposed model was compared to other
methods such as Correlation Base Feature Selection (CBF) and Information Gain (IG)
using a threshold of 0.05 based on the Standard Deviation value (Prasetiyowati, Maulidevi
& Surendro, 2021) and the original Random Forest (Breiman, 2001).

The proposed feature selection technique was the Information Gain (IG) method with
a threshold based on the median value, calculated using FFT. The IG transformed with
FFT was used to search for the real value. The results of the IG with the threshold were
compared with the original Random Forest method. In fact, for IG with a threshold based
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Table 1 Dataset details.

Dataset Number of
instance

Number of
feature

Number of
classess

Dataset
status

Area

EEG eye 14,980 14 2 Imbalance Life
Cancer 569 32 2 Imbalance Life
Contraceptive method 1,473 9 3 Imbalance Life
Dermatology 366 33 6 Imbalance Life
Divorce 170 54 2 Balance Life
CNAE-9 1,080 857 9 Balance Business
Urban land Cover 168 148 9 Imbalance Physical
Epilepsy 11,500 179 5 Balance Life
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on the median real (threshold median real), one dataset has a superior accuracy value
and another with the same accuracy value. The datasets are the Urban Land Cover and
Divorce datasets. If it is compared with the proposal in the previous study (Prasetiyowati,
Maulidevi & Surendro, 2021), the threshold median real method increases the accuracy in
three datasets, namely Cancer, Urban Land Cover, and CNAE-9. In addition, the Divorce
dataset has the same accuracy value. However, if the IG threshold median real is compared
to the IG threshold median, it is seen that the IG threshold median real results in a better
accuracy value. It can be seen in Fig. 3. Five datasets increased. They are EEG Eye, Cancer,
Dermatology, Urban Land Cover, and Epilepsy. The threshold value based on the IG
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Table 2 Comparison of accuracy values.

Dataset RF CBF IG threshold 0.05 IG threshold SD IG threshold
median

IG threshold
median real

Accuracy Num. of
feature

Accuracy Num. of
feature

Accuracy Num. of
feature

Accuracy Num. of
feature

Accuracy Num. of
feature

Accuracy Num. of
feature

EEG eye 0.9351 14 0.7703 4 0.6316 2 0.9015 10 0.8649 7 0.8890 7
Cancer 0.9633 31 0.9569 12 0.9663 26 0.9439 15 0.9452 16 0.9612 17
Contraceptive
method

0.5230 9 0.4874 3 0.4874 3 0.5164 4 0.5274 5 0.4966 5

Dermatology 0.9701 34 0.9492 15 0.9705 33 0.9743 26 0.9352 17 0.9601 17
Urban land
cover

0.8536 147 0.8730 28 0.8571 110 0.8476 57 0.8494 74 0.8565 74

Divorce 0.9765 54 0.9653 6 0.9765 54 0.9765 52 0.9771 27 0.9765 27
CNAE-9 0.9367 856 0.8118 28 0.8756 57 0.8805 65 0.9367 856 0.9150 856
Epilepsy 0.6973 178 0.6951 119 0.6973 178 0.6973 178 0.6759 97 0.6897 97

Table 3 Comparison of time values.

Dataset Time

RF CBF IG Threhold
0.05

IG Threshold
SD

IG Threshold
median

IG Threshold
median with real

EEG Eye 4.57 3.87 0.63 4.99 3.83 3.67
Cancer 0.10 0.06 0.97 0.06 0.08 0.07
Contraceptive Method 0.35 0.19 0.49 0.26 0.27 0.22
Dermatology 0.07 0.04 0.05 0.04 0.05 0.05
Urban Land Cover 0.17 0.05 0.07 0.06 0.06 0.07
Divorce 0.02 0.01 0.02 0.02 0.01 0.02
CNAE-9 2.19 0.25 0.38 0.42 2.19 1.38
Epilepsy 20.70 17.59 20.70 20.70 15.71 15.85

threshold median real showed an increased accuracy from 0.0071 to 0.0249. The result of
the experiment for comparing each method is shown in Table 2.

Figure 3 shows that most datasets produce better accuracy using the median threshold
with the transformed IG. Only the ContraceptiveMethod andDivorce datasets experienced
a decrease in inaccuracy. Meanwhile, comparing the aspect of required time, the IG with
threshold median real is faster than the RF and IG with threshold Median. The result of
the comparison can be seen in Table 3.

Therefore, the method’s performance and the Confusion Matrix reference were used
to determine each method’s Precision, Recall, and F1-Score, as shown in Tables 3 and
4. The displayed Precision, Recall, and F1-Score is a cumulative calculation of 10 seeds
given to each dataset. Precision is used to measure the classification accuracy conducted to
determine the sensitivity. In comparison F1-Score measures the balance between Precision
and Recall.

In the next stage, the researchers conducted the test on the unbalanced dataset. There
are five unbalanced datasets: EEG Eye, Cancer, Contraceptive Method, Dermatology, and
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Table 4 Precision, recall and F1- score on random forest, using CBF and IG threshold of 0.05.

Dataset Random forest CBF best first IG threshold: 0.05

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

EEG Eye 0.9351 0.9350 0.9353 0.7699 0.7702 0.7700 0.6304 0.6317 0.6310
Cancer 0.9634 0.9632 0.9633 0.9568 0.9568 0.9568 0.9664 0.9664 0.9664
Contraceptive method 0.5192 0.5231 0.5211 0.4873 0.4875 0.4874 0.4873 0.4875 0.4874
Dermatology 0.9690 0.9691 0.9690 0.9493 0.9492 0.9492 0.9702 0.9704 0.9703
Urban land cover 0.8587 0.8534 0.8560 0.8850 0.8809 0.8829 0.8606 0.8571 0.8588
Divorce 0.9780 0.9760 0.9770 0.9656 0.9656 0.9656 0.9780 0.9760 0.9770
CNAE-9 0.9371 0.9366 0.9368 0.7804 0.8117 0.7852 0.8860 0.8756 0.8808
Epilepsy 0.6963 0.6972 0.6967 0.6949 0.6953 0.6951 0.6963 0.6972 0.6967
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Urban Land Cover. Those five datasets were balanced using the SMOTE. The data was
suspended on the following datasets: EEG Eye, Cancer, and Contraceptive method, were
carried out once. Meanwhile, for the Dermatology and Urban Land Cover datasets, the
process of balancing the data was conducted 6 times as the researchers had proposed. The
researchers carried this out because there were two minority classes in the dataset, and
they needed to be balanced until reaching the major class. Predominantly, the process of
balancing the dataset using the SMOTE was conducted repeatedly. Suppose there were
more than twominority classes. This process will be conducted repeatedly until all minority
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Figure 5 Comparison between one-time SMOTE and several-time SMOTE.
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classes are close to the major value. The minor value that will be balanced should not be
more than the majority class. The results showed that the balanced datasets using SMOTE
had better accuracy, as shown in Figs. 4A, 4B and 4C. Similarly, those with two datasets are
balanced more than once, as shown in Figs. 5A and 5B.

DISCUSSION
Based on the eight datasets used here, only the Divorce dataset has the same accuracy
value as that resulting from the Random Forest. This accuracy value can be increased by
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Table 5 Precision, recall and F1- score on IG threshold SD, median andmedian –real.

Dataset IG Threshold: SD IG Threshold: Median IG Threshold: Median - Real

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

EEG Eye 0.9019 0.9013 0.9016 0.8651 0.8650 0.8650 0.8893 0.8891 0.8892
Cancer 0.9437 0.9439 0.9438 0.9450 0.9451 0.9450 0.9611 0.9611 0.9611
Contraceptive
method

0.5163 0.5166 0.5164 0.5243 0.5276 0.5259 0.4931 0.4967 0.4949

Dermatology 0.9743 0.9743 0.9743 0.9389 0.9351 0.9370 0.9600 0.9599 0.9601
Urban land
cover

0.8530 0.8474 0.8502 0.8537 0.8497 0.8517 0.8614 0.8564 0.8589

Divorce 0.9780 0.9760 0.9770 0.9785 0.9766 0.9775 0.9780 0.9760 0.9770
CNAE-9 0.8872 0.8806 0.8839 0.9371 0.9366 0.9368 0.9163 0.9152 0.9157
Epilepsy 0.6963 0.6972 0.6967 0.6742 0.6759 0.6750 0.6895 0.6898 0.6896

balancing the dataset using the SMOTE, which is done repeatedly. In this study, SMOTE
was repeated several times based on the total majority class in the dataset.

In Figs. 4 and 5, it is seen that the dataset that has been balanced using the SMOTE
resulted in a superior accuracy value. In Fig. 5B, the IGmethod using the threshold Median
Real results in a poor accuracy value when conducting one-time SMOTE; however, the
accuracy increases when performing multiple-time SMOTE. The researchers conducted
the multiple-time SMOTE based on the entire majority class in the dataset. The SMOTE
will continue to be conducted as long as the total minority class is below the total majority
class. In this study, the multiple-time SMOTE for the Dermatology and Urban Land Cover
datasets were conducted six times. The decreased accuracy value in the SMOTE for the
Urban Land Cover dataset is because the data generated by the SMOTE did not meet the
characteristics of minority classes. Besides, the total instance for each class is not much
different.

Besides conducting the SMOTE, the accuracy value can be increased by using the feature
that has been transformed using the FFT. This accuracy increase can be seen in Table 2 on
the IG threshold Median and IG Threshold Median Real. In the IG threshold median real
method, five datasets saw an increase in the accuracy if compared with the IG threshold
Median method. EEG Eye, Dermatology, Urban Land Cover, and Epilepsy datasets.

From Table 2 through Table 5, the accuracy value and the F1 score for the datasets, such
as the Contraceptive Method and the Epilepsy datasets, decrease. The factor is that the
total feature used here is less. In the Contraceptive method, the accuracy decreased since
the entire feature used here was five out of nine existing features. The Epilepsy dataset also
used 97 features out of 178 available features. Meanwhile, all datasets available in Tables 4
and 5 are the datasets that have not been processed using the SMOTE. The SMOTE is not
required to be conducted in three datasets, Divorce, CNAE-9, and Epilepsy, as those three
datasets are balanced already.

Even though the aspect of accuracy decreases, the part of required time for the IG
threshold, median real method needs more diminutive than the Random Forest without
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feature selection. The time difference between feature selection with the IG threshold
median real and the original Random Forest is between 0.03 and 4.85 s.

CONCLUSIONS AND FUTURE WORK
Based on the testing, it can conclude that the Information Gain (IG) with a threshold
median three times superior to the accuracy generated by the Random Forest, especially
in the data aggregate of Contraceptive Method, Divorce, and CNAE-9. Nevertheless, the
accuracy value for the IG with threshold median real is higher than the threshold accuracy
value based on the Median score. Five datasets have an accuracy value higher than that
of the IG Threshold Median; those include EEG Eye, Cancer, Dermatology, Urban Land
Cover, and Epilepsy. The increase in this accuracy value applies to both the original dataset
and the dataset that has been balanced using the SMOTE. It can be inferred that FFT and
SMOTE can increase the accuracy value, mainly if the SMOTE is conducted repeatedly
according to what has been proposed by the researchers.

Even though the accuracy value in the feature selection with IG threshold median real is
less superior to that of the original Random Forest, this method is superior in speed. The
time required in this method is less than that of the original Random Forest.

The subsequent study that needs to be considered is using the two-level feature selection
based on the roadmap that the researcher suggests in Fig. 1. The next study that needs to be
considered is using multilevel feature selection based on the roadmap the researcher guides
in Fig. 1. In addition, selecting more informative features also needs to be considered.
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