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ABSTRACT
Metagenomic experiments attempt to characterize microbial communities using
high-throughput DNA sequencing. Identification of the microorganisms in a sample
provides information about the genetic profile, population structure, and role of
microorganisms within an environment. Until recently, most metagenomics studies
focused on high-level characterization at the level of phyla, or alternatively sequenced
the 16S ribosomal RNAgene that is present in bacterial species. As the cost of sequencing
has fallen, though,metagenomics experiments have increasingly used unbiased shotgun
sequencing to capture all the organisms in a sample. This approach requires a method
for estimating abundance directly from the raw read data. Here we describe a fast,
accurate new method that computes the abundance at the species level using the
reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of
Abundance after Classification with KrakEN) uses the taxonomic assignments made
by Kraken, a very fast read-level classifier, along with information about the genomes
themselves to estimate abundance at the species level, the genus level, or above. We
demonstrate that Bracken can produce accurate species- and genus-level abundance
estimates even when a sample contains multiple near-identical species.

Subjects Bioinformatics, Computational Biology
Keywords Metagenomics, Species abundance, Microbiome, Bayesian estimation

INTRODUCTION
Metagenomics is a rapidly growing field of study, driven in part by our ability to generate
enormous amounts of DNA sequence rapidly and inexpensively. Since the human genome
was first published in 2001 (The International Human Genome Sequencing Consortium,
2001; Venter et al., 2001), sequencing technology has become approximately one million
times faster and cheaper,making it possible for individual labs to generate asmuch sequence
data as the entire HumanGenome Project in just a few days. In the context ofmetagenomics
experiments, this makes it possible to sample a complex mixture of microbes by ‘‘shotgun’’
sequencing, which involves simply isolating DNA, preparing the DNA for sequencing, and
sequencing the mixture as deeply as possible. Shotgun sequencing is relatively unbiased
compared to targeted sequencing methods (Venter et al., 2004), including widely-used 16S
ribosomal RNA sequencing, and it has the additional advantage that it captures any species
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with a DNA-based genome, including eukaryotes that lack a 16S rRNA gene. Because it is
unbiased, shotgun sequencing can also be used to estimate the abundance of each taxon
(species, genus, phylum, etc.) in the original sample, by counting the number of reads
belonging to each taxon.

Along with the technological advances, the number of finished and draft genomes has
also grown exponentially over the past decade. At present there are thousands of complete
bacterial genomes, 20,000 draft bacterial genomes, and 80,000 full or partial virus genomes
in the public GenBank archive (Benson et al., 2015). This rich resource of sequenced
genomes now makes it possible to sequence uncultured, unprocessed microbial DNA from
almost any environment, ranging from soil to the deep ocean to the human body, and use
computational sequence comparisons to identify many of the formerly hidden species in
these environments (Riesenfeld, Schloss & Handelsman, 2004). Several accurate methods
have appeared that can align a sequence ‘‘read’’ to a database of microbial genomes rapidly
and accurately (see below), but this step alone is not sufficient to estimate how much of a
species is present. Complications arise when closely related species are present in the same
sample–a situation that arises quite frequently–because many reads align equally well to
more than one species. This requires a separate abundance estimation algorithm to resolve.
In this paper, we describe a new method, Bracken, that goes beyond simply classifying
individual reads and computes the abundance of species, genera, or other taxonomic
categories from the DNA sequences collected in a metagenomics experiment.

When it was first published in 2014, the Kraken metagenomics classifier represented
a major enhancement in the speed with which large metagenomics sequence data could
be processed (Wood & Salzberg, 2014), running over 900 times faster than MegaBlast
(Morgulis et al., 2008), the closest competitor at the time. Kraken’s success and accuracy
rely on its use of a very large, efficient index of short sequences of length k, which it builds
into a specialized database. If k is chosen appropriately, then most sequences of length k in
the database will be unique to a single species, and many will also be unique to a particular
strain or genome. Larger values of k will yield a database in which even more of each
genome is uniquely covered by k-mers; obviously, though, k should not be longer than the
length of a sequencing read, and metagenomics projects currently generate reads as short
as 75–100 base pairs (bp). Longer k-mers are also more likely to contain errors, meaning
that more reads will be left unclassified if k is too long. Smaller k-mers, in contrast, will
yield higher sensitivity because the minimum match length is shorter.

When used to identify the taxonomic label of metagenomics sequences, the Kraken
system for classification of metagenomics sequences is extremely fast and accurate (Wood
& Salzberg, 2014). When classifying raw sequence reads, though, many reads correspond
to identical regions between two or more genomes. (The number of such ambiguous reads
decreases as reads get longer.) Kraken solves this problem by labeling the sequence with
the lowest common ancestor (LCA) of all species that share that sequence, as discussed
further below.
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Ambiguity among microbial species and strains
As the database of bacterial genomes has grown, an increasing number of genomes share
large portions of their sequence with other genomes. In many cases, these genomes are
nearly identical; indeed, sequencing has revealed to scientists that many formerly distinct
species and genera are far closer than were known prior to sequencing. Many species have
been renamed as a result, in a process that is continual and ongoing, but many other species
have retained their old names, often for historical or other reasons.

For example, the speciesMycobacterium bovis is over 99.95% identical toMycobacterium
tuberculosis (Garnier et al., 2003), and many cases of human tuberculosis are caused by
M. bovis (which also infects cows) rather than M. tuberculosis (Grange, 2001). Their high
sequence identity indicates that they should be considered as two strains of a single species,
but they retain different species names. As a compromise, taxonomists have created the
category Mycobacterium tuberculosis complex (Brosch et al., 2002) to represent a collection
of taxa that now includes more than 100 strains of five different species. This category sits
above the species level but below the genus level in the current microbial taxonomy, but it
can best be described as a species.

Other examples are numerous and still growing. The three species Bacillus anthracis (the
causative agent of anthrax), Bacillus cereus, and Bacillus thuringiensis are well over 99%
identical and should all be designated as a single species (Helgason et al., 2000), although
their names have not been changed despite their near-identity revealed by sequencing. As
a compromise, taxonomists created the category Bacillus cereus group, between the level of
species and genus, to include these three species and at least five others (Liu et al., 2015), all
of which are extremely similar to one another. In some cases, two organisms that should be
called the same species may even have different genus names. For example, Escherichia coli
and Shigella flexneri are classified in different genera, but we know from sequence analysis
that they represent the same species (Lan & Reeves, 2002).

Failure to recognize the mutability of the bacterial taxonomy can lead to erroneous
conclusions about the performance of metagenomic classifiers. For example, one recent
study (Peabody et al., 2015) created a mock community of 11 species, one of which was
Anabaena variabilis ATCC 29413, not realizing that this genome had been renamed and
was synonymous with species in the genus Nostoc (Thiel et al., 2014). When Anabaena was
removed from the database, Kraken correctly identified the reads as Nostoc, but Peabody
et al. erroneously considered all these reads to be misclassified.

Classification versus abundance estimation
Kraken attempts to assign a taxonomy label to every read in a metagenomics sample using
a custom-built database that may contain any species the user chooses. Among the current
set of finished bacterial and archaeal genomes, hundreds of species can be found for
which large fractions of their sequence are identical to other genomes belonging to distinct
strains, species, or even genera. The reads arising from common regions in these species
result in a tie when analyzed with Kraken’s classification algorithm, so Kraken correctly
reports only the lowest common ancestor (LCA) (Wood & Salzberg, 2014). It follows that
for well-populated clades with low genome diversity, Kraken only reports species-level
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assignments for reads from unique regions, and a true indication of total abundance can
only be made by taking both species and genus (or higher) level assignments into account.
This implies that for some species, the majority of reads might be classified at a higher
level of the taxonomy. Kraken thus leaves many reads ‘‘stranded’’ above the species level,
meaning that the number of reads classified directly to a species may be far lower than the
actual number present.

Therefore, any assumption that Kraken’s raw read assignments can be directly translated
into species- or strain-level abundance estimates (e.g., Schaeffer et al., 2015) is flawed, as
ignoring reads at higher levels of the taxonomy will grossly underestimate some species,
and creates the erroneous impression that Kraken’s assignments themselves were incorrect.

Nonetheless, metagenomics analysis often involves estimating the abundance of the
species in a particular sample. Although we cannot unambiguously assign each read to
a species, we would like to estimate how much of each species is present, specifically by
estimating the number or percentage of reads in the sample. Several software tools have
been developed to estimate species abundances in metagenomics samples [MetaPhlAn,
ConStrains, GAAS, GASiC, TAEC, GRAMMy] (Angly et al., 2009; Lindner & Renard, 2012;
Luo et al., 2015; Segata et al., 2012; Sohn et al., 2014; Xia et al., 2011). These tools, however,
employ different strategies for read-level classification which are not always as accurate
and efficient as Kraken’s k-mer approach (Lindgreen, Adair & Gardner, 2016). Rather than
re-engineer Kraken to address the ambiguous read classification issue and to provide
abundance estimates directly, we decided to implement the new species-level abundance
estimation method described here as a separate program. This preserves both backwards
compatibility for existing Kraken users, and offers the ability to generate more accurate
species abundance estimates for datasets already processed by Kraken. Note that if Kraken
fails to identify a species (e.g., if the species was missing from the Kraken database), Bracken
too will not identify that species.

MATERIALS AND METHODS
Our new method, Bracken (Bayesian Reestimation of Abundance after Classification with
KrakEN), estimates species abundances in metagenomics samples by probabilistically
re-distributing reads in the taxonomic tree. Reads assigned to nodes above the species
level are distributed down to the species nodes, while reads assigned at the strain level are
re-distributed upward to their parent species. For example, in Fig. 1 we would distribute
reads assigned to the Mycobacteriaceae family and the Mycobacterium genus down to M.
marinum andM. avium, and reads assigned to eachM. marinum strain would be reassigned
to the M. marinum species. As we show below, Bracken can easily reestimate abundances
at other taxonomic levels (e.g., genus or phylum) using the same algorithm.

In order to re-assign reads classified at higher-level nodes in the taxonomy, we need
to compute a probabilistic estimate of the number of reads that should be distributed to
the species below that node. To illustrate using the nodes in Fig. 1, we need to allocate
all reads assigned to Mycobacterium (G1) to M. marinum (S1) and M. avium (S2) below
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Figure 1 Schematic showing a partial taxonomic tree for theMycobacteriaceae family.

it, and reads assigned to the Mycobacteriaceae would have to be allocated to M. marinum
(S1),M. avium (S2), andHoyosella altamirensis (S3).

Reallocating reads from a genus-level node in the taxonomy to each genome below it can
be accomplished using Bayes’ theorem, if the appropriate probabilities can be computed.
Let P(Si) be the probability that a read in the sample belongs to genome Si, P(Gj) be the
probability that a read is classified by Kraken at the genus level Gj , and P(Gj |Si) be the
probability that a read from genome Si is classified by Kraken as the parent genus Gj . Then
the probability that a read classified at genus Gj belongs to the genome Si can be expressed
as Eq. (1):

P(Si|Gj)=
P(Gj |Si)P(Si)

P(Gj)
. (1)

Note that because we began by assuming that a read was classified at node Gj, P(Gj)= 1.
Next we consider how to compute P(Gj |Si), the probability that a read from genome

Si will be classified by Kraken at the parent genus Gj . We estimate this probability for
reads of length r by classifying the sequences (genomes) that we used to build the database
using that same database, as follows. For each k-mer in the sequences, Kraken assigns it
a taxonomy ID by a fast lookup in its database. To assign a taxonomy ID for a read of
length r , Kraken examines all k-mer classifications in that read. For example, for k = 31
and r = 75, the read will contain 45 k-mers. Our procedure examines, for each genome in
the database, a sliding window of length r across the entire genome.

To find the taxonomy ID Kraken would assign to each window, we simply find the
deepest taxonomy node in the set of k-mers in that window. Since each k-mer in a database
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sequence is assigned to a taxonomy ID somewhere along the path from the genome’s
taxonomy ID to the root, the highest-weighted root-to-leaf path (and thus the Kraken
classification) corresponds to the deepest node.

For each genome Si of length Li we thus generate (Li− r+1) mappings to taxonomical
IDs. For node Gj , we then count the number of reads from Si that are assigned to it,NGj (Si).
P(Gj |Si) is then the proportion of reads from Si that were assigned to the genus node Gj ;
i.e., P(Gj |Si)=NGj(Si)/(Li− r+1). We also calculate the proportion of reads from Si that
were assigned to every node from genome Si to the root node of the taxonomy tree.

The final term that we must calculate from Eq. (1) is P(Si), the probability that a read in
the sample belongs to genome Si, which is computed in relation to other genomes from the
same genus. For example, if the sample contains three genomes in the same genus, and if
30% of all reads from those three genomes belong to Si, then P(Si)= 0.3. We estimate this
probability using the reads that are uniquely assigned by Kraken to genome Si, as follows.

If we let USi be the proportion of genome Si that is unique, then

USi =
NSi

Li− r+1
(2)

where NSi is the number of k-mers of length r that are uniquely assigned to genome Si by
Kraken, and Li is the genome length. For example, if Li= 1 Mbp and only 250,000 k-mers
are unique to genome Si, then USi= 0.25.

Then, using the number of reads KSi from a sample that Kraken actually assigns to Si,
we can estimate the number of reads that likely derive from Si as:

K̂Si =
K Si

U Si
. (3)

For example, if Kraken classifies 1,000 reads as genome Si and 25% of the reads from Si are
unique, then we would estimate that 4,000 reads (1,000/0.25) from Si are contained in the
sample.

If genus Gj contains n genomes, we estimate the number of reads K̂S for each of the n
genomes and then calculate P(Si) by:

P (Si)=
K̂Si∑n
a=1 K̂Sa

. (4)

Using this result in Eq. (1) above allows us to compute P(Si|Gj) for each genome Si. Each
probability P(Si|Gj) is then used to estimate the proportion of the reads assigned to genus
Gj that belong to each of the genomes below it.

These calculations are repeated for each taxonomic level above the genus level (family,
class, etc.), with read distribution at each level going to all genomes classified within that
taxonomic subtree.

To compute species abundance, any genome-level (strain-level) reads are simply added
together at the species level. In cases where only one genome from a given species is detected
by Kraken in the dataset, we simply add the reads distributed downward from the genus
level (and above) to the reads already assigned by Kraken to the species level. In cases
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where multiple genomes exist for a given species, the reads distributed to each genome are
combined and added to the Kraken-assigned species level reads. The added reads give the
final species-level abundance estimates.

This method can also estimate abundance for other taxonomic levels. In such cases,
only higher nodes within the taxonomy tree undergo read distribution. After distributing
reads downward, we estimate abundance for a node at the level specified by combining the
distributed reads across all genomes within that node’s subtree.

Software and data availability
Bracken is written in Perl and Python and is freely available for download at http:
//ccb.jhu.edu/software/bracken/. The reads from the skin microbiome experiment are
freely available from NCBI under BioProject PRJNA316735.

RESULTS AND DISCUSSION
We applied the statistical re-assignment method described here to create species-level
abundance estimates for several metagenomics data sets. The overall procedure works as
follows. First, we compute a set of probabilities from the Kraken database by computing,
for every sequence of length R in every genome, where it will be assigned in the taxonomy
(see ‘Methods’). For our experiments, we set R= 75 as our datasets contain 75-bp reads.
Bracken can use these probabilities for any metagenomics data set, including data with
different read lengths, although the estimates might be slightly improved by re-computing
with a read length that matches the experimental data.

Second, we run Kraken on the dataset to produce read-level taxonomic classifications.
We then apply our abundance estimator, Bracken, which uses the numbers of reads assigned
by Kraken at every level of the taxonomy to estimate the abundances at a single level (e.g.,
species). Note that to exclude false positives, Bracken ignores species with counts below a
user-adjustable threshold. In our experiments, we selected a threshold of 10 reads.

Experiments on a 100-genome metagenomics data set
For our first experiments, we used a data set containing simulated Illumina reads from
100 genomes. This data, which we call here the i100 dataset, was used previously in a
comparison of metagenomic assembly algorithms (Mende et al., 2012). The data contains
53.3 million paired reads (26.7M pairs) from 100 genomes representing 85 species.
The reads have error profiles based on quality values found in real Illumina reads
(Mende et al., 2012). The i100 dataset includes several very challenging genomes for
this task, including multiple strains and species in the genera Bacillus and Mycobacteria,
some of which are nearly identical to one another. The i100 data are freely available at
http://www.bork.embl.de/~mende/simulated_data.

The difficulty of estimating species abundance increases as the database itself contains
more species. For example, it would clearly be easier to estimate abundances in the i100
dataset if we used a Kraken database containing only the 100 genomes in that dataset. To
make the problemmore realistic, we built two different databases and estimated abundance
using both. The first (‘‘small’’) database contains 693 genomes including the i100 genomes;
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Figure 2 Estimates of species abundance in the i100 metagenomics dataset computed by Kraken (blue) and Bracken (blue+ orange). For this
result, the Kraken database contained 693 genomes that included the i100 genomes. The smaller graph displays results for the subset of species for
which Bracken made the largest adjustments. The black line shows the true number of reads from each species. Precise numbers for the Kraken clas-
sification, true read counts, and Bracken estimates are contained in Table S2A.

this is the full database from the simulation study byMende et al. (2012). The results when
using the small database for classification are shown in Fig. 2. For several species, the initial
Kraken numbers (reads assigned to a particular species) are far too low, because many of
the reads (for some genomes, a large majority) were assigned labels at the genus level or
above. After reestimation with Bracken, these reads were redistributed to the species level,
with the result that almost all the abundance estimates were 98–99% correct, as shown in
the figure.

The second (‘‘large’’) database contains all genomes used in the synthetic and spike-in
experiments, as well as a broad background of bacterial genomes. In particular, it includes
all complete bacterial and archaeal genomes from RefSeq as of 25 July 2014 (archived at
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq), which total 2596 distinct taxa,
plus those i100 genomes that were not present in the RefSeq data. (We excluded draft
genomes because they often contain vector sequences or other contaminants.) We also
added the nine genomes used in our skin bacteria spike-in experiment (described below)
resulting in a total of 2635 distinct taxa. The complete list of sequences in the large database
can be found in Table S1. The resulting Kraken database has a size of 74 GB.
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Figure 3 Estimates of species abundance computed by Kraken (blue) and Bracken (blue+ orange) for the i100 metagenomics data. For this re-
sult, the Kraken database contained 2,635 distinct bacterial and archaeal taxa. The black line shows the true number of reads from each species. The
smaller graph displays results for the subset of species for which Bracken made the largest adjustments. Precise numbers for the Kraken classifica-
tion, true read counts, and Bracken estimates are contained in Table S2B.

Figure 3 shows results when using the large database to estimate abundance for the
i100 genomes. This test is much more difficult because of the large number of similar
and near-identical genomes in the database. Many more reads are ambiguous, mapping
identically to two or more species, which means that Kraken assigns them to the LCA of
those species. Nonetheless, Bracken brings the estimated abundance of all species within
4% of the true abundance, and most fall within 1%. Note that when the re-estimation
procedure distributes reads from higher nodes in the taxonomy down to multiple species
within a single genus, it may over-estimate one species and underestimate its sister species
if the re-allocation is imperfect.

Tables S2A–S2B contains the detailed numbers for all species in Figs. 2 and 3, along with
an error rate for each species in the i100 data, expressed as the difference between the true
and estimated proportions. We calculated the average error as:

1
n

n∑
i=1

∣∣∣R(i)
true−R

(i)
est

∣∣∣
R(i)
true

(5)
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Figure 4 Number of reads within theMycobacterium genus as assigned by Kraken (blue), estimated by
Bracken (purple) and compared to the true read counts (green). Initially, Kraken assigned only 325,073
reads toMycobacterium sp. JLS although 722,880 reads originated from this species. Bracken reassigned
370,601 reads from theMycobacterium genus toM. sp. JLS. Bracken’s re-estimated abundance forM. sp.
JLS is much closer to the true read count. Table S3 contains precise numbers for all species shown here.

where n is the number of species in the i100 data, R(i)
true is the true number of reads for

species i, and R(i)
est is the Bracken estimate of the number of reads for species i. When using

the small database, the average relative error of Bracken is 1.75% across all 85 species in the
i100 data. For the larger database, the average relative error is 1.89%. We also calculated
false positive rates for the i100 data as the percentage of total reads incorrectly classified
after Bracken abundance estimation. For the small database, the false positive rate is 0.13%
and for the large database, the false positive rate is 0.24%.

Within the i100 genomes, the five species belonging to the Mycobacterium genus (M.
tuberculosis, M. bovis, M. avium, M. marinum, and M. sp. JLS) pose a particular challenge
for abundance estimation due to the similarities among their individual genomes. For
example, Kraken classified only 9,733M. tuberculosis reads at the species level, and classified
the remaining 285,414 reads as eitherMycobacterium (a genus) orM. tuberculosis complex (a
taxonomic class intermediate between genus and species), as shown in Fig. 4 and Table S3.
For theseMycobacteria genomes, Bracken reallocated the reads from higher-level nodes to
yield species abundance estimates within 4% of the true abundance. Figure 4 and Table S3
show the number of reads assigned to each species by Kraken, the true number of reads,
and the number of reads assigned to each species by Bracken after abundance reestimation.

The five species of the Mycobacterium genus also provide an example of potential
overestimation by Bracken. Bracken apportions all ambiguous reads classified by Kraken
at the genus level (and above) to the existing species identified by Kraken. Because Bracken
uses a probabilistic method in distributing the reads, one species may receive too many
reads while another may receive too few. For example, Kraken assigned 543,916 reads to
M. tuberculosis complex. Bracken re-allocated 296,543 of these reads to M. tuberculosis and
the remaining 247,453 reads to M. bovis. When added to Kraken’s original assignments,
Bracken estimated that 306,792 reads belonged toM. tuberculosis (11,645 reads more than
the true number) that 256,927 reads belonged to M. bovis (31,473 reads less than the true
number). It is likely that some of the additional reads Bracken allocated to M. tuberculosis
originated from M. bovis instead. However, despite the over- and under-estimation,
Bracken’s estimates fell within 4% of the true number of reads for both species.

If M. bovis were excluded from the database, the 8,965 reads unique to M. bovis,
as identified by Kraken, would be unclassified, while all 543,916 reads assigned to the

Lu et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.104 10/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.104/supp-3
http://dx.doi.org/10.7717/peerj-cs.104/supp-3
http://dx.doi.org/10.7717/peerj-cs.104/supp-3
http://dx.doi.org/10.7717/peerj-cs.104


M. tuberculosis complex would assigned to M. tuberculosis by Kraken. These reads would
no longer be ambiguous because no other Mycobacterium species from the M. tuberculosis
complex would be present in the database. In general, reads belonging to species excluded
from the database will either be assigned to species with very high similarity to the missing
species or will remain unclassified.

Experiments on a real metagenomics sample created from
known species
For a more realistic evaluation of the performance of Bracken, we generated new sequence
data using a set of bacteria that are commonly found on healthy human skin. This
mock community was assembled by combining purified DNA from nine isolates that
were identified and sequenced during the initial phase of the Human Microbiome
Project (Human Microbiome Project, 2012): Acinetobacter radioresistens strain SK82,
Corynebacterium amycolatum strain SK46, Micrococcus luteus strain SK58, Rhodococcus
erythropolis strain SK121, Staphylococcus capitis strain SK14, Staphylococcus epidermidis
strain SK135, Staphylococcus hominis strain SK119, Staphylococcus warneri strain SK66,
and Propionibacterium acnes strain SK137. To generate the skin microbiome community,
purified DNA was obtained from the Biodefense and Emerging Infections Research
Resources Repository (BEI Resources). Each of the nine bacterial isolates was grown under
conditions recommended by BEI Resources, collected by centrifugation during log growth
phase at a 600nm optical density (OD600) of 0.8–1.2, and genomic DNA was isolated using
MasterPure DNA isolation reagents (Epicentre). Purified genomic DNA was quantified
using the high sensitivity picogreen assay (Invitrogen), pooled in equal amounts by mass,
and prepared for sequencing using Nextera XT library preparation reagents (Illumina). The
sample was then sequenced on a HiSeq sequencer, generating a total of 78,439,985 million
read pairs (157 million reads), all of them 100 bp in length. These were then classified as
pairs by Kraken, which concatenates the two reads from each pair and assigns them to a
single taxonomic category.

We used Bracken to estimate both species and genus-level abundance in the skin
microbiome community. In the Bracken results, the nine true species comprise over 99%
of the species-level abundance estimates. The mixture was created with approximately
equal amounts of each of the nine genomes, so the expectation was that each species would
account for∼11% of the total. However, as shown in Fig. 5, the estimates varied from 7.3%
to 14.8%. Details for the exact number of reads assigned by Kraken and the abundance
estimates by Bracken are shown in Table S4.

Deviations from the expected abundance could arise from a variety of factors. The
process of quantifying DNA and mixing in equal amounts can be influenced by pipetting
consistency. Second, library amplification by PCR, an integral step in the Nextera library
preparation process, can exaggerate small differences in quantities and lead to significant
biases in abundance (Bowers et al., 2015). We examined a sample of the classified reads
by hand, and could find no evidence that Kraken mis-classified reads from M. luteus (the
smallest portion of the community, estimated at 7.3%) to any of the other species or
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Figure 5 Estimates of species abundance made by Bracken for the metagenomics community contain-
ing isolates of nine bacterial species commonly found on human skin. Precise numbers can be found in
Table S4.

genera. The abundances found in this data, therefore, may correspond fairly closely with
the true abundances.

The genus-level abundance estimates computed by Bracken also correspond closely to
the expected abundances for the six genera included in the sample. Four of the nine species
belong to the genus Staphylococcus, which was thus expected to comprise 44% (4 × 11%)
of the sample. The Bracken estimate was 43.3%. Each of the other genus classifications
has only one species present, and their abundance estimates are the same for both genus
and species.

The comparison between the Kraken classification of reads and Bracken’s reassignment
revealed that the nine species are sufficiently distinct to allow Kraken to classify a large
majority of reads at the species level, with very few reads being classified at higher levels of
the taxonomy. Specifically, Kraken classified 76.4 million reads to the nine species included
in the sample. Only 1.3 million reads out of the 78.2 million total (1.6%) were classified by
Kraken at the genus level or above. (The remaining reads were unclassified.) In this case
Bracken does not provide a substantial benefit, because reassignment of the 1.3 million
reads could yield at most a 1.6% change in the estimated composition of the sample.

Abundance estimation timing and resource requirements
In the i100 data experiment with the small database, we used 188 gigabytes (GB) of RAM
with 10 threads to build the Kraken database and generate the k-mer distribution file
required by Bracken. In total, these steps completed in about 2 h and yielded files that can
be used across multiple datasets. The resulting Kraken database and distribution files use
53 GB of space. Kraken classification of the i100 dataset took 18 min, using 10 threads and
107 GB of RAM. This step is limited by the size of the database, which is loaded into RAM
during classification. Bracken alone runs in under a second, using 35 MB of RAM. The
Kraken classification file for the i100 data is 1.6 GB, while Bracken abundance estimation
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files require∼65 KB of space. Table S5 lists detailed timing, RAM, and space requirements
for each file and step of the Bracken abundance estimation algorithm.

CONCLUSION
Estimating the abundance of species, genera, phyla, or other taxonomic groups is a central
step in the analysis of many metagenomics datasets. Metagenomics classifiers like Kraken
provide a very fast and accurate way to label individual reads, and at higher taxonomic
levels such as phyla, these assignments can be directly translated to abundance estimates.
However, many reads cannot be unambiguously assigned to a single strain or species, for
at least two reasons. First, many bacterial species are nearly identical, meaning that a read
can match identically to two or more distinct species. Second, the bacterial taxonomy
itself is undergoing constant revisions and updates, as genome sequencing reveals the
need to re-assign species to new names. These revisions sometimes create new taxa that
share near-identical sequence with a distinct species. In these situations, Kraken correctly
assigns the read to a higher-level taxonomic category such as genus or family. This creates
a problem in that Kraken’s classifications cannot be used directly for species abundance
estimation.

Bracken addresses this problem by probabilistically re-assigning reads from intermediate
taxonomic nodes to the species level or above. As we have shown here, these re-assignments
produce species-level abundance estimates that are very accurate, typically 98% correct
or higher. For genus-level abundance, accuracy is even higher because fewer reads have
ambiguous assignments at that level. For abundance estimation at higher levels, ranging
from family up to phylum, Kraken’s original read assignments can be used directly to create
abundance estimates.
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