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ABSTRACT
The Russian language is still not as well-resourced as English, especially in the field
of sentiment analysis of Twitter content. Though several sentiment analysis datasets
of tweets in Russia exist, they all are either automatically annotated or manually
annotated by one annotator. Thus, there is no inter-annotator agreement, or
annotation may be focused on a specific domain. In this article, we present
RuSentiTweet, a new sentiment analysis dataset of general domain tweets in Russian.
RuSentiTweet is currently the largest in its class for Russian, with 13,392 tweets
manually annotated with moderate inter-rater agreement into five classes: Positive,
Neutral, Negative, Speech Act, and Skip. As a source of data, we used Twitter Stream
Grab, a historical collection of tweets obtained from the general Twitter API stream,
which provides a 1% sample of the public tweets. Additionally, we released a
RuBERT-based sentiment classification model that achieved F1 = 0.6594 on the test
subset.

Subjects Computational Linguistics, Data Mining and Machine Learning, Natural Language and
Speech, Network Science and Online Social Networks, Social Computing
Keywords Sentiment dataset, Sentiment analysis, Russian

INTRODUCTION
Recently, Twitter has been established as a major research platform, utilized in more than
ten thousand research articles over the past ten years. Sentiment analysis has proven to be
one of the major research areas (Antonakaki, Fragopoulou & Ioannidis, 2021). As expected,
there is an interest in the sentiment analysis of the Russian-speaking segment of Twitter,
not only for training machine learning (ML) models (Kotelnikova, 2020; Araslanov,
Komotskiy & Agbozo, 2020; Kanev et al., 2022), but also for applied research—such as
studying migration issues (Borodkina & Sibirev, 2019), measuring reactions to different
events (Kirilenko & Stepchenkova, 2017; Kausar, Soosaimanickam & Nasar, 2021), and
monitoring public sentiment (Chizhik, 2016; Smetanin, 2017). However, despite the fact
that there are several datasets of tweets in Russian (Smetanin, 2020a), they are either
annotated automatically (e.g., RuTweetCorp by Rubtsova (2013)) or annotated only by one
annotator; thus, there is no inter-annotator agreement (e.g., Twitter Sentiment for 15
European Languages by Mozeticar & Smailović (2016)), or focused on a specific domain
(e.g., SentiRuEval-2015 by Loukachevitch et al. (2015)). Thus, this research community
lacks a general domain sentiment dataset of tweets in Russian that is annotated manually
with reported inter-rater agreement score.
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In this article, we present RuSentiTweet, a new sentiment analysis dataset of 13,392
general domain tweets in Russian. RuSentiTweet was annotated manually using
RuSentiment guidelines (Rogers et al., 2018) into five classes (Positive, Neutral, Negative,
Speech Act, and Skip) with moderate inter-rater agreement. The practical and academic
contribution of this study is threefold. Firstly, we reviewed existing public sentiment
dataset of tweets in Russian. Secondly, we filled the data gap and introduced RuSentiTweet,
the only dataset of general domain tweets with manual annotation for the Russian
language. Lastly, we trained several ML models to provide further research with a strong
baseline.

The rest of the article is organized as follows. In “Related Work”, we review related
research, identify existing public sentiment datasets of tweets in Russian, and confirm the
importance of a new dataset of general domain tweets in Russian. In “Sentiment Dataset”,
we describe the creation of RuSentiTweet. In “Sentiment Classification Baseline”, we
document the training of several ML models to provide the research community with
public baselines. In “Conclusion”, we present conclusions from this study.

RELATED WORK
As of 2022, Russian was the eighth most widely-spoken language worldwide, with a total
number of 258.2 million speakers (Szmigiera, 2022). Yet as reported in the preliminary
results of the All-Russian Census 2020 (Rosstat, 2022), only about 147 million people
permanently live in Russia. In addition to Russia, where Russian is the official language, it
is also widely spoken in a number of other countries that were part of the USSR. According
to various sources (Arefiev, 2013; Lopatin & Ulukhanov, 2017), there are from 52 to 94
million native speakers of the Russian language in these countries. A large number of
Russian speakers also live in other countries such as those in Europe, the USA, Canada,
Israel, and others (Lopatin & Ulukhanov, 2017). Given the significant Russian-speaking
population and the ever-growing level of Internet penetration, texts published by Russian-
speaking users on social networks are attracting more and more attention from
researchers. As a result, every year new works appear both in the classical analysis of the
sentiment of Russian-language content (e.g., Araslanov, Komotskiy & Agbozo, 2020; Kanev
et al., 2022; Kausar, Soosaimanickam & Nasar, 2021) and in related areas, such as the
identification of emotions (e.g., Babii, Kazyulina & Malafeev, 2020; Kazyulina, Babii &
Malafeev, 2020; Babii, Kazyulina & Malafeev, 2021), toxicity and hate speech detection
(e.g., Zueva, Kabirova & Kalaidin, 2020; Pronoza et al., 2021; Smetanin & Komarov,
2021b), and inappropriate language identification (e.g., Babakov et al., 2021; Babakov,
Logacheva & Panchenko, 2022).

However, the Russian language is not as well-resourced as the English language
(Besacier et al., 2014), especially in the field of sentiment analysis (Smetanin & Komarov,
2021a), so the data options for researchers are quite limited. In our previous study
(Smetanin, 2020a), we identified 14 publicly available sentiment analysis datasets of
Russian texts. In said study, we considered only those datasets that can be accessed via
instructions from their original papers or official websites. Following this strategy, we
omitted several existing datasets—such as ROMIP datasets (Chetviorkin, Braslavskiy &
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Loukachevich, 2013; Chetvirokin & Loukachevitch, 2013)—because we were unable to
obtain access to them. Among these 14 datasets, only six datasets were constructed based
on Twitter content, so we selected them for further detailed analysis. Additionally, we
analysed the most recent review of sentiment analysis datasets of Russian texts by
Kotelnikov (2021) but did not find any new Twitter datasets for consideration.

As can be seen from Table 1, RuTweetCorp (Rubtsova, 2013) is the largest sentiment
analysis dataset of general domain tweets in Russian, but it was automatically annotated
based on the strategy proposed by Read (2005): each tweet was assigned with the sentiment
class based on the emoticons it contains. As a consequence, even a simple rule-based
approach based on the presence of the ‘(’ character can achieve F1 = 97.39% in the binary
(Positive and Negative classes) classification task (Smetanin & Komarov, 2021a). SemEval-
2016 Task 5 Russian (Pontiki et al., 2016), SentiRuEval-2016 (Lukashevich & Rubtsova,
2016) and SentiRuEval-2015 (Loukachevitch et al., 2015) are manually annotated and
widely used datasets, but they are all tied to a specific domain such as restaurants,
automobiles, telecommunication companies, or banks. Twitter Sentiment for 15 European
Languages (Mozeticar & Smailović, 2016) is a sentiment analysis dataset with manual
annotation, but only one annotator was engaged for Russian-language tweets; thus, there is
no inter-annotator agreement. The Kaggle dataset did not report data collection and
annotation procedure. Thus, there is a lack of general domain sentiment dataset of tweets
in Russian that is annotated manually with reported inter-rater agreement score.

SENTIMENT DATASET
Data collection
For a data source of tweets in Russian, we decided to use the Twitter Stream Grab (https://
archive.org/details/twitterstream), a publicly available historical collection of JSON
grabbed from the general Twitter “Spritzer” API stream. According to Twitter, this API
provides a 1% sample of the complete public tweets and is not tied to a specific topic, so we
considered it as a good source of general domain tweets. Additionally, several studies
(Wang, Callan & Zheng, 2015; Leetaru, 2019) performed independent validation of the
representativeness of this stream. Since the Twitter Stream Grab consists of tweets in

Table 1 Sentiment analysis datasets of Russian language texts. More detailed description of each datasetcan be found in Smetanin (2020a),
Smetanin & Komarov (2021a), Kotelnikov (2021), as well as in original papers (if published). For datasets that contain several subsets from different
data sources, we indicated only those subsets that are made from tweets.

Dataset Data
source

Domain Annotation Classes Size Link

Twitter Sentiment for 15 European Languages
(Mozeticar & Smailović, 2016)

Twitter General Manual 3 107,773 Project page

SemEval-2016 Task 5 Russian (Pontiki et al., 2016) Twitter Restaurants Manual 3 405 Project page

SentiRuEval-2016 (Lukashevich & Rubtsova, 2016) Twitter Telecom and banks Manual 3 23,595 Project page

SentiRuEval-2015 (Loukachevitch et al., 2015) Twitter Telecom and banks Manual 4 16,318 Project page

RuTweetCorp (Rubtsova, 2013) Twitter General Automatic 3 334,836 Project page

Kaggle Russian_twitter_sentiment Twitter n/a n/a 2 226,832 Kaggle page
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different languages, our first step was to remove tweets written in non-Russian languages.
Each tweet from this data source already contained information about the language of the
text automatically detected1 by Twitter, so the language filtering procedure was fairly
straightforward.

We downloaded the Twitter Stream Grab for 12 months from January 2020 to
December 20202. The main motivation for choosing an entire year as the interval was to
cover all months of the year to minimize the effect of seasonality. Previous research has
shown that there are daily (Larsen et al., 2015; Prata et al., 2016), weekly (Ten Thij, Bhulai
& Kampstra, 2014; Dzogang, Lightman & Cristianini, 2017b), and seasonal (Dzogang et al.,
2017a) patterns of sentiment or emotion expression on Twitter. Also, it has been found
(Baylis et al., 2018; Baylis, 2020) that expressed sentiment correlates with weather, which
also tends to depend on the season. After excluding retweets and filtering by language, we
obtained ∼4.5M tweets in Russian. Since manual labelling of such a volume of tweets is
costly and extremely time-consuming, we randomly selected 15,000 tweets for further
annotation (tweets evenly distributed over the selected months).

Data annotation
Guidelines
As per recommendations outlined in our previous study (Smetanin, 2020a), we decided to
use RuSentiment (Rogers et al., 2018) annotation guidelines (https://github.com/text-
machine-lab/rusentiment/tree/master/Guidelines). To the best of our knowledge, this is
the only set of publicly available sentiment annotation guidelines designed for the Russian
language. The guidelines are described in detail in the original RuSentiment paper, so this
section provides only key summary.

The annotation guidelines cover both implicit and explicit forms of expressions for
external attitude (evaluation) and the internal emotional state (mood). The guidelines
cover five sentiment classes.

� Negative represents both explicit and implicit negative sentiment or attitude towards
something.

� Neutral represents texts that simply describe some situation in a neutral, matter-of-fact
way and have no clear positive or negative sentiment. This class also includes
commercial information, factual questions, objective descriptions, and summaries.

� Positive represents both explicit and implicit positive sentiment or attitude towards
something.

� Speech Act represents texts that perform the functions of various speech acts—such as
greeting someone, congratulating someone, and expressing gratitude for something.
Although these texts also represent a positive sentiment, they are treated as a separate
subcategory because they can also be performed under social pressure or out of a feeling
of obligation (Rogers et al., 2018).

� Skip represents noisy and unclear sentiment or attitude towards something—such as
when the original meaning is impossible to ascertain without additional context, the

1 Assessing the quality of a given algorithm
lies outside the scope of this study. Initial
research in this direction has already
been done in other studies; for example,
Pavliy and Lewis (2016) compared the
quality of Twitter’s language detection
algorithm and Google’s Compact Lan-
guage Detector on Ukrainian and Rus-
sian tweets. The authors found that
Twitter’s algorithm correctly detects 92%
of texts in Russian and has higher accu-
racy than Google’s Compact Language
Detector.

2 At the time of this writing, all months for
2021 were not available.
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sentiment of the texts as a whole is not entirely clear, the text is not in Russian, or the
text contains jokes.

Text with irony was annotated with the dominant sentiment, commonly negative.
Hashtags were treated as information units similar to basic words or phrases. Emoticons
were not treated as the only sentiment labels but were analysed in combination with the
whole text to identify dominant sentiment.

Crowdsourcing platform
The annotation was performed via Yandex.Toloka (https://toloka.ai/), a Russian crowd-
sourcing platform with a high share of Russian speaking workers. Yandex.Toloka is widely
used in the studies on Russian-language content, such as for annotation of semantic
change (Rodina & Kutuzov, 2020), question answering (Korablinov & Braslavski, 2020),
and toxic comments (Smetanin, 2020b). A depiction of the Yandex.Toloka user interface
can be found in Fig. 1. We required annotators to pass training before starting annotation.
During the annotation of the dataset, their work was continuously evaluated through
honeypots. As training samples and control pairs, we selected texts from RuSentiment,
which was annotated using the same guidelines. The threshold was 60% correctly
annotated samples for training and 80% samples for honeypots. We selected only Russian
speaking annotators who passed an internal exam (https://toloka.ai/ru/docs/guide/
concepts/filters.html) on language knowledge.

Figure 1 An example of user interface for annotators in Yandex.Toloka in Russian (on the left) and its translation in English (on the right).
The green block with quotation marks contains the text of the tweet. Under the block with the text, there are numbered sentiment classes, where 1 is
Negative, 2 is Neutral, 3 is Positive, 4 is Speech Act, and 5 is Skip. Numbers are used as hotkeys during annotation.

Full-size DOI: 10.7717/peerj-cs.1039/fig-1
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Aggregation
Following the RuSentiment aggregation strategy, a tweet was deemed to belong to a class if
at least two out of the three annotators attributed it to that class. In case all three
annotators disagreed, the tweet was removed from the dataset as extremely noisy and
unclear (see examples in Table A1). Out of the initially selected 15,000 tweets, 1,608 tweets
received all three different annotations, so we excluded these tweets from the final dataset.
Thus, the final dataset consists of 13,392 tweets with the following class distribution: 3,298
(24.62%) Negative tweets, 5,341 (39.88%) Neutral tweets, 2,414 (18.02%) Positive tweets,
1,843 (13.76%) Skip tweets, and 496 (3.70%) Speech Act tweets. We split our dataset into
training (80%) and test subset (20%) using stratified random sampling by class labels.

Inter-annotator agreement
For measuring the inter-annotator agreement, we calculated the Krippendorff’s α
coefficient (Krippendorff, 1980) because it applies to any number of annotators and
categories, as well as to missing or incomplete data (Krippendorff, 2004). For most inter-
annotator agreement indices, including Krippendorff’s α, it is commonly suggested that a
cutoff threshold value of 0.8 is a marker of good reliability, with a range of 0.667 to 0.8
allowing for tentative conclusions and values below 0.667 indicating poor agreement
(Beckler et al., 2018). However, in the systematic review of crowd-sourced annotation in
social computing, Salminen et al. (2018) reported that agreement scores in social
computing studies are not high, averaging at around 0.60 for both Kappa and Alpha
metrics, which is lower than typical threshold values. The authors highlighted that the
nature of annotation in social computing tends to be more subjective rather than objective,
and the more subjective the task, the worse the agreement, regardless of the metric used.
Though it is important to report inter-rater agreement scores, there are suggestions that
the results can be misleading in social computing (Hillaire, 2021). In fact, low agreement in
this case does not necessarily mean the opinions of annotators are incorrect; it may simply
indicate that they have different opinions (Salminen et al., 2018; Hillaire et al., 2021).
Sentiment annotation, by nature, is a subjective task because the annotator must
subjectively (with some guidelines) identify sentiment and emotions expressed by the
author and not just objectively analyse narrated events or situations: we can expect
annotators to have different subjective understanding of emotion expressed in a particular
text. Thus, considering that in the field of social computing science the mean score is 0.60
(Salminen et al., 2018), we followed the same approach as Hillaire (2021) and adopted the
less conservative interpretation of inter-rater agreement by Landis & Koch (1977), which
suggests the following interpretations.

� Scores from 0.0 to 0.2 indicate a slight agreement.

� Scores from 0.21 to 0.40 indicate a fair agreement.

� Scores from 0.41 to 0.60 indicate a moderate agreement.

� Scores from 0.61 to 0.80 indicate a substantial agreement.

� Scores from 0.81 to 1.0 indicate almost perfect or perfect agreement.
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We calculated Krippendorff’s α with binary distance (e.g., all classes have similar
distance between each other) using the NLTK library (Bird, Klein & Loper, 2009) and
obtained the score of 0.5048 for binary distance, which can be interpreted as a moderate
agreement between annotators. We considered this level of agreement as satisfactory
for our case, since other five-class sentiment datasets also reported this or even lower level
of agreement, such as Blog Track at TREC 2008 (α = 0.4219, five classes) (Bermingham &
Smeaton, 2009), LINIS Crowd (α = 0.541, five classes) (Koltsova, Alexeeva & Kolcov, 2016),
RuSentiment (Fleiss’ kappa of 0.58, five classes) (Rogers et al., 2018), sentiment@USNavy
(α = 0.592, four classes) (Fiok et al., 2021), and NaijaSenti (Fleiss kappa of (0.434,
0.555), five classes) (Muhammad et al., 2022). Additionally, we calculated Krippendorff’s α
with interval distance that takes into account distance between classes: for example,
Neutral and Positive classes are closer to each other than Negative and Positive classes. The
distance matrix is presented in Table 2. The Krippendorff’s α coefficient for interval
distance was 0.5601, which can also be interpreted as slightly higher but still moderate
agreement.

Explanatory analysis
The average text length is 59.36 characters for all text, 67.52 forNegative, 59.29 for Neutral,
57.85 for Positive, 42.71 for Speech, and 51.41 for Skip. As can be seen from Fig. 2, the
frequency of occurrence of texts from a pair of characters in the dataset is extremely low,
but with an increase in the number of characters, rapid growth begins. The frequency peak
is reached when the text length is from 20 to 40 characters, and then the frequency
gradually begins to decrease. Interestingly, for some classes, there is a moderate Pearson’s
correlation between the length of the text and the proportion of texts with this class relative
to all texts. The Negative class has a moderate positive correlation (ρ = 0.68, p < 0.01)
with the length of text, whereas Speech (ρ = −0.52, p < 0.01) and Skip (ρ = −0.62, p < 0.01)
classes have moderate negative correlation. At the same time, Neutral (ρ = −0.03, p = 0.70)
and Positive (ρ = −0.04, p = 0.62) classes do not have statistically significant correlation.
The most common unigrams, bigrams, and emojis can be found in Table 3.

Table 2 Distance between classes for interval Krippendorff’s a, where 0 means that classes are the
same, 1 means that classes are close to each other, and 2 means that classes a far away from each
other.

Class Negative Neutral Positive Speech Skip

Negative 0 1 2 2 1

Neutral 1 0 1 1 1

Positive 2 1 0 0 1

Speech 2 1 0 0 1

Skip 1 1 1 1 0

Note:
Positive and Speech classes have zero distance between them; they both represent positive sentiment as per RuSentiment
guidelines.
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As mentioned in “RelatedWork”, one of the key limitations of RuTweetCorp (Rubtsova,
2013)—the biggest automatically annotated dataset of tweets in Russian—is that Positive
and Negative tweets in it can be easily separated with F1 = 97.39% by a simple rule-based
approach based on the presence of the ‘(’ character. We decided to check that this
limitation does not apply to RuSentiTweet. We applied this simple rule-based approach to
Positive and Negative tweets from RuSentiTweet and got F1 = 0.3450 (i.e., approximately
the same result as in the case of a random classification), thereby confirming that
RuTweetCorp’s limitation does not apply to RuSentiTweet.

Figure 2 Texts length distribution. Full-size DOI: 10.7717/peerj-cs.1039/fig-2

Table 3 Most common unigrams, bigrams, and emojis without stop words, punctuation, and
numbers. Stop words were removed using NLTK (Bird, Klein & Loper, 2009). Most unigrams and
bigrams can have several English translations depending on the context. The table provides only one
translation option.

Unigram Bigram Emoji

Item Count Item Count Item Count

Russian English Russian English

это it 1,117 доброе утро good morning 39 443

просто simply 355 спокойной ночи good night 26 313

спасибо thanks 306 спасибо большое thanks a lot 24 246

хочу want 249 самом деле actually 23 240

ещё yet 223 это просто it’s simple 23 120

почему why 209 опубликовано фото published photo 18 119

очень very 205 сих пор so far 17 118

всё all 204 руб г rub g 16 113

блять fuck 184 днем рождения birthday 15 104

вообще generally 174 все ещё still 13 100
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SENTIMENT CLASSIFICATION BASELINE
Model selection
As was demonstrated in our recent study (Smetanin & Komarov, 2021a), sentiment
analysis of the Russian language text based on the language models tends to outperform
rule-based and basic ML-based approaches in terms of classification quality. This
statement was also supported by other studies (Golubev & Loukachevitch, 2020;
Kotelnikova, 2020; Konstantinov, Moshkin & Yarushkina, 2021). Based on the mentioned
papers, we decided to fine-tune RuBERT (Kuratov & Arkhipov, 2019), a version of BERT
(Devlin et al., 2019) trained on the Russian part of Wikipedia and Russian news. Over the
past few years, this model has been actively used in sentiment analysis studies on the
Russian language and constantly demonstrated strong or even new state-of-the-art
(SOTA) results (Golubev & Loukachevitch, 2020; Kotelnikova, 2020; Konstantinov,
Moshkin & Yarushkina, 2021; Smetanin & Komarov, 2021a). For comparison, we also
decided to train more a classical ML classifier for sentiment analysis task: Multinomial
Naive Bayes (MNB). We used the MNB implementation (https://github.com/sismetanin/
sentiment-analysis-of-tweets-in-russian) from our previous paper (Smetanin & Komarov,
2019).

Results
During the training stage for RuBERT, we relied on the approach used in Smetanin &
Komarov (2021a). Fine-tuning was performed using the Transformers library (Wolf et al.,
2020) on 1 Tesla V100 SXM2 32GB GPU with the following parameters: four train
epochs, 128 max sequence length, 32 batch size, and a learning rate of 5e−5. Since our goal
was to provide a baseline classification model and not the most efficient one, we did not
search for the most efficient training parameters. We repeated each experiment 3 times
and reported mean values of the measurements. For MNB, we used the same parameters as
in our previous paper (Smetanin & Komarov, 2019): combination of unigrams and
bigrams, TF-IDF vectorizer, and an alpha of 0.01.

According to the results presented in Table 4, RuBERT outperformed MNB, as
expected, and showed the best classification scores. The classification results obtained on
RuSentiTweet are slightly lower but still comparable with the results obtained in other
studies on RuSentiment (see Table 5): RuBERT achieved Fweighted

1 ¼ 0:7263 on
RuSentiment (Kuratov & Arkhipov, 2019), whereas on our dataset this model showed

Fweighted
1 ¼ 0:6675. The difference in the results could be caused by the size of the dataset

because RuSentiment is more than two times bigger. The classification metrics of five-class
sentiment analysis approaches on other datasets in other languages can be found in

Table 4 Five-class sentiment classification on RuSentiTweet.

Model Precision Recall Fmacro
1 Fweighted1

RuBERT 0.6793 0.6449 0.6594 0.6675

MNB 0.5867 0.5021 0.5216 0.5189
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Table 5. Although direct comparison for different datasets and languages may not be
entirely correct, we can see that at least the magnitude of order of our approach
corresponds with the average score for five-class classification.

We made our RuBERT-based model publicly available (https://huggingface.co/
sismetanin/rubert-rusentitweet) to the research community.

Error analysis
Considering that RuBERT clearly outperformed MNB, we performed error analysis only
for RuBERT. As can be seen from confusion matrix for RuBERT (see Fig. 3), the Skip class
was one of the most scarcely classified classes since it initially consisted of barely

Table 5 Five-class sentiment classification studies.

Study Dataset Model Classification metrics

Accuracy Precision Recall Fmacro
1 Fweighted1

Muhammad et al. (2022) NaijaSenti XLM-R-base+LAFT n/a n/a n/a n/a 0.795

Muhammad et al. (2022) NaijaSenti M-BERT+LAFT n/a n/a n/a n/a 0.7700

Fiok et al. (2021) sentiment@USNavy BART large + CNN n/a n/a n/a 0.596 n/a

Smetanin & Komarov (2021a) RuSentiment M-BERT-Base n/a 0.6722 0.6907 0.6794 0.7244

Smetanin & Komarov (2021a) RuSentiment RuBERT n/a 0.7089 0.7362 0.7203 0.7571

Smetanin & Komarov (2021a) RuSentiment M-USE-CNN n/a 0.6571 0.6708 0.6627 0.7105

Smetanin & Komarov (2021a) RuSentiment M-USE-Trans n/a 0.6821 0.6982 0.6860 0.7342

Jamadi Khiabani, Basiri & Rastegari
(2020)

TripAdvisor Dempster–Shafer-based
model

0.79 0.5 0.47 0.49 n/a

Jamadi Khiabani, Basiri & Rastegari
(2020)

CitySearch Dempster–Shafer-based
model

0.79 0.48 0.48 0.48 n/a

Kuratov & Arkhipov (2019) RuSentiment Multilingual BERT n/a n/a n/a n/a 0.7082

Kuratov & Arkhipov (2019) RuSentiment RuBERT n/a n/a n/a n/a 0.7263

Baymurzina, Kuznetsov & Burtsev (2019) RuSentiment SWCNN + fastText Twitter n/a n/a n/a n/a 0.7850

Baymurzina, Kuznetsov & Burtsev (2019) RuSentiment BiGRU + ELMo Wiki n/a n/a n/a n/a 0.6947

Tripto & Ali (2018) YouTube LSTM 0.5424 n/a n/a 0.5320 n/a

Li et al. (2018) Twitter Logistic Regression 0.6899 0.6053 0.6899 0.6354 n/a

Ahmadi et al. (2017) SST-5 RNTN 0.41 n/a n/a 0.32 n/a

Buntoro, Adji & Purnamasari (2016) Twitter Naïve Bayes 0.7177 0.716 0.718 n/a n/a

Aly & Atiya (2013) LABR SVM 0.503 n/a n/a n/a 0.491

Chetvirokin & Loukachevitch (2013) ROMIP-2012 (Movies) n/a 0.407 n/a n/a 0.377 n/a

Blinov, Kotelnikov & Pestov (2013) ROMIP-2012 (Books) SVM 0.481 0.339 0.496 0.402 n/a

Chetvirokin & Loukachevitch (2013) ROMIP-2012
(Cameras)

n/a 0.480 n/a n/a 0.336 n/a

Pak & Paroubek (2012) ROMIP-2011 (Movies) SVM 0.599 n/a n/a 0.286 n/a

Pak & Paroubek (2012) ROMIP-2011 (Books) SVM 0.622 n/a n/a 0.291 n/a

Pak & Paroubek (2012) ROMIP-2011
(Cameras)

SVM 0.626 n/a n/a 0.342 n/a

Note:
We selected only those studies, which consideredfive sentiment classes and reported at least one of the following classification measures: Precision, Recall, macro F1,
weighted F1. Among all datasets, only ROMIP (Chetviorkin, Braslavskiy & Loukachevich, 2013; Chetvirokin & Loukachevitch, 2013) and RuSentiment (Rogers et al., 2018)
datasets are in Russian.
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interpretable and noisy tweets. The Speech Acts class was clearly distinguished from
Negative and Neutral classes because it consists of a well-defined group of speech
constructs, but it was commonly misclassified as Positive because it also represents positive
sentiment. Predictably, the Neutral class was commonly misclassified as Positive or
Negative class because neutral sentiment is logically located between positive and negative
sentiment. As was highlighted by Barnes, Øvrelid & Velldal (2019), the issue of neutral
sentiment misclassification tends to be a general challenge of non-binary sentiment
classification. In general, misclassification errors of our model were quite similar to
RuSentiment misclassification errors reported in our previous study (Smetanin &
Komarov, 2021a) (see Fig. 4), most likely because the same annotation guidelines and
models were used. The most noticeable difference was in the recall for the Speech class. For
RuSentiment, it was much better separated from other classes, with recall in the interval

Figure 3 Confusion matrix for RuSentiTweet. Full-size DOI: 10.7717/peerj-cs.1039/fig-3

Figure 4 Confusion matrix for RuSentiment were created using molders from Smetanin & Komarov
(2021a). Full-size DOI: 10.7717/peerj-cs.1039/fig-4
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from 0.88 to 0.96 (Smetanin & Komarov, 2021a). We suppose that the reason of such a
difference is in the number of texts in this class: RuSentiment contains 3,467 texts of the
Speech, whereas RuSentiTweet contains only 480 such texts. The examples of misclassified
tweets can be found in Table A2.

CONCLUSION
In this article, we present RuSentiTweet, a new general domain sentiment dataset of
tweets in Russian with manual annotation. RuSentiTweet includes 13,392 tweets
annotated by three annotators with moderate inter-rater agreement into five classes:
Positive, Neutral, Negative, Speech Act, and Skip. Currently, RuSentiTweet is the only
dataset of general domain tweets in Russian with manual annotation by more than one
annotator and is the largest in its class for Russian. Additionally, we presented a RuBERT-
based model trained on RuSentiTweet, which demonstrated F1 = 0.6594 in five-class
classification. The code, data, and model were made publicly available to the research
community.

Further research might focus on several areas. Firstly, considerably more work must be
done to determine the most efficient ML algorithm in terms of classification quality for
RuSentiTweet. In particular, it could be interesting to apply explainable sentiment analysis
approaches (e.g., Szczepański et al., 2021; Kumar & Raman, 2022) to allow a deeper
understanding of the reasons for misclassification errors on particular texts. Secondly, it
would be interesting to measure a subjective well-being index based on historical Russian
tweets. Lastly, another possible area of future research would be to perform additional
toxicity annotation of negative tweets from RuSentiTweet.
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APPENDIX

Table A1 Examples of tweets with no agreement between annotators.

Tweet Annotation

Russian English Annotator
1

Annotator
2

Annotator
3

ю ноу блин yu know damn it Skip Neutral Negative

@USER доброе утро всем дэдди сегодня @USER good morning daddies to everyone today Speech Positive Skip

Путешествуем по Уэльсу. не уважать мужчин Traveling in Wales. disrespect men Negative Neutral Skip

тот факт что в энимал кроссинге так мало
прикольных мышиных жителей

the fact that there are so few funny mouse
inhabitants in animal crossing

Negative Positive Neutral

Кто в нижнем родился, в верхнем не сгодился. Who was born in the bottom, did not fit in the top. Negative Neutral Skip
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Table A2 Examples of tweets classification. All usernames and URLs were replaced with keywords for anonymity purposes.

Tweet True
class

Predicted
class

Russian English

@USERNAME @USERNAME @USERNAME
@USERNAME @USERNAME Помедорус

@USERNAME @USERNAME @USERNAME @USERNAME
@USERNAME Pomedorus

Skip Skip

@USERNAME ты не лохушка ЛОЛ я тебе завидую…. у
меня травма из за интернета вот я лохушка

@USERNAME you’re not a sucker LOL I envy you…. I’m
traumatized because of the internet I’m a sucker

Skip Negative

@USERNAME Котиков Одриосолу Дождь @USERNAME Cats Odriosolu Rain Skip Neutral

@USERNAME Уж лучше твоя грудь @USERNAME Your breasts are better Skip Positive

Как сережки URL How do you like the earrings URL Neutral Neutral

@USERNAME Реквием по мечте @USERNAME Requiem for a dream Neutral Positive

@USERNAME ПОДОЖДИ НУ МНЕ КАЗАЛОСЬ ДА @USERNAME WAIT I THINK YES Neutral Negative

@USERNAME Спокойной ночи и сладких снов @USERNAME Good night and sweet dreams Speech Speech

@USERNAME как дела моя хорошая?? ( ) @USERNAME how are you my dear?? ( ) Speech Positive

@USERNAME Это классно что у тебя есть эти люди @USERNAME It’s great that you have these people Positive Positive

На самом деле я ловлю уруру с этого облачка. In fact, I catch ururu from this cloud. Positive Neutral

@USERNAME Это классно что у тебя есть эти люди What kind of morons are you, many have a school/work day
tomorrow

Negative Negative

интересный факт: смысла в клипах тхт больше, чем в
твоей жизни

Interesting fact: there is more sense in txt clips than in your life Negative Neutral
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