Peer.

Submitted 7 March 2022
Accepted 20 June 2022
Published 19 July 2022

Corresponding author
Usha Vadde, vuat5678@gmail.com

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.1035

© Copyright
2022 Vadde and Kompalli

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Energy efficient service placement in fog
computing

Usha Vadde' and Vijaya Sri Kompalli*

! Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur,
Andhra Pradash, India

? Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur,
Andhra Pradesh, India

ABSTRACT

The Internet of Things (IoT) concept evolved into a slew of applications. To satisty

the requests of these applications, using cloud computing is troublesome because of
the high latency caused by the distance between IoT devices and cloud resources. Fog
computing has become promising with its geographically distributed infrastructure for
providing resources using fog nodes near IoT devices, thereby reducing the bandwidth
and latency. A geographical distribution, heterogeneity and resource constraints of fog
nodes introduce the key challenge of placing application modules/services in such a

large scale infrastructure. In this work, we propose an improved version of the JAYA

approach for optimal placement of modules that minimizes the energy consumption of
afoglandscape. We analyzed the performance in terms of energy consumption, network
usage, delays and execution time. Using iFogSim, we ran simulations and observed that
our approach reduces on average 31% of the energy consumption compared to modern
methods.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Emerging Technologies, Internet of Things
Keywords Fog computing, Service placement, Energy consumption, Internet of Things

INTRODUCTION

Cloud computing has gained more popularity as there is more exchange of data and
information. The Internet of Things (IoT), a major tech trend, causes connecting devices
to become more ubiquitous in business, government, and personal spheres. The Internet
of Things (IoT) is an accolade by cloud computing with high quality caching and high-
definition capabilities that enable everything to be brought online. More data is being
produced by bringing in all things online (Xu et al., 2018), This data will be processed on
the cloud. Cloud data centres are often located distant from IoT devices. This placement
results in a high communication delay, but most IoT applications require low latency. The
concept of fog computing enables storage, computation, and networking on the fog nodes
that are closer to the IoT devices. Fog nodes can be placed anywhere between the IoT
devices and the cloud path. By bringing the cloud closer to where data is created and used,
fog computing with hierarchical architecture can effectively deal with latency-sensitive IoT
applications. Rather than storing and processing the data on a cloud, its fog computing
allows processing to be done at fog nodes in the network. In this way, information from the

How to cite this article Vadde U, Kompalli VS. 2022. Energy efficient service placement in fog computing. Peer] Comput. Sci. 8:e1035
http://doi.org/10.7717/peerj-cs.1035

https://peerj.com/computer-science
mailto:vuat5678@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

IoT devices can be processed separately (Mijuskovic et al., 2021). As the processing takes
place hierarchically, total latency is decreased.

Fog computing is a novel approach with several advantages, like low cost, network
bandwidth and low latency. Fog resources allow local computing and network for end-user
applications. The flexibility and scalability of cloud computing will make it easier for fog
computing to meet the growing need for computation-intensive and large scale applications
when fog computing processing energy is insufficient.

Fog computing has several applications, including health services, surveillance, smart
buildings, connected cars, and manufacturing. Fog nodes are positioned near the customer
applications to keep latency and response times low. Despite advantages, there are
also several challenges associated with fog computing. Managing resources properly is
paramount since it will prevent downtime and energy costs.

This research focuses on one of the major fog computing challenges: module/services
placement. The fog nodes are resource-constrained, so we should properly assign
the modules to a fog node. Without proper allocation, the applications will starve.
Proper allocation of the resources to each module can solve this issue In the literature,
various optimization techniques like Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO) and genetic algorithm were used. But these algorithms fall within
local optimum and are sensitive to the initial population.

In the proposed algorithm, we introduced a new operator in the JAYA algorithm called
Levy flight, which produces a random walk following probability distribution. We use the
proposed approach for module placement in the cloud-fog environment. The Levy flight
escape the locally optimal solution, resulting in an efficient placement of the modules
in the fog landscape. The proposed Levy flight based JAYA(LJAYA) approach led to a
fair trade-off between utilization of fog landscape and energy consumption for running
applications in fog landscape.

The following are the major contributions of this research:

e Formulated service/module placement problem to minimize energy consumption.

e A new Levy flight based JAYA algorithm is proposed to solve the module/service
placement problem in the fog landscape.

e Experiments for performance analysis are conducted by varying loads considering the
said metrics. The results conclude that the proposed placement approach significantly
optimizes the module/service placement and reduces energy consumption.

RELATED WORKS

With the continuous development of fog computing technology, resource management
has become a difficult task (Tadakamalla ¢ Menasce, 2021). This section presents the
existing resource management techniques with their advantages and limitations. A quick
overview of some of these proposed module/service placement approaches is provided
below. Fog computing deals with computationally intensive applications at the edges of the
network. There exist various challenges to complex resource allocation and communication
resources under QoS requirements. The issue of task scheduling and resource allocation

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

for multi-devices in wireless IoT networks is being investigated. Li et al. (2019) proposed
a non-orthogonal multiple access approach. The use of various computing modes would
impact the energy consumption and average delay. So the proposed method would make the
optimal decision of choosing a suitable computing mode that offers good performance. The
optimization issue is composed of a mixed-integer nonlinear programming problem that
helps reduce energy consumption. The authors used an Improved Genetic Algorithm (IGA)
to resolve this nonlinear problem. Zhu et al. (2018) proposed Folo, which is aimed to reduce
the latency and comprehensive quality loss while also facilitating the mobility of vehicles.
A bi-objective minimization problem for a task allocation to fog nodes is introduced.
The vehicular network is widely adopted as a result of the imminent technologies in
wireless communication, inventive manufacturing so on. Lin ef al. (2018) investigated the
resource allocation management in vehicular fog computing that aims to reduce the energy
consumption of the computing nodes and enhance the execution time. A utility model is
also built that follows two steps. In the beginning, all sub-optimal solutions counting on
the Lagrangian algorithm are given to resolve this problem. Then, the proposed optimal
solution selection procedure. QoS might get degraded for the battery-energy mobile devices
due to a lack of energy supply.

Chang et al. (2020) proposed a technology of Energy Harvesting (EH) that helps the
devices to gain energy from the environment. The authors proposed reducing the execution
cost through the Lyapunov optimization algorithm. Huang et al. (2020) solved the energy-
efficient resource allocation problem in fog computing networks. To increase the network
energy efficiency, they proposed a Fog Node (FN) based resource allocation algorithm
and converted it into Lyapunov optimization. Due to the immense volume of data
transmissions, communication issues were increased by big data. So, fog computing has
been implemented to resolve the communication issue. However, a limitation in resource
management due to the amount of accessible heterogeneous computing relied on fog
computing. Gai, Qin ¢ Zhu (2020) addresses the problem by proposing an Energy-Aware
Fog Resource Optimization (EFRO) approach. EFRO considers three components such
as cloud, fog and edge layers. This approach would integrate the standardization and
smart shift operations that also reduce energy consumption and scheduling length. To
reduce the delays due to the inefficiency of task scheduling in fog computing, Potu, Jatoth
¢ Parvataneni (2021) had proposed an Extended Particle Swarm Optimization (EPSO)
that would help optimize a task scheduling problem. Load balancing techniques associated
with fog computing follow two ways: dynamic load balancing and static load balancing.
Singh et al. (2020) compared various load balancing algorithms and found a fundamentally
easy round-robin load-balancing algorithm. Jamil et al. (2020) proposed QoS relied load
balancing algorithm, the custom load method. This algorithm aims to increase the use of fog
devices in a specific area while reducing energy consumption and latency. When it comes
to resource optimization, linear programming is a popular approach. Arkian, Diyanat ¢
Pourkhalili (2017), in their work, suggested a mixed-integer programming approach that
took into account the bottom station association as well as task distribution. Skarlat et al.
(2017) have introduced fog colonies and used a Genetic Algorithm (GA) to decide where
the services have to be placed within the colonies.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Time Cost Aware Scheduling was proposed by Binh et al. (2018). The algorithm
distributes jobs to the client as well as the fog layer based on overall response time, data
centre costs, and processing time. However, there is no dynamic allocation of resources,
and the proposed approach allocates the resources before the processing time. Alelaiwi
(2019), have taken this a leap forward using deep learning to optimize the response time
for critical tasks in the fog landscape.

Chen, Dong ¢ Liang (2018) and Varshney, Sandhu & Gupta (2021) focused on how a
user’s independent computing tasks are distributed between their end device, computing
access point and a remote cloud server. To reduce the energy consumption of the above
components, they employ semi-definite relaxation and a randomization mapping method.
Varshney, Sandhu & Gupta (2020) prospered Applicant Hierarchy Processing (AHP)
method for distributing applications to suitable fog layer. The suggested framework assures
end-user QoE. The suggested method is evaluated for storage, CPU cycle, and processing
time.

Improving the algorithm for mapping application modules/services to the fog nodes is
a good research method. In the literature, module placement algorithms were proposed,
but still, there is a scope for improving the optimal solution. Most of the existing solutions
focused on minimizing latency in the fog landscape. This paper proposes an enhanced
module placement algorithm using Levy flight. Our goal is to reduce energy consumption,
network utilization and execution time.

PROBLEM FORMULATION

The fog-cloud design takes advantage of both edge and cloud computing capabilities. Low-
latency processing is carried out at lower-level fog nodes that are distributed geographically
while leveraging centralized cloud services.

Architecture of fog computing

Fog computing is a type of computing that takes place between the end node and the
cloud data centre. The cloud, fog, and IoT sensors are the three layers of fog architecture.
Sensors capture and emit the data but do not have the computation or storage capability.
Along with sensors, we have actuators to control the system and react to the changes in the
environment as detected by sensors.

Fog nodes are devices with little computing capability and network-connected devices
such as smart gateway and terminal devices. This layer collect data from sensors and
perform data processing before sending it to the upper layers. Fog computing is suitable
for low-latency applications. As shown in Fig. 1, we extend the basic framework of fog
computing in Bonomi et al. (2014) and Gupta et al. (2017) by allowing service/module
placement in both the fog and cloud. For this, we introduce two levels of control: (i) cloud-
fog controller and (ii) fog orchestration controller(FOC). Cloud-fog controller controls
all fog nodes. Fog orchestration controllers are a special kind of fog node used to run the
IoT applications without any involvement of the cloud. A fog orchestration controller
is responsible for all the nodes connected to it, called a fog colony. Our fog architecture

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 4/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Cloud)
Compute Units Storage
Cloud - Fog Controller
P A R Fog e | R .
: Fog Colony “1 : Fog Colony ‘\‘
I [| I
I [| I
: Fog Control node | : Fog Control node |
: & i
I v \ [| Y I
I [} |
L | Fognode Fog node ' 1 | Fognode | | Fognode :
: ¢ l
I [|
' Y Y) 't r) '
| [I
| A @ o % |
| \ 11 || B [
) : (N

! / 1 b/ 4

. / Q I X W 2 |
| [I
| [!
\ 1\ (]
\ 10T Devices Y 10T Devices '

\ ri LY '

Figure 1 Architecture for fog computing.
Full-size Gl DOI: 10.7717/peerjcs.1035/fig-1

supports a hierarchy with the cloud-fog controller, fog orchestration controller, fog nodes,
and the sensor/IoT devices at the bottom layer.

The controller nodes need to be provided with the information to analyze the IoT
application and place the respective modules onto virtualized resources. For example, the
fog orchestration controller is provided with complete details about its fog colony and the
state of neighbourhood colonies. With this information, the scheduler develops a service
placement plan and accordingly places the application modules on particular fog resources.

Fog landscape consist of set of fog nodes (f1, 2, ,fn). These fog nodes are split into
colonies, with a FOC node in charge of each colony. Each Fog node f; is equipped with
sensors and actuators. Each fog node f; can be indicated with a tuple < id,R;,S;, Cu; >
where id is the unique identifier, R; is the RAM capacity, S; is the storage capacity and Cu;
is the CPU capacity of the fog node. FOC node controls all the communication within a

Vadde and Kompalli (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1035 5/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1035/fig-1
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

colony. We define a non-negligible delay d; between the FOC node and each fog node f; in
that colony.

loT applications and services

Let W denote a set of different IoT apps. The Distributed Data Flow (DDF) deployment
approach is used for the ToT application, as stated in Giang et al. (2015). Each of these
applications (W) is made up of several modules, where each module m; € Wy is to be
executed on the fog/cloud resources. All the modules that belong to an application (W)
need to be deployed before Wy starts execution. Once the application executes, modules
will communicate with each other, and data flows between modules. The application
response time r4 is calculated as shown in Eq. (1).

r4 = makespan(Wy) 4 deployment (W) (1)

where makespan(Wy) is the sum of the makespan duration of each module m; € Wy and
the execution delays. The makespan(#;) is the total time spent by the module from start to
its completion. deployment (Wy) is the sum of the current deployment time deploymentévk
and the additional time for propagation of the module to the closest neighbour colony.
We assume that the application’s deployment time includes administrative tasks such as
module placement. Each module m; is defined by a tuple < CPU,y, Ry, Sy, Type > where
these are the demands of CPU, main memory, and storage. The service type indicates
specific kinds of computing resources for a module m;. Our goal is to utilize the fog
landscape to the maximum extent, and the placement of modules must reduce the total
energy consumption of the fog landscape. This issue is referred to as Module Placement
Problem (MPP) in fog landscape. The controllers monitor all the fog nodes. Each fog node
fi has fixed processing power CPU; and memory R;. Let my,my, ms....., m, be the modules
that need to be placed on to the set of fog nodes (f1,f2,...... ,fn). This work addresses the
MPP to reduce the delay in application processing and the total energy consumption of the
fog landscape. A levy-based JAYA (LJAYA) algorithm for mapping modules and fog nodes
has been developed. In the proposed approach, each solution is modelled by an array. This
array consists of integer numbers (unique identifiers of fog nodes) corresponding to the
fog node on which the modules m11,m;,ms.....,m, will be placed.

Solution; = (f3,fo,....fis---:f6)-

This solution places the m; onto f3, m, onto fy etc.

Energy consumption model

An efficient placement strategy can optimize fog resources and minimize energy
consumption. Most of the previous placement algorithms have focused on enhancing
the performance of the fog landscape while ignoring the energy consumption. The
energy consumption by a fog node/controller can be accurately described as a linear
relationship of CPU utilization (Reddy et al., 2021; Beloglazov ¢ Buyya, 2012). We define
energy consumption of a computing node (P;) considering idle energy consumption and
CPU utilization (u), given in Eq. (2):

Pi(u) =k Ppigx + (1 —k) * Pyax x u (2)

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Pax 1s the energy consumption of a host running with full capacity (100% utilization), k
represents the percentage of power drawn by an idle host. The total energy consumption
of fog landscape with n nodes can be determined using Eq. (3) (Lee & Zomaya, 2012).

E :ZP,-(u). (3)
i=1

Module placement using Levy based JAYA algorithm

The wide spectrum of bio-inspired algorithms, emphasizing evolutionary computation &
swarm intelligence, are probabilistic. An important aspect of obtaining high performance
using the above algorithms depends highly on fine-tuning algorithm-specific parameters.
Rao (2016) implemented the JAYA algorithm with few algorithm-specific parameters to
tackle this disadvantage. JAYA algorithm updates each candidate using the global best and
worst solutions and moves towards the best by avoiding the worst particle. This algorithm
updates the solution according to Eq. (4). We have to update the population until the
optimal solution is found or maximum iterations are reached.

Solution; 1 = Solution; + r1 * (B; — Solution;) — ry x (W; — Solution;) (4)

where Solution; is the value at ith iteration, and Solution;, is the updated value. ry, r, are
random numbers and Wj, B; are the worst and best according to the fitness value.

We modified the JAYA algorithm by introducing a new operator that searches the
vicinity of each solution using a Levy flight (LF). Levy flight produces a random walk
following heavy-tailed probability distribution. Levy flight steps are distributed according
to Levy distribution with several small steps, and some rare steps are very long. These long
jumps help the algorithm’s global search capability (Exploration). Meanwhile, the small
steps improve the local search capabilities (Exploitation). The updating in our approach is
as follows:

Solution; | = Solution; + LF (Solution;) 4+ r * (B; — Solution;) — r, * (W; — Solution;) (5)
where
u
LF (Solution;) =0.01 75 * (Solution; — B;) (6)
%
where u and v are two numbers drawn from normal distributions, B; is the best solution
and 0 < 8 <2 is an index.

Figure 2 shows the steps involved in the improved JAYA algorithm for module/service
placement and are described as follows:

If the condition is true the input for next level is the updated particle, which we got after
applying Eqs. (6) and (7) to the original particle. But if the condition is false then the input
for next level is the original particle.

Step 1: Initial solution

Each solution/candidate is a randomized list where each entry specifies the fog node that
satisfies the requirement of a given module. For example, the second module request will

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 716

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

M; |Mz |Ms

User Request

Initialize the population with
random positions

v

Y

Calculate the best and worst
solution in the population
according to the fitness value

'

Update the particles according to

the equation 4

+

Update the particles according to

the equation 5

No

Yes

Is updated
particle fitness is
hetter than the

original particle?

Keep the original

particle

Keep the updated
particle

termination

criteria met?

Chatput

i 2 |3

Retrieve the hest particle from the
population and place the modules

Full-size G4l DOI: 10.7717/peerjcs.1035/fig-2

Figure 2 Steps involved in the proposed algorithm.

8/16

Vadde and Kompalli (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1035

https://peerj.com
https://doi.org/10.7717/peerjcs.1035/fig-2
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

be placed on the fog node given as the second element of the list. Then the fitness for each
solution is calculated as shown in Eq. (3).

Step 2: Updation

Calculate the fitness of each candidate and select the solutions that lead to higher and
lower fitness (energy consumption in our case) values as the worst and best candidates.
The movement of all the candidates is revised using the global best and worst according to
Eq. (4). This equation changes the candidate’s direction to move towards better solution
areas.

Step 3: Spatial dispersion

To improve the exploration and exploitation of the particles we add the Levy distribution
to the updated particles, as shown in Eq. (5). We keep Solution;, i, if it is the promising
solution than the Solution;. In the next iteration, we apply these operations to the updated
population. During this process, all candidates move towards optimal solutions keeping
away from the worst candidate.

Step 4: Final selection

All the particles are updated until the global optimum is found or the number of
iterations is over. Finally, the solution with the highest fitness value is selected, and
modules are placed on the respective fog nodes.

PERFORMANCE EVALUATION

We simulated a cloud-fog environment using iFogSim (Gupta et al., 2017). It is a
generalized and expandable system for simulating various fog components and real
time applications. iFogSim allows simulation and the evaluation of algorithms for resource
management on fog landscape. iFogSim has been used by most universities and industries to
evaluate resource allocation algorithms and for energy-efficient management of computing
resources. So, we also used the iFogSim to simulate our experiments. We analyzed the
proposed approach concerning energy consumption, delays, execution time, network
usage, etc. We have considered Intelligent Surveillance through Distributed Camera
Networks (ISDCN) for our work. Smart camera-based distributed video surveillance has
gained popularity as it has lot a of applications like linked cars, security, smart grids,
and healthcare. However, multi-site video monitoring manually makes the surveillance
quite complex. Hence we need video management software to analyze the feed from the
camera and provide a complex solution such as object detection and tracking. Low-latency
connectivity, handling large amounts of data, and extensive long-term processing are all
required for such a system (Gupta et al., 2017).

When motion is detected in the smart camera’s Fields Of View (FOV), it begins delivering
a video feed to the ISDCN application. The target object is identified by the application and
located in its position in each frame. Moving object tracking is accomplished by adjusting
camera parameters from time to time. ISDCN application comprises five modules, as
shown in Fig. 3. The first module is Object Detector which identifies an object in a given
frame. The second module is for Motion Detection, and the third module tracks the
identified object over time by updating the pan-tilt-zoom (PTZ) control parameters. The
user interface is to display the detected object. A detailed description of these modules is

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

MOTION VIDEQ STREAM
RAW VIDEO STREAM

Motion
Detector

OBJECT_LOCATION

PTZ_PARAMS
<<periodic 10ms>>

Figure 3 Modelling of the ISDCN application.
Full-size Gal DOI: 10.7717/peerjcs.1035/fig-3

given in Gupta et al. (2017). The application will take the feed from the number of CCTV
cameras, and after processing these streams, the PTZ control parameters are adjusted to

track the object. The edges connect the modules in the application and these edges carry
tuples. Table 1 lists the properties of these tuples.

Table 2 shows the different types of fog devices employed in the topology and their
configurations. Here, the cameras serve as sensors and provide input data to the application.
On average, the sensors have 5-millisecond inter-arrival times, which require 1000 MIPS
and a bandwidth of 20,000 bytes. The physical topology is modelled in iFogSim using the
FogDevice, Sensor and Actuator classes.

Results and Discussion
This section presents the results of the proposed module placement algorithm for the
ISDCN application and compares them with state-of-the-art approaches in terms of
energy, latency, and network utilization. We compared the proposed module placement
approach with the approaches like EPSO (Potu, Jatoth ¢ Parvataneni, 2021), PSO (Mseddi
et al., 2019), JAYA (Rao, 2016), and Cloud Only (Gupta et al., 2017). To compare the
performance of these approaches, we perform several experiments using the same physical
topology of the ISDCN application and varying the number of areas.

The proposed approach is evaluated on ISDCN application by varying the number
of areas with four cameras. All the cameras are connected to the cloud via a router in a
cloud-only approach.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 10/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1035/fig-3
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Table 1 Details of the edges in the ISDCN application.

Tuple type MIPS Network
bandwidth

OBJECT LOCATION 1000 100

RAW VIDEO STREAM 1000 20000

PTZ PARAMS 100 100

MOTION DETECTION 2000 2000

DETECTED OBJECT 500 2000

Table 2 Characteristics of the Fog devices used for ISDCN.

CPU RAM Uplink Downlink Level Rateper Busypower Idle power

MIPS (MB) Bw (MB) Bw (MB) MIPS (Watt) (Watt)
Cloud 44800 40000 100 10000 0 0.01 16*103 16%83.25
Proxy 2800 4000 10000 10000 1 0 107.3 83.43
Fog 2800 4000 10000 10000 2 0 107.3 83.43

Energy consumption analysis

Figure 4 shows the superior performance of the proposed LJAYA algorithm in terms of
the energy consumption for all the configurations measured in Kilo Joules (k]) A lot of
energy is consumed by the cameras to detect the objects’ motion in frames. Total energy
consumption was significantly less in the LJAYA method than in JAYA, EPSO, PSO, and
Cloud Only. For instance, the total energy consumption with EPSO, JAYA, PSO and
Cloud Only is 509.12 kJ, 523.39 kJ, 689.48 kJ, and 1915.10 kJ. In comparison, the LJAYA
method was 480.10 kJ for ten areas. When the number of areas is increased, the total
energy consumption also increases with all the approaches. The proposed approach can
find the optimal solution in all the cases. The analysis of the energy consumption for
various configurations demonstrated that the proposed LJAYA approach reduces energy
consumption up to 31% on average compared to modern methods.

Execution time analysis

Figure 5 shows the execution time (in milliseconds) of various topologies and input
workloads. From Fig. 5, it is clear that the proposed LJAYA approach can complete the
execution faster than the other approaches. On average, the proposed approach reduced
the execution time up to 7%, 15%, 22%, and 53% over EPSO, JAYA, PSO, and Cloud Only
approach, respectively.

Network usage analysis

The network usage will increase if traffic is increased toward the cloud. At the same time,
the network usage decreases when we have a dedicated fog node in each area. The network
usage is calculated using Eq. (7) (Gupta et al., 2017).

Networkusage = Latency *§, (7)

where § = tupleNWSize.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Energy Consumption

2500
c
o
S 2000
o
€
S 1500
%]
s
S 1000 /
- —
2
o 500
c
w
0
10 20 30 40
Areas
UAYA e EPSO s JAYA PSO em===CloudOnly

Figure 4 Energy consumption of all devices in fog landscape.
Full-size G4l DOI: 10.7717/peerjcs.1035/fig-4

Execution Time
1600
1400
1200

1000

800
60
4
=il
0
10 20 30 40

Areas

o
o o

Execution Time (in milliseconds)
o
o

B LUAYA mEPSO mIJAYA PSO mCloudOnly

Figure 5 Execution time analysis.
Full-size Gal DOI: 10.7717/peerjcs.1035/fig-5

Experimental results in terms of the network usage in bytes are shown in Table 3.
Network usage is high with the cloud-only approach because all processing happens in a
cloud server. But, with the proposed approach, processing occurs at efficient fog nodes,
reducing the network usage. Considering 40 areas, the network usage with the proposed
LJAYA, EPSO, JAYA, PSO, and CloudOnly are 2,483,404 bytes, 2,485,275 bytes, 2,485,814
bytes, 2,487,663 bytes, and 2,991,055, respectively. We can reduce the network usage by up
to 16% using the proposed approach when compared to the CloudOnly approach.

Vadde and Kompalli (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1035 12/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1035/fig-4
https://doi.org/10.7717/peerjcs.1035/fig-5
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Table 3 Total network usage in bytes.

Areas LJAYA EPSO JAYA PSO CloudOnly
10 1466620 1466806 1466804 1467504 1474585
20 1972125 1972196 1972271 1974304 1980075
30 2478204 2480074 2482234 2482234 2485565
40 2483404 2485275 2485814 2487663 2991055

Table 4 Latency analysis in ms.

Areas LJAYA EPSO JAYA PSO CloudOnly

10 1.1 2.2 2.2 20.899 105.999

20 2.16 3.3 4.3 30.9 105.999

30 2.89 3.3 7.015 31.7 105.999

40 3.2 5.4 19.9 32.6 105.999
Latency analysis

Real-time IoT applications need high performance and can achieve this only by reducing
latency. The latency is computed using Eq. (8) (Gupta et al., 2017).

Latency =a+u+6 (8)

where « is the delay incurred while capturing video streams in the form of tuples and is
the time to upload and perform motion detection. Finally, 6 is the time to display the
detected object on the user interface.

Experimental results in terms of latency are showed in Table 4. All application modules
are placed in the cloud in a cloud-only placement algorithm, causing a bottleneck in
application execution. This bottleneck causes a significant increase (106 ms) in the latency.
On the other hand, the proposed placement approach can maintain low latency (1.1 ms)
as it places the modules close to the network edge. Compared with the other algorithms,
the proposed LJAYA approach shows superior performance in minimizing execution time,
latency and energy consumption.

CONCLUSION

Cloud and fog computing oversee a model that can offer a solution for IoT applications
that are sensitive to delay. Fog nodes are typically used to store and process data near the
end devices, which helps to reduce latency and communication costs. This article aims to
provide an evaluation framework that minimizes energy consumption by optimally pacing
the modules in a fog landscape. An improved nature-inspired algorithm LJAYA was used
with levy flight and evaluated the performance in various scenarios. Experimental results
demonstrated that the LJAYA algorithm outperforms the other four algorithms by escaping
from the local optimal solutions using levy flight. With the proposed algorithm, we can
reduce the energy consumption on average by up to 31% and execution time up to 53%.
In the future, we plan to consider different applications and propose an efficient resource
provisioning technique by considering the application requirements.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Usha Vadde conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Vijaya Sri Kompalli conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The code is available in the Supplementary File.

Supplemental Information

Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1035#supplemental-information.

REFERENCES

Alelaiwi A. 2019. An efficient method of computation offloading in an edge cloud
platform. Journal of Parallel and Distributed Computing 127:58—64
DOI 10.1016/j.jpdc.2019.01.003.

Arkian HR, Diyanat A, Pourkhalili A. 2017. Mist: Fog-based data analytics scheme with
cost-efficient resource provisioning for IoT crowdsensing applications. Journal of
Network and Computer Applications 82:152-165 DOI 10.1016/j.jnca.2017.01.012.

Beloglazov A, Buyya R. 2012. Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual ma-
chines in cloud data centers. Concurrency and Computation: Practice and Experience
24(13):1397-1420 DOIT 10.1002/cpe.1867.

Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM. 2018. An evolutionary algorithm
for solving task scheduling problem in cloud-fog computing environment. In:
Proceedings of the ninth international symposium on information and communication
technology. 397—404.

Bonomi F, Milito R, Natarajan P, Zhu J. 2014. Fog computing: a platform for internet
of things and analytics. In: Big data and internet of things: a roadmap for smart
environments. Cham: Springer, 169-186.

Chang Z, Liu L, Guo X, Sheng Q. 2020. Dynamic resource allocation and computation
offloading for IoT fog computing system. IEEE Transactions on Industrial Informatics
17(5):3348-3357.

Vadde and Kompalli (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1035 14/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1035#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1035#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1035#supplemental-information
http://dx.doi.org/10.1016/j.jpdc.2019.01.003
http://dx.doi.org/10.1016/j.jnca.2017.01.012
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Chen M-H, Dong M, Liang B. 2018. Resource sharing of a computing access point for
multi-user mobile cloud offloading with delay constraints. IEEE Transactions on
Mobile Computing 17(12):2868-2881 DOI 10.1109/TMC.2018.2815533.

Gai K, Qin X, Zhu L. 2020. An energy-aware high performance task allocation strategy
in heterogeneous fog computing environments. IEEE Transactions on Computers
70(4):626-639.

Giang NK, Blackstock M, Lea R, Leung VC. 2015. Developing iot applications in the fog:
a distributed dataflow approach. In: 2015 5th international conference on the internet
of things (IOT). Piscataway: IEEE, 155-162.

Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. 2017. iFogSim: a toolkit for mod-
eling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software: Practice and Experience
47(9):1275-1296.

Huang X, Fan W, Chen Q, Zhang J. 2020. Energy-efficient resource allocation in fog
computing networks with the candidate mechanism. IEEE Internet of Things Journal
7(9):8502—-8512 DOI 10.1109/J10T.2020.2991481.

Jamil B, Shojafar M, Ahmed I, Ullah A, Munir K, Ijaz H. 2020. A job scheduling
algorithm for delay and performance optimization in fog computing. Concurrency
and Computation: Practice and Experience 32(7):e5581.

Lee YC, Zomaya AY. 2012. Energy efficient utilization of resources in cloud computing
systems. The Journal of Supercomputing 60(2):268-280
DOI10.1007/s11227-010-0421-3.

LiX, LiuY, Ji H, Zhang H, Leung VC. 2019. Optimizing resources allocation for
fog computing-based internet of things networks. IEEE Access 7:64907—-64922
DOI 10.1109/ACCESS.2019.2917557.

Lin F, Zhou Y, Pau G, Collotta M. 2018. Optimization-oriented resource alloca-
tion management for vehicular fog computing. IEEE Access 6:69294—-69303
DOI 10.1109/ACCESS.2018.2879988.

Mijuskovic A, Chiumento A, Bemthuis R, Aldea A, Havinga P. 2021. Resource manage-
ment techniques for cloud/fog and edge computing: an evaluation framework and
classification. Sensors 21(5):1832 DOI 10.3390/s21051832.

Mseddi A, Jaafar W, Elbiaze H, Ajib W. 2019. Joint container placement and
task provisioning in dynamic fog computing. IEEE Internet of Things Journal
6(6):10028-10040 DOI 10.1109/JI0T.2019.2935056.

Potu N, Jatoth C, Parvataneni P. 2021. Optimizing resource scheduling based on
extended particle swarm optimization in fog computing environments. Concurrency
and Computation: Practice and Experience e6163.

Rao R. 2016. Jaya: a simple and new optimization algorithm for solving constrained and
unconstrained optimization problems. International Journal of Industrial Engineering
Computations 7(1):19-34.

Reddy VD, Nilavan K, Gangadharan G, Fiore U. 2021. Forecasting energy consumption
using deep echo state networks optimized with genetic algorithm. In: Artificial
intelligence, machine learning, and data science technologies. CRC Press, 205-217.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 15/16

https://peerj.com
http://dx.doi.org/10.1109/TMC.2018.2815533
http://dx.doi.org/10.1109/JIOT.2020.2991481
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1109/ACCESS.2019.2917557
http://dx.doi.org/10.1109/ACCESS.2018.2879988
http://dx.doi.org/10.3390/s21051832
http://dx.doi.org/10.1109/JIOT.2019.2935056
http://dx.doi.org/10.7717/peerj-cs.1035

PeerJ Computer Science

Singh SP, Kumar R, Sharma A, Nayyar A. 2020. Leveraging energy-efficient load
balancing algorithms in fog computing. Concurrency and Computation: Practice and
Experience e5913.

Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P. 2017. Optimized [oT service
placement in the fog. Service Oriented Computing and Applications 11(4):427-443
DOI10.1007/s11761-017-0219-8.

Tadakamalla U, Menasce DA. 2021. Autonomic resource management for fog comput-
ing. IEEE Transactions on Cloud Computing.

Varshney S, Sandhu R, Gupta P. 2020. QoE-based multi-criteria decision making for
resource provisioning in fog computing using AHP technique. International Journal
of Knowledge and Systems Science (IJKSS) 11(4):17-30.

Varshney S, Sandhu R, Gupta PK. 2021. QoE-based resource management of appli-
cations in the fog computing environment using AHP technique. In: 2021 6th
international conference on signal processing, computing and control (ISPCC). 669-673
DOI 10.1109/ISPCC53510.2021.9609479.

XuR,WangY, Cheng Y, Zhu Y, Xie Y, Sani AS, Yuan D. 2018. Improved particle swarm
optimization based workflow scheduling in cloud-fog environment. In: International
conference on business process management. Springer, 337—-347.

Zhu C, Tao J, Pastor G, Xiao Y, JiY, Zhou Q, Li Y, Yli-Jaiski A. 2018. Folo: latency and
quality optimized task allocation in vehicular fog computing. IEEE Internet of Things
Journal 6(3):4150-4161.

Vadde and Kompalli (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1035 16/16

https://peerj.com
http://dx.doi.org/10.1007/s11761-017-0219-8
http://dx.doi.org/10.1109/ISPCC53510.2021.9609479
http://dx.doi.org/10.7717/peerj-cs.1035

