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ABSTRACT
Deep convolutional neural networks (CNN)manifest the potential for computer-aided
diagnosis systems (CADs) by learning features directly from images rather than using
traditional feature extraction methods. Nevertheless, due to the limited sample sizes
and heterogeneity in tumor presentation in medical images, CNN models suffer from
training issues, including training from scratch, which leads to overfitting. Alternatively,
a pre-trained neural network’s transfer learning (TL) is used to derive tumor knowledge
from medical image datasets using CNN that were designed for non-medical activa-
tions, alleviating the need for large datasets. This study proposes two ensemble learning
techniques: E-CNN (product rule) and E-CNN (majority voting). These techniques
are based on the adaptation of the pretrained CNN models to classify colon cancer
histopathology images into various classes. In these ensembles, the individuals are,
initially, constructed by adapting pretrainedDenseNet121,MobileNetV2, InceptionV3,
and VGG16 models. The adaptation of these models is based on a block-wise fine-
tuning policy, in which a set of dense and dropout layers of these pretrained models is
joined to explore the variation in the histology images. Then, the models’ decisions are
fused via product rule and majority voting aggregation methods. The proposed model
was validated against the standard pretrained models and the most recent works on
two publicly available benchmark colon histopathological image datasets: Stoean (357
images) and Kather colorectal histology (5,000 images). The results were 97.20% and
91.28% accurate, respectively. The achieved results outperformed the state-of-the-art
studies and confirmed that the proposed E-CNNs could be extended to be used in
various medical image applications.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Data Science
Keywords Deep convolutional neural networks, Transfer learning, Block-wise fine-tuning,
Ensemble learning, Colon cancer classification, Histopathological Images

INTRODUCTION
Colon cancer is the third most deadly disease in males and the second most hazardous in
females. According to the World Cancer Research Fund International, over 1.8 million
new cases were reported in 2018 (Belciug & Gorunescu, 2020). In the diagnosis of colon
cancer, the study of histopathological images under the microscope plays a significant role
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in the interpretation of specific biological activities. Among the microscopic inspection
functions, classification of images (organs, tissues, etc.) is one of considerable tasks.
However, classifying medical images into a set of different classes is a very challenging
issue due to low inter-class distance and high intra-class variability (Sahran et al., 2018), as
illustrated in Fig. 1. Some objects in medical images may be found in images belonging to
different classes, and different objects may appear at different orientations and scales in a
given class. During the manual assessment, physicians examine the hematoxylin and eosin
(H&E) stained tissues under a microscope to analyze their histopathological attributes,
such as cytoplasm, nuclei, gland, and lumen, as well as change in the benign structure
of the tissues. It is worth noting that early categorization of colon samples as benign or
malignant, or discriminating between different malignant grades is critical for selecting
the best treatment protocol. Nevertheless, manually diagnosing colon H&E stained tissue
under a microscope is time-consuming and tedious, as illustrated in Fig. 1. In addition, the
diagnostic performance depends on the experience and personal skills of a pathologist. It
also suffers from inter-observer variability with around 75% diagnostic agreement across
pathologists (Elmore et al., 2015). As a result, the treatment protocol might differ from
one pathologist to another. These issues motivate development and research into the
automation of diagnostic and prognosis procedures (Stoean et al., 2016).
In recent decades, various computer aided diagnosis systems (CADs) have been

introduced to tackle the classification problems in cancer digital pathology diagnosis to
achieve reproducible and rapid results (Bicakci et al., 2020). CADs assist in enhancing the
classification performance and, at the same time, minimize the variability in interpretations
(Rahman et al., 2021). The faults produced by CADs/machine learning model have been
announced to be less than those produced by a pathologist (Kumar et al., 2020). These
models can also assist clinicians in detecting cancerous tissue in colon tissue images. As
a result, researchers are trying to construct CADs to improve diagnostic effectiveness
and raise inter-observer satisfaction (Tang et al., 2009). Numerous conventional CADs
for identifying colon cancer using histological images had been introduced by number
of researchers in the past years (Stoean et al., 2016; Kalkan et al., 2012; Li et al., 2019).
Most of the conventional CADs focus on discriminating between benign and malignant
tissues. Furthermore, they focus on conventional machine learning and image processing
techniques. In this regards, they emphasize on some complex tasks such as extracting
features from medical images and require extensive preprocessing. The complex nature
of these tasks in machine learning techniques degrades the results of the CADs regarding
accuracy and efficiency (Ahmad, Farooq & Ghani, 2021). Conversely, recent advances
in machine learning technologies make this task more accurate and cost-effective than
traditional models (Abu Khurma et al., 2022; Khurma, Aljarah & Sharieh, 2021; Abu
Khurmaa, Aljarah & Sharieh, 2021).

In the last few years, deep learning techniques have become a prevalent and leading tool
in the field of machine learning for colon histopathlogical image classification. Recently,
one of the most successful deep learning techniques is the deep convolutional neural
networks (CNN) (Khan et al., 2020) that consists of series of convolutional and pooling
layers. These are followed by the fully-connected (FCC) and softmax layers. The FCC
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Figure 1 Colon histopathology images from the Stoean benchmark dataset (Stoean et al., 2016) with
40×magnification factor: (A) normal (Grade 0), (B) cancer grade 1 (G1), (C) cancer grade 2 (G2), and
(D) cancer grade 3 (G3).

Full-size DOI: 10.7717/peerjcs.1031/fig-1

and the softmax represent the neural networks classifiers (Alzubi, 2022). CNN has the
ability to extract the features from images by parameter tuning of the convolutional and
the pooling layers. Thus, it achieves great success in many fields especially in medical
image classifications such as skin disease (Harangi, 2018), breast (Deniz et al., 2018) and
colon cancer classification (Ghosh et al., 2021). CNN is categorized into two approaches:
either training from scratch or pre-trained models (e.g., DenseNet (Huang et al., 2017),
MobileNet (Sandler et al., 2018), and InceptionV3 (Szegedy et al., 2016). The most effective
approach inmedical image classification is the pretrainedmodels due to the limited number
of training samples (Saini & Susan, 2020).

CNN has been used in the domain of colon histopathlogical image classification. For
example, Postavaru et al. (2017) utilized a CNN approach for the automated diagnosis of a
set of colorectal cancer histopathological slides. They utilized CNN with five convolutional
layers and reported accuracy of 91.4%. Stoean (2020) extended the work (Postavaru et al.,
2017) and presented a modality method to tune the convolutional of the deep CNN. She
introduced two Evolutionary algorithms for CNN parametrization. She conducted the
experiments on colorectal cancer (Stoean et al., 2016) and reported the highest accuracy of
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92%. It was obtained from these studies that the CNN models exceeded the handcrafted
features.

While the CNN achieves high performance especially on large dataset size, it struggles
to make such performance on small dataset size (Deniz et al., 2018; Mahbod et al., 2020),
and simply results in overfitting issue (Zhao, Huang & Zhong, 2017). To overcome this
issue, the concept of transfer learning technique of pretrained CNN models is exploited
for the classification of colon histopathlogical images. In practice, the transfer learning
technique of the pretrained models exports knowledge from previously CNN that has been
trained on the large dataset to the new task with small dataset (target dataset). There are
two approaches to transfer learning of pretrained models in medical image classification:
feature extraction and fine-tuning (Benhammou et al., 2020). The former method extracts
features from any convolutional or pooling layers and removes the last FCC and softmax
layers. While in the latter, the pretrained CNN models are adjusted for specific tasks. It is
important to remember that the number of neurons in the final FC layer corresponds to
the number of classes in the target dataset (i.e., the number of colon types). Following this
replacement, the whole pre-trained model is retrained (Mahbod et al., 2020; Benhammou
et al., 2020; Zhi et al., 2017) or the last FC layers are retrained (Benhammou et al., 2020).
Various pretrained models (e.g., DenseNet (Huang et al., 2017), MobileNet (Sandler et
al., 2018), VGG16 (Simonyan & Zisserman, 2014), and InceptionV3 (Szegedy et al., 2016)
have been introduced in recent years. Each pretrained model is constructed based on
several convolution layers and filter sizes to extract specific features from the input image.
However, transferring the begotten experience from the source (ImageNet) to our target
(colon images) led to the loss of some powerful features of histopathological image analysis
(Boumaraf et al., 2021). For example, CNN pretrained AlexNet and GoogleNet models
were used on the colon histopathological images classification (Popa, 2021). However, they
achieved poor standard deviation results. However, using these pretrained models on the
colon dataset needs a specific fine-tuning approach to achieve acceptable results.

To accommodate the pretrained CNN models to the colon image classification, we
design a new set of transfer learning models (DenseNet (Huang et al., 2017), MobileNet
(Sandler et al., 2018), VGG16 (Simonyan & Zisserman, 2014), and InceptionV3 (Szegedy
et al., 2016) to refine the pretrained models on the colon histopathological image tasks.
Our transfer learning methods are based on a block-wise fine-tuning policy. We make
the last set of residual blocks of the deep network models more domain-specific to our
target colon dataset by adding dense layers and dropout layers while freezing the remaining
initial blocks in the deep pretrained model. The adaptability of the proposed method is
further extended by fine-tuning the neural network’s hyper-parameters to improve the
model generalization ability. Besides, a single pretrained model has a limited capacity to
extract complete discriminating features, resulting in an inadequate representation of the
colon histopathology performance (Yang et al., 2019). As a result, this study proposes an
ensemble of pretrained CNN models architectures (E-CNN) to identify the representation
of colon pathological images from various viewpoints for more effective classification tasks.

In this research, the following contributions are made:
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• Investigate the influence of the standard TL approaches (DenseNet, MobileNet, VGG16,
and InceptionV3) on the colon cancer classification task.
• Design a new set of transfer learning methods based on a block-wise fine-tuning
approach to learn the powerful features of the colon histopathology images. The new
design includes adding a set of dense and dropout layers while freezing the remainder
of the initial layers in the pretrained models (DenseNet, MobileNet, VGG16, and
InceptionV3) to make them more specific for the colon domain requirements.
• Define and optimize a set of hyper-parameters for the new set of pretrained CNN
models to classify colon histopathological images.
• An ensemble (E-CNN) was proposed to extract complementary features in colon
histopathology images by using an ensemble of all the introduced transfer learning
methods (base classifiers). The proposed E-CNN merges the decisions of all base
classifiers via majority voting and product rules.

The remainder of this research is organized as follows. The Literature Review section
goes over the related works. Our proposed methodology is presented in detail in the
Methodology section. The experiments Results and Discussion section analyzes and
discusses the experimental results. The Conclusion brings this study to a close by outlining
some research trends and viewpoints.

LITERATURE REVIEW
Deep learning pretrainedmodels have made incredible progress in various kinds of medical
image processing, specifically histopathological images, as they can automatically extract
abstract and complex features from the input images (Manna et al., 2021). Recently, CNN
models based on deep learning design are dominant techniques in the CADs of cancer
histopathological image classification (Kumar et al., 2020; Mahbod et al., 2020; Albashish
et al., 2021). CNN learn high- and mid-level abstraction, which is obtained from input
RGB images. Thus, developing CADs using deep learning and image processing routines
can assist pathologists in classifying colon cancer histopathological images with better
diagnostic performance and less computational time. Numerous CADs for identifying
colorectal cancer using histological images had been introduced by a number of researchers
in past years. These CADs vary from conventional machine learning algorithms of the deep
CNN. In this study, we present the related work of the colorectal cancer classification
relying on colorectal cancer dataset (Stoean et al., 2016) as real-world test cases.

The authors in Postavaru et al. (2017) designed a CNN model for colon cancer
classification based on colorectal histopathological slides belonging to a healthy case
and three different cancer grades (1, 2, and 3). They used an input image with the size
of 256×256×3. They created five convolutional neural networks, followed by the ReLU
activation function. In the introduced CNN, various kernel sizes were utilized in each
convolutional layer. Besides, they utilized batch normalization and only two FCC layers.
They reported 91% accuracy in multiclass classification for the colon dataset in Stoean et
al. (2016). However, in the proposed approach, only the size of the kernels is considered,
while other parameters, like learning rate and epoch size, were not taken into account.
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The author in Stoean (2020) extended the previous study (Postavaru et al., 2017) by
applying an evolutionary algorithm (EA) in theCNNarchitecture. This was to automate two
tasks: first, EA was conducted for tuning the CNN hyper-parameters of the convolutional
layers. Stoean determined the number of kernels in CNN and their size. Second, the EA was
used to support SVM in parameters ranking to determine the variable importance within
the hyper-parameterization of CNN. The proposed approach achieved 92% colorectal
cancer grading accuracy on the dataset in Stoean et al. (2016). However, using EA does
not guarantee any diversity among the obtained hyper-parameters (solutions) (Bhargava,
2013). Thus, choosing the kernel size and depth of CNN may not ensure high accuracy.

In another study for colon classification but on a different benchmark dataset, the
authors inMalik et al. (2019) have proved that the transferred learning from a pre-trained
deep CNN model using InceptionV3 on a colon dataset with fine-tuning provides efficient
results. Their methodology was mainly constructed based on InceptionV3. Then, the
authors modified the last FCC layers to become harmonious with the number of the classes
in the colon classification task. Moreover, the adaptive CNN implementation was proposed
to improve the performance of CNN architecture for the colon cancer detection task. The
study achieved around 87% accuracy for the multiclass classification task.

In another study (Dif & Elberrichi, 2020a), a framework was proposed for the colon
histopathological image classification task. The authors employed a CNN based on
transferred learning from Resnet121 generating a set of models followed by a dynamic
model selection using the particle swarm optimization (PSO) metaheuristic. The selected
models were then combined by a majority vote and achieved 94.52% accuracy on the
colon histopathological dataset (Kather et al., 2016). In the same context, the authors
in Dif & Elberrichi (2020b) explored the efficiency of reusing pre-trained models on
histopathological images dataset instead of ImageNet based models for transfer learning.
For this target, a fine-tuningmethod was presented to share the knowledge among different
histopathological CNNmodels. The basic model was created by training InceptionV3 from
scratch on one dataset while transfer learning and fine-tuning were performed using
another dataset. However, this transfer learning-based strategy offered poor results on the
colon histopathological images due to the limited number of the training dataset.

The conventional machine learning techniques have been utilized for the colon
histopathology images dataset to achieve accepted results. For example, the 4-class colon
cancer classification task on the dataset in Stoean et al. (2016) was utilized in Boruz &
Stoean (2018) and Khadilkar (2021) to discriminate between various cancer types. In
the former case (Boruz & Stoean, 2018), the authors extracted contour low-level image
features from grayscale transformed images. Then, these features were used to train the
SVM classifier. Despite its simplicity, the study displayed a comparable performance to
some computationally expensive approaches. The authors reported accuracy averages
between 84.1% and 92.6% for the different classes. However, transforming the input
images to grayscale leads to losing some information and degrades the classification results.
However, using thresholding needs fine-tuning, which is a complex task. In latter case
(Khadilkar, 2021), the authors extracted morphological features from the colon dataset.
Mainly, they extracted Harris corner and Gabor wavelet features. These features were
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then used to feed the neural network classifier. The authors utilized their framework to
discriminate between benign and malignant cases. However, they ignored the multiclass
classification task, which is more complex task in this domain.

Most of the above studies utilized a single deep CNN (aka weak learner) model to
address various colon histopathology images classification tasks (binary or multiclass).
Despite their extensive use, a single CNN model has the restricted power to capture
discriminative features from colon histopathology images, resulting in unsatisfactory
classification accuracy (Yang et al., 2019). Thus, merging a group of weak learners forms
an ensemble learning model, which is likely to be a strong learner and moderate the
shortcomings of the weak learners (Qasem et al., 2022).

Ensemble learning of deep pretrained models has been designed to fuse the decisions
of different weak learners (individuals) to increase classification performance (Xue et al.,
2020; Zhou et al., 2021). A limited number of studies applied ensemble learning with deep
CNN models on colon histopathological image classification tasks (Popa, 2021; Lichtblau
& Stoean, 2019; Rachapudi & Lavanya Devi, 2021).

The authors in Popa (2021) proposed a new framework for the colon multiclass
classification task. They employed CNN pretrained AlexNet and GoogleNet models
followed by softmax activation layers to handle the 4-class classification task. The best-
reported accuracies on Stoean et al. (2016) dataset ranged between 85% and 89%. However,
the standard deviation of these results was around 4%. This means the results were not
stable. AlexNet was also used in Lichtblau & Stoean (2019) as a feature extractor for the
colon dataset. Then, an ensemble of five classifiers was built. The obtained results for this
ensemble achieved around 87% accuracy.

In Ohata et al. (2021), the authors use CNN to extract features of colorectal histological
images. They employed various pretrained models, i.e., VGG16 and Inception, to extract
deep features from the input images. Then, they employed ensemble learning by utilizing
five classifiers (SVM, Bayes, KNN, MLP, and Random Forest) to classify the input images.
They reported 92.083% accuracy on the colon histological images dataset in Kather et al.
(2016). A research study in Rachapudi & Lavanya Devi (2021) proposed light weighted
CNN architecture. RGB-colored images of colorectal cancer histology dataset (Kather et
al., 2016) belonging to eight different classes were used to train this CNNmodel. It consists
of 16 convolutional layers, five dropout layers, five max-pooling layers, and one FCC layer.
This architecture exhibited high performance in term of incorrect classification compared
to existing CNN models. Using ensemble learning model achieved around 77% accuracy
(error of 22%).

Overall, the earlier studies, summarized in Table 1, revealed a notable trend in using
deep CNN to classify colon cancer histopathological images. It was used to provide
much higher performance than the conventional machine learning models. Nevertheless,
training CNN models are not that trivial as they need considerable memory resources and
computation and are usually hampered by over-fitting problems. Besides, they require a
large amount of training dataset. In this regard, the recent studies (Ahmad, Farooq & Ghani,
2021; Boumaraf et al., 2021) have demonstrated that sufficient fine-tuned pretrained CNN
models performance is much more reliable than the one trained from scratch, or in the
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Table 1 Summary of the major classification studies on colon cancer.

Authors in Dataset used CNN
architecture

Accuracy Using pretrained either
feature extraction/fine- tuning

Stoean (2020) colorectal in
Stoean et al. (2016)

CNNmodel from scratch 92% Fine-tune: only kernel size and
number of kernels
in CNN using EA method

Popa (2021) colorectal in
Stoean et al. (2016)

AlexNet and GoogleNet 89% feature extractor

Postavaru et al. (2017) colorectal in
Stoean et al. (2016)

CNNmodel from scratch 91% The number of filters and
the kernel size

Lichtblau & Stoean (2019) colorectal in
Stoean et al. (2016)

AlexNet 87% Feature extractor with
ensemble learning

Ohata et al. (2021) colorectal in
Kather et al. (2016)

Set of pretrained models
(VGG16, Inception, Resent)

92.083% Feature extraction

Rachapudi & Lavanya Devi (2021) colorectal in
Kather et al. (2016)

CNN architecture 77% Fine-tune CNN model

Dif & Elberrichi (2020a) colorectal in
Kather et al. (2016)

Pretrained Resnet121 94% Feature extraction

Boruz & Stoean (2018) colorectal in
Stoean et al. (2016)

Contour low-level
image features

92.6%

worst cases the same. Besides, using ensemble learning of pretrained models show effective
results in various applications of image classification tasks. Therefore, this research fills the
gap in the previous studies for colon histopathological images classification by introducing
a set of transfer learning models based on Dense. Then, reap the benefits of the ensemble
learning to fuse their decision.

METHODOLOGY
This study constructs an ensemble of the pretrained models with fine-tuning for the
colon diagnosis based on histopathological images. Mainly, four pretrained models
(DenseNet121 MobileNetV2, InceptionV3, and VGG16) are fine-tuned, and then their
predicted probabilities are fused to produce a final decision for a test/image. The pretrained
models utilize transfer learning to mitigate these models’ weights to handle a similar
classification task. Ensemble learning of pretrained models attains superior performance
for histopathological image classification.

Transfer learning (TL) and pretrained deep learning models for
medical image
Transferring knowledge from one expert to another is known as transfer learning. In deep
learning techniques, this approach is utilized where the CNN is trained on the base dataset
(source domain), which has a large number of samples (e.g., ImageNet). Then, the weights
of the convolutional layers are transferred to the new small dataset (target domain). Using
pretrained models for classification tasks can be divided into two main scenarios: freezing
the layers of the pretrained model and fine-tuning the models. In the former scenario: the
convolutional layers of a deep CNNmodel are frozen, and the last FCC are omitted. In this
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way, the convolutional layers act as feature extractions. Then these features are passed to
a specific classifier (e.g., KNN, SVM) (Taspinar, Cinar & Koklu, 2021). While in the latter
case, the layers are fine-tuned, and some hyper-parameters are adjusted to handle a new
task. Besides, the top layer (fully connected layer) is adjusted for the target domain. In this
study, for example, we configure the number of neurons in this layer four in accordance
with the number of classes in the colon dataset. TL aims to boost the target field’s accuracy
(i.e., colon histopathological) by taking full advantage of the source field (i.e., ImageNet).
Therefore, in this study, we transfer the weights of the set of four powerful pretrained
CNN models (DenseNet (Huang et al., 2017), MobileNet (Sandler et al., 2018), VGG16
(Simonyan & Zisserman, 2014), and InceptionV3 (Szegedy et al., 2016)) with fine-tuning
to increase the diagnosis performance of the colon histopathological image classification.
The pretrained Deep CNN models and the proposed ensemble learning are presented in
the subsequent section.

Pretrained DenseNet121
Dense CNN(DenseNet) was offered by Huang et al. (2017). The architecture of DenseNet
was improved based on the ResNet model. The prominent architecture of DenseNet is
based on connecting the model using dense connection instead of direct connection within
all the hidden layers of the CNN (Alzubaidi et al., 2021). The crucial benefits of such an
architecture are that the extracted features/features map is shared with the model. The
number of training parameters is low compared with other CNN models similar to CNN
models because of the direct synchronization of the features to all following layers. Thus,
the DenseNet reutilizes the features and makes their structure more efficient. As a result,
the performance of the DenseNet is increased (Ahmad, Farooq & Ghani, 2021; Ghosh et
al., 2021). The main components of the DenseNet are: the primary composition layer,
followed by the ReLU activation function, and dense blocks. The final layer is a set of FC
layers (Talo, 2019).

Pretrained MobileNetV2
MobileNet (Sandler et al., 2018) is a lightweight CNN model based on inverted residuals
and a linear bottleneck, which form shortcut connections between the thin layers. It is
designed to handle limited hardware resources because it is a low-latencymodel, and a small
low power. The main advantage of the MobileNet is the tradeoff between various factors
such as latency, accuracy, and resolution (Krishnamurthy et al., 2021). In MobileNet, depth
separable convolutional (DSC) and point-wise convolutional kernels are used to produce
feature maps. Predominantly, DSC is a factorization approach, which replaces the standard
convolution with a faster one. In MobileNet, DSC first uses depth-wise kennels 2-D filters
to filter the spatial dimensions of the input image. The size of the depth-wise filter is Dk
×Dk ×1, where Dk is the size of the filter, which is much less than the size of the input
images. Then, it is followed by a point-wise convolutional filter that mainly applied to filter
the depth dimension of the input images. The size of the depth filter is 1 × 1 × n, where
n is the number of kernels. They separate each DSC from point-wise convolutional using
batch normalization and ReLU function. Therefore, DSC is called (separable). Finally, the
last FCC is connected with the Softmax layer to produce the final output/ classification
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result. Using depth-wise convolutional can reduce the complexity by around 22.7%. This
means the DSC takes only approximately 22% of the computation required by the standard
convolutional. Based on this reduction, MobileNet is becoming seven times faster than the
traditional convolutional. Thus, it becomes more desirable when the hardware is limited
(Srinivasu et al., 2021).

Pretrained InceptionV3
Google teams in Szegedy et al. (2016) introduced the InceptionV3 CNN. The architecture of
InceptionV3 was updated based on the inceptionV1model, as illustrated in Fig. 2. It mainly
addressed some issues in the previous inceptionV1 such as auxiliary classifiers by add batch
normalization and representation bottleneck by adding kernel factorization (Mishra et al.,
2020). The architecture of the InceptionV3 includes multiple various types of kernels (i.e.,
kernel size) in the same level. This structure aims to solve the issue of extreme variation in
the location of the salient regions in the input images under consideration (Mishra et al.,
2020). The InceptionV3 (Szegedy et al., 2016) utilizes a small filter size (1 × 7 and 1 × 5)
rather than a large filter (7 × 7 and 5 × 5). In addition, a bottleneck of 1 × 1 convolution
is utilized. Therefore, better feature representation.

The architecture of InceptionV3 (Szegedy et al., 2016) is demonstrated in Fig. 2. It starts
with input data (image), and then mapped parallel computations will be shaped into three
different convolutional layers with 3 × 3 or 5 × 5 filter size. The output of these layers is
aggregated into a single layer, which represents the output layer (e.g., ensemble technique).
Using parallel layers with each other will save a lot of memory and increase the model’s
capacity without increasing its depth.

Pretrained VGG16
VGG16 was presented by Simonyan & Zisserman (2014) as a deeper convolutional neural
network model. The basic design of this model is to replace the large kernels with smaller
kernels, and extending the depth of the CNN model (Alzubaidi et al., 2021). Thus, the
VGG16 becomes potentially more reliable in carrying out different classification tasks.
Figure 3 shows the basic VGG16 (Simonyan & Zisserman, 2014) architecture. It consists of
five blocks with 41 layers, where 16 layers have learnable weights; 13 convolutional layers
and three FCC layers from the learnable layers (Khan et al., 2020). The first two blocks
include two convolutional layers, while the last three blocks consist of three convolutional
layers. The convolutional layers use small kernels with size of 3 × 3 and padding 1. These
convolutional layers are separated using the max-pooling layers that use 2 × 2 filter size
with padding 1. The output of the last convolutional layer is 4,096, whichmakes the number
of neurons in the FCC 4,096 neurons. As illustrated in Table 2, VGG16 uses around 134
million parameters, which raises the complexity of VGG16 relating to other pretrained
models (Tripathi & Singh, 2020; Koklu, Cinar & Taspinar, 2022).

The proposed deep CNN ensemble based on softmax
The proposed deep ensemble CNNs (E-CNNs) architecture is based on two phases (base
classifiers and fuse techniques). In the former phase, four modified models have been
utilized: DenseNet121, MobileNetV2, InceptionV3, and VGG16 pretrained CNN classifier.
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Figure 2 The inceptionmodel from Talo (2019).
Full-size DOI: 10.7717/peerjcs.1031/fig-2

Figure 3 The VGG16model (Simonyan & Zisserman, 2014).
Full-size DOI: 10.7717/peerjcs.1031/fig-3

Table 2 Summary of deep architectures used in this work.

Architecture No. of
Conv layers

No. of
FCC layers

No. of training
parameters

Minimum
image size

Number of
extracted features

Top 5 error
on ImageNet

DenseNet121 120 1 7 million 221×221 1,024 7.71%
InceptionV3 42 1 22 million 299× 299 2,048 3.08%
VGG16 13 3 134 million 227× 227 4,096 7.30%
MobileNet 53 3 3.4 million 224× 224 1,024 -%

While the latter phase focuses on combining the decisions of the base classifiers (in the
first phase). Two types of fusion techniques have been employed in the proposed E-CNNS:
majority voting and product rule. On the one hand, the majority voting is based on the
prediction value of the base classifier. On the other hand, the product rule is based on
the probabilities of the base classifiers (i.e., pretrained model), the details of the proposed
E-CNNs are as follows:

The proposed modified deep pretrained models
After adapting the four pretrained models (DenseNet121, MobileNetV2, InceptionV3,
and VGG16), they serve as base classifiers in the proposed E-CNN for the automated
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classification of colon H&E histopathological images. The standard previous pretrained
models extract various features from the training images to discriminate between different
types of cancer (multiple classes) in the colon images dataset. However, each pretrained
model is based on a set of convolution layers and filter sizes to extract different features
from the input images. As a result, no pretrained model can be more general in extracting
all the distinguishing features from the input training images (Ghosh et al., 2021).

However, using initial weights in pretrained models affect the classification performance
because the CNNs pretrained models are nonlinear designs. These pretrained models learn
complicated associations from training data with the assistance of back propagation and
stochastic optimization (Ahmad, Farooq & Ghani, 2021). Therefore, this study introduces
a block-wise fine-tuning technique to adapt the standard CNNs models to handle the
heterogeneity nature in colorectal histology image classification tasks.

Figure 4 illustrates the main steps of the design of the block-wise fine-tuning technique.
First, the benchmark colon images are loaded. Then, some preprocessing tasks on the
training and testing images are performed to prepare them for the pretrained models, (e.g.,
resizing them to 224×224×3). The images are then rescaled to 1/255 as in the previous
related studies (Szegedy et al., 2016). After splitting the dataset into training and testing,
the four independent pretrained models: (Huang et al., 2017), MobileNet (Sandler et al.,
2018), VGG16 (Simonyan & Zisserman, 2014), and InceptionV3 (Szegedy et al., 2016) are
loaded without changing their weights. Then, the FCC and softmax layers are omitted
from the loaded pretrained CNN models. These layers were originally designed to output
1,000 classes from the ImageNet dataset. Two dense layers with a varying number of
hidden neurons are then added to strengthen the vital data-articular feature learning
from each individual pretrained model. These dense layers are followed by the ReLU
nonlinear activation function, which allows us to learn complex relationships among the
data (Ahmad, Farooq & Ghani, 2021; Garbin, Zhu & Marques, 2020). Next, a 0.3 dropout
layer is added to address the long training time and overfitting issues in classification tasks
(Deniz et al., 2018; Boumaraf et al., 2021). At the end of each pretrained model, the last
FCC with the softmax layer is added. The FCC is simply a feed-forward neural network,
which is fed by flattened input from the last pooling layer of the pretrained model. In this
study, based on the number of classes in this work, the number of neurons in FCC is set
to four instead of 1000 classes of ImageNet. While the softmax layer (activation layer) is
inserted on top of each model to train the obtained features and produce the classification
output based on max probability. Algorithm 1 shows the main steps of the block-wise
fine-tuning technique for each individual model in the proposed E-CNNs.

Ensemble fusing methods for the proposed E-CNN
This study introduces E-CNNs based on the four modified CNN pretrained models
(DenseNet (Huang et al., 2017), MobileNet (Sandler et al., 2018), VGG16 (Simonyan &
Zisserman, 2014), and InceptionV3 (Szegedy et al., 2016)) for the automated classification
of colon H&E histopathological images. The four adaptive models are trained on the
training dataset. Then evaluated on the tested dataset. The output probabilities of the four
pretrained models are connected to produce 16-D feature vector (i.e., each individual with
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Figure 4 Block diagram of the proposed block-wise fine-tuning for each pretrained model from
(DenseNet121, MobileNetV2, InceptionV3, and VGG16).

Full-size DOI: 10.7717/peerjcs.1031/fig-4

Figure 5 The proposed E-CNNS with the four adaptive pretrained models (DenseNet121,
MobileNetV2, InceptionV3, and VGG16).

Full-size DOI: 10.7717/peerjcs.1031/fig-5

its softmax produce four probabilities based on the number of classes in colon images).
Then, various combination methods (majority voting, and product rule) are employed to
produce a final decision for the test image. Figure 5 illustrates the proposed ECNNs with
the merging techniques (ECNN (product rule) and E-CNN (majority voting)).
In the majority voting technique, each base classifier allocates a class label output (i.e.,

a predicted label) to the provided test sample. It counts the votes of all the class labels
from the base classifiers. Then, the class that obtains the maximum number of votes is
nominated as the final decision for the E-CNN (majority voting) as described in Eq. (1).

P(I )= max
j=1toc

T=4∑
t=1

dtj (1)
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where P(I ) denotes the final decision for the test image (I), t denotes a base classifier, four
base classifiers are utilized (T = 4), c is the class label. dtj denotes the class label j for the I
by a base classifier t . The final decision of the input test image I is the class j which has the
maximum occurrence.

While in the product rule, the posterior probability outputs P j
t (I ) for each class label j

are generated by the base classifier t for the test image (I). Then the class with themaximum
likelihood of product is considered the final decision. Equation (2) shows the product rule
technique in the proposed E-CNN (product rule). Algorithm 2 illustrates the proposed
E-CNNs with majority voting and product rule.

P(I )= max
j=1toc

T=4∏
t=1

P j
t (I ) (2)

Based on Algorithms 1, 2, and Figs. 4 and 5, the following points are taken into account:
First, the CNNmodel is adapted to handle the heterogeneity in the colon histopathological
images using the Block-wise fine-tuning technique for each of the pretrained models.
It extracts additional abstract features from the image that aid in increasing intra-class
discrimination. Second, ensemble learning is employed to improve the performance of the
four adaptive pretrained models. As a result, the final decision regarding the test images
will be more precise.

Algorithm 1 Building and training the adaptive pretrained models [Block-wise fine-
tuning for each pretrained model].
1: input:Training data(T), N samples: T = [x1, x2,. . ., xN ], with Category: y = [y1, y2,. .

., yN ], pretrained CNN models( M), M=[ DenseNet121, MobileNetV2, InceptionV3,
and VGG16 models].

2: for each I inM do
3: Remove the last FCC and softmax layers
4: Add Dense1 layer with number of neurons equal to 512 and activation

function=ReLU
5: Add Dense2 layer with number of neurons equal to 64 and activation

function=ReLU
6: Add dropout layer
7: Add FCC layers with number of neurons equal to 4( based on number classes in

the colon dataset)
8: Add softmax layer ( for output probabilities)
9: Initialize the Hyper-parameters values, as listed in Table ??
10: Build the final model (adaptI )
11: Train the adapI on T
12: Append adapI into adapM
13: end for
14: Output: Adaptive models (adaptM ), adaptM=[ adapt_DenseNet121,

adapt_MobileNetV2, adapt_InceptionV3, and adapt_VGG16 models]
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Algorithm 2 Ensemble of adaptive models and evaluating the ensemble model on test
colon histopathlogical images.
1: Input: Adaptive models (adaptM ), adaptM=[ adapt_DenseNet121,

adapt_MobileNetV2, adapt_InceptionV3, and adapt_VGG16 models], Test images
set( D), with z samples: R = [x1, x2, x3,. . ., xz], with Category: y = [y1, y2,. . ., yz]

2: for j in D do
3: for each individual I in adaptM do
4: Evaluate the performance of I using the test data j.
5: P[j,I ]=probabilities of each class for the test image j when using the individ-

ual I .
6: V [j,I ]=prediction for the test image j when using the individual I .
7: end for
8: Compute the ensemble final prediction for test image j based on majority voting

and V [j,:] (ECNN(majority_voting))
9: Compute the ensemble final prediction for test image j based on the product

rule(ECNN(product_rule)) and p[j,:]
10: Output: class prediction for D using (ECNN(majority_voting)) and

(ECNN(product_rule))
11: end for

Resources used
All the experiments are implemented using TensorFlow, Keras API, and utilized Python
programming in Google Colaboratory or CoLab. In the CoLab, we utilize Tesla GPU to
run our experiment after loading the dataset into the Google drive (Postavaru et al., 2017).

EXPERIMENTS RESULTS AND DISCUSSION
This section outlines the experiments and evaluation results from the (E-CNN) and
its individual models presented in this research. This section also entails a synopsis of
the training and test datasets. The results using the proposed E-CNN, with majority
voting and product rule, other standard pretrained models, and state-of-the-art colon
cancer classification methods are also presented in this section. Comparisons between the
proposed E-CNN and other CNN models from scratch are presented in this section.

Dataset
To evaluate the validity of the proposed E-CNN for colon diagnosis from histopathological
images, two distinct benchmarks colon histology images datasets from (Stoean et al., 2016;
Kather et al., 2016) are applied. Further information about these datasets is as follows:

(A) Stoean (370 images): The histology images dataset (Stoean et al., 2016) were
collected from the Hospital of Craiova, Romania. The benchmark dataset consist of
357 histopathological H&E of normal grade (grade 0) and for cancer grades (grades 1,
2, and 3), with 10× magnification. They have a similar 800 × 600 pixels resolution. The
images’ distribution for the classes is as follows: Grade 0: 62 images, grade 1: 96 images,
grade 2: 99 images, and grade 3: 100 images. All images are RGB color 8-bit depth with
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JPEG format. Figure 1 shows some samples from the images and how they are close to each
other in the structure, which discriminates between various complicated grades.

(B) Kather (5,000 images): The dataset (Kather et al., 2016) includes 5,000 histology
images of human colon cancer. The samples were gathered from the Institute of Pathology,
University Medical Center, Mannheim, Germany. The benchmark dataset consists of
histopathological H&E of eight classes: namely ADIPOSE, STROMA, TUMOR, DEBRIS,
MUCOSA, COMPLEX, EMPTY, and LYMPHO. Each class consists of 625 images with a
size of 150 × 150 pixels, 20 × magnification, and RGB channel format.

Experimental setting
As the proposed E-CNN aims to assist in diagnosing colon cancer based on the
histopathological images, the benchmark dataset in Stoean et al. (2016) is considered
during the experiments’ work. The dataset was divided into 80% training and 20% testing.
In E-CNN, the Hyperparameters, as illustrated in Table 3, were fine-tuned with the same
setting for all the proposed transfer learning models. The training and testing images were
resized to 224×224 for comfort with the proposed transform learning models. The batch
size was chosen as 16; the minimum learning rate was specified as min_lr = 0.000001.
The learning rate was determined to be small enough to slow down learning in the models
(Popa, 2021;Kaur & Gandhi, 2020). The number of epochs was selected as 10. Thesemodels
were trained by stochastic gradient descent (SGD) with momentum. All the proposed TL
models emploed the cross entrotpy (CE) as the loss function. The cross-entropy is mainly
utilized to estimate the distance between the prediction likelihood vector(E) and the
one-hot-encoded ground truth label(T) (Boumaraf et al., 2021) probability vector. The
following equation depicts the CE Eq. (3):

CE(E,T )=−
∑
t=1

Ti logEi (3)

where CE is used to tell how well the output E matches the ground truth T. Furthermore,
the dropout layer was added to all the proposed TL models to avoid over-fitting affair
during training. As a result, it drops the activation randomly during the training phase and
avoiding units from over co-adapting (Boumaraf et al., 2021). In this study, dropout was
set to 0.3 to randomly drop out the units with a probability of 0.3, which is typical when
introducing the dropout in deep learning models.

Evaluation criteria
In this work, multiclass (four-class) classification tasks have been carried out using the base
classifiers and their ensembles on the benchmark colon dataset (Stoean et al., 2016). The
obtained results have been evaluated using average accuracy, average sensitivity, average
specificity, and standard deviation over ten runs. All of these metrics are counted based on
the confusion matrix, which includes the true negative (TN) and true positive (TP) values.
TN and TP symbolize the acceptably classified benign and malignant samples, respectively.
The false negative(FN), and false positive (FP) denote the wrong classified malignant and
benign samples. These metrics are designed as follows:
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Table 3 Hyperparameters used in the proposed individual transfer learning models and an ensemble
model.

Hyperparameters Value

Image size 224× 224
Optimizer 0.005
Maximum Habitat probability SGD with momentum
Learning rate 1e−6
Batch size 16
Number of epochs 10
Dropout 0.3
Loss function Cross Entropy

• The average classification accuracy: The correctly categorized TP and TN numbers
combined with the criterion parameter, are generally referred to as accuracy. A
technique’s classification accuracy is measured in Eq. (4) as follows:

Acc =
1
M

M∑
j=1

TP+TN
TP+TN +FP+FN

∗100%, (4)

whereM is the number of independent runs of the proposed ECNN with its individual.
• Average sensitivity: Sensitivity is also called recall. It represents the proportion of positive
samples, which are efficiently determined as described in Eq. (5):

Sensitivity =
1
M

M∑
j=1

TP
TP+FN

∗100%, (5)

The sensitivity value is between [0, 1] scale. One shows the ideal classification, while zero
shows the worst classification possible. Multiplication by 100 is applied on the sensitivity
to obtain the required percentage.
• Average Specificity: Specificity represents an evaluation metric that is provided for
negative samples within a classification approach. In particular, it attempts to measure
the negative samples’ proportion, which is efficiently classified. Specificity is computed
as Eq. (6):

Specificity =
1
M

M∑
j=1

TN
TN +FP

∗100% (6)

Results and discussion
This subsection presents the experimental results obtained from the proposed E-CNN
and its individuals. These results are compared to the classification accuracy results using
standard pretrained models (e.g., DenseNet, MobileNet, VGG16, and InceptionV3). After
that, the performance of the standard pretrained models was compared to the adaptive
pretrained models’ performance to evaluate the influence of block-wise fine-tuning policy.
The proposed E-CNN was also compared with the state-of-the-art CNN models for colon
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Table 4 Evaluation results for the proposed E-CNN, its individuals (modified TLmodels) when num-
ber of epochs= 10, and the standard TLmodels on colon histopathlogical images dataset based on the
average accuracy, sensitivity, specificity, and average standard deviation (STD) in 10 runs, best results
in bold.

Pretrained models Accuracy Sensitivity Specificity

Standard DenseNet121 90.41± 3.1 91.25± 2.9 100± 0
Standard MobileNetV2 90.27± 2.9 88.25± 1.9 99.23± 2.3
Standard InceptionV3 87.12± 2.0 92.75± 2.0 100± 0
Standard VGG16 62.19± 7.0 63.21± 7.3 100± 9.9
Modified DenseNet121 92.32± 2.8 92.99± 2.8 100± 0.0
Modified MobileNetV2 92.19± 3.8 90.75± 2.0 100± 0.0
Modified InceptionV3 89.86± 2.2 95.0± 1.5 100± 0.0
Modified VGG16 72.73± 3.9 73.0± 3.6 87.43± 12.4
Proposed E-CNN (product) 95.20± 1.64 95.62± 1.50 100± 0.0
Proposed E-CNN (Majority voting) 94.52± 1.73 95.0± 1.58 100± 0.0

cancer classification such as Postavaru et al. (2017); Stoean (2020) and Popa (2021). In the
end, to assess the significance of the proposed E-CNN, statistical test methods were used
to verify whether there is a statistically significant difference between the performance of
the E-CNN and the performance of the state-of-the-art CNN models.

The experimental results of this study were built based on the average runs. Mainly, ten
separate experiments were used to obtain the average value.The experiments were carried
out on two benchmark colon histopathological image datasets: Stoean and Kather datasets,
to test the robustness of the proposed methods. The former dataset is the Stoean dataset,
which includes four different classes, mainly: benign, grade1, grade2, and grade3. While the
second dataset (the Kather dataset) includes eight diverse classes, Each dataset was divided
into 80% for the training set and 20% for the testing set. The results of classification
performance in this study are for the test dataset. The The classification tasks were
accomplished using individual classifiers of the modified transfer learning set (Modified
DenseNet121, Modified MobileNetV2, Modified InceptionV3, andModified VGG16). The
softmax of the FCC of these transfer learning set is used as the classification algorithm.
Then, the ensemble (E-CNN) was obtained via product and majority voting aggregation
methods. To illustrate the proposed E-CNN performance, the average accuracy, sensitivity,
and specificity over the ten runs are used for evaluating the testing dataset. Besides, the
standard deviation (STD) for each base classifier and the E-CNN are also used to estimate
the effectiveness of the proposed E-CNN. The experimental results of the proposed E-CNN
and its individuals (i.e., base classifiers) on the first dataset are shown in Tables 4, 5 and 6,
and Figs. 6, 7, 8, 9, 10, and 11, respectively. Meanwhile, the results of the (Kather’s) dataset
(Kather et al., 2016) are shown in Table 7.

Table 4 compares the results obtained by the modified pretrained models, the baseline
(standard) pretrained model, and the proposed (E-CNN). Table 4, indicates that the results
obtained from all the modified models successfully outperformed the standard pretrained
models on the first dataset. The highest classification success belongs to the modified
DenseNet121 model. It achieved approximately 92.3% test accuracy, which was 2.0%more
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Table 5 Summary of the major classification studies on colon cancer.

Authors in Dataset used CNN architecture Accuracy T-test/p-value

Stoean (2020) colorectal in Stoean (2020) CNNmodel from scratch 92% P < 0.0001
Popa (2021) colorectal in Stoean et al. (2016) AlexNet 89.53% P < 0.0001
Stoean et al. (2016) colorectal in Stoean et al. (2016) GoogleNet 85.62% P < 0.0001
Postavaru et al. (2017) colorectal in Stoean et al. (2016) CNNmodel from scratch 91% P < 0.0001
Proposed E-CNN
(product rule)

colorectal in Stoean et al. (2016) Modified TLmodels with ensemble
learning (using product rule)

95.20%

Proposed E-CNN
(Majority voting)

colorectal in Stoean et al. (2016) Modified TL models with ensemble
learning (using majority voting)

94.52%

Notes.
Best results are shown in bold.

Table 6 Valuation results for the proposed E-CNN, its individuals (modified TLmodels) when num-
ber of epochs= 30, and the standard TLmodels on colon histopathlogical images dataset based on the
average accuracy, sensitivity, specificity, and average standard deviation (STD) in 10 runs, best results
in bold.

Pretrained models Accuracy Sensitivity Specificity

Modified DenseNet121 96.8.± 2.7 97.0± 2.4 100± 0.0
Modified MobileNetV2 94.48± 2.6 95.5± 1.9 100± 0.0
Modified InceptionV3 94.52± 1.7 95.1± 1.2 100± 0.0
Modified VGG16 79.4± 1.9 79.9± 3.6 100± 0.0
Proposed E-CNN (product) 97.2± 1.27 97.5± 1.8 100± 0.0
Proposed E-CNN (Majority voting) 95.89± 1.3 96.2± 1.57 100± 0.0

Figure 6 A comparison of modified TLmodels with standard TLmodels (original) in terms of average
classification accuracy.

Full-size DOI: 10.7717/peerjcs.1031/fig-6

accurate than the standard DenseNet121. It is clear that the modified DenseNet121 model
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Figure 7 Confusionmatrix of the E-CNN (product rule) on the Stoean testing dataset when number of
epochs= 10.

Full-size DOI: 10.7717/peerjcs.1031/fig-7

has the highest specificity and sensitivity metrics as in the classification success. This is
due to the fine-tuned modified DenseNet121 architecture’s custom design, which aids in
extracting discriminating features from the input colon histopathological images and can
distinguish between different classes in this domain. The second highest accuracy among
the four modified pretrained models is the modified MobileNetV2. It achieved 92.19%
test accuracy, which was comparable to the improved DenseNet121. In more details, the
average accuracy rate difference between the modified MobileNetV2 and the standard
MobileNetV2 is more than 2%.

However, among the four proposed individual pretrained models, the modified VGG16
is the least accurate, it rated about 79% for the multiclass classification task. This could
be the explanation for VGG16′s limited number of layers (i.e., 16 layers). Compared to
the standard VGG16, the average accuracy rate difference between the modified VGG16
and the standard VGG16 was more than 10%, which was big and statistically significant.
This astounding level of performance of the modified models could be attributed to the
ability of the adaptation layers to find the most abstract features, which aid the FCC and
softmax classifier in discriminating between various grades in colon histopathological
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images. As a result, it reduces the problem of inter-class classification. Moreover, the
proposed modified pretrained models outperformed the standard models, boosting the
decisions of these models and enabling them to achieve a better generalization ability than
a single pretrained model (Cao et al., 2020). In this study, two ensemble learning models
are utilized: E-CNN (product rule) and E-CNN (majority voting), to merge the decisions
of the single models. The former is based on merging the probabilities of the individual
modified models. While the latter is based on combining the output predictions of the
individual, Fig. 7 confirms the confusion matrix obtained as a result of the tested samples
(20% of the dataset) for one run of the classification performed through the proposed
E-CNN (product rule). The empirical results of the proposed ECNN (majority voting) and
E-CNN (product rule) achieved accuracy rates of 94.5% and 95.2%, respectively.

These accuracy values were higher compared to the individual models. For example, the
E-CNN (product rule) result showed 3.2% increase compared to themodifiedDenseNet121
model. This result reveals the significance of the product rule in the proposed E-CNN for
colon image classification because it is based on an independent event (Albashish et al.,
2016). To show the adequacy of the proposed E-CNN, sensitivity was computed. Table
4 confirms that the E-CNN has higher sensitivity values than all the individual models.
It is worth noting that the sensitivity performance level matches the accuracy values,
thereby emphasizing the consistency of the E-CNN results. E-CNN (product rule) was
able to yield a better sensitivity value (95.6%). Among all the proposed transfer learning
models, InceptionV3 delivered the overall maximum sensitivity performance. Besides, the
specificity measure shows that the E-CNN and its individuals are able to detect negative
samples which are correctly classified for each class.

Furthermore, the standard deviation analysis over the ten runs shows that the ensemble
E-CNNs (product rule) has the minimum value (around 1.7%). These results indicate that
it is stable and capable of producing optimal outcomes regardless of the randomization.

To show the adequacy of the proposed modified CNN models even after being trained
on a smaller dataset, we have provided accuracy and loss (error function) curves. The
loss function quantifies the cost of a particular set of network parameters based on how
often they generate output in comparison to the ground truth labels in the training set.
The TL models employ SGD to determine the optimal set of parameters for minimizing
the loss error. Figures 8 and 9 depict the proposed TL models’ accuracies and loss curves
for the training and testing datasets over ten epochs. Figure 8 shows that the proposed
DenseNet and Inception models achieved good accuracy for the training and test datasets
over various epochs, while the MobileNet and VGG15 models performed adequately. One
possible explanation is that the proposed models are stable during the training phase,
allowing them to converge to the best effect. The DenseNet121 loss curve indicates that
the training loss dropped significantly much faster than the VGG16 and that the testing
accuracy improved much faster. In more detail, the VGG16 loss function was linearly
reduced, whereas the DenseNet loss function was dramatically reduced. This is consistent
with DenseNet121′s classification performance in Table 4, where it outperformed all other
proposed models. Furthermore, one can see that all of the proposed TL models, except
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Figure 8 The accuracy learning curves of training and testing derived from the four modified CNN
base learners, when the number of epochs is ten on the colon histopathological image benchmark
Stoean’s dataset used in this study: (A) modified DenseNet121, (B) modified InceptionV3, (C) modified
MobileNetV2, and (D) modified VGG16.

Full-size DOI: 10.7717/peerjcs.1031/fig-8

the VGG16, achieved high testing accuracies. These models improve the generalization
performance simultaneously.

To further demonstrate the efficacy of the proposed E-CNNs, we also compare the
obtained results on the colon histopathlogical images benchmark dataset with the most
recent related works (Stoean, 2020; Popa, 2021). Table 5 contains the comparison between
the proposed E-CNNs and the recent state-of-the-art studies. From the tabular results,
one see that the proposed E-CNNs achieved higher results comparing either to pretrained
models, such as in Stoean et al. (2016), or to constructing CNN from scratch. One of
the main reasons for these superior results is the adaptation of the transfer learning
models with the appropriate layers; additionally, using ensemble learning demonstrates
the ability of the proposed E-CNNs to increase discriminations between various classes in
the histopathological colon images dataset. In comparison to the recent study by Stoean
(2020), our ensemble E-CNNs has shown better performance. They constructed CNN
from scratch and then used evolutionary algorithms(EA) to fin-tune its parameters. Their
classification accuracy on the colon histopathlogical images dataset was 92%. We find
that the proposed method’s superior due to expanding deeper architecture and utilizing
ensemble learning.
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Figure 9 The loss learning curves of training and testing derived from the four modified CNN base
learners, when the number of epochs is ten on the colon histopathological image benchmark Stoean’s
dataset used in this study: (A) modified DenseNet121, (B) modified InceptionV3, (C) modifiedMo-
bileNetV2, and (D) modified VGG16.

Full-size DOI: 10.7717/peerjcs.1031/fig-9

Moreover, the obtained classification accuracies were compared with the pretrained
models GoogleNet and AlexNet in Popa (2021). The proposed method exceeded the
pretrained models. The classification accuracy of GoogleNet and AlexNet on colon
histopathological images was 85.62% and 89.53%, respectively. The average accuracy
rate difference between the proposed method and these pretrained models was more
than 10% and 6%, respectively, which was large and statistically significant. Two critical
observations are to be made here: first, adapting pretrained models to a specific task
increases performance. Second, using pretrained models as a feature extraction without the
softmax classifier may degrade the classification accuracy in the colon histopathological
image dataset.

To verify that the modified pretrained models are not overfitted, we re-trained them
through a number of 30 epochs as in Kather’s work (Kather et al., 2016). Figures 10 and 11
present the training and validation charts for all the proposedmodels after being re-trained.
According to Fig. 10, validation accuracy, the validation curves for the modified models’
graphs increased dramatically after epoch number ten. Actually, they outperformed the
training curves. This indicates that the modified models were trained well and avoided the
overfitting issue. Figure 11 provides loss curves for the modified models with the 30 epochs
It is clear that there is a reduction in the validation loss compared to the training loss,
which is noticeable in the delivered loss curves for the individuals of the proposed E-CNN.

Albashish (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1031 23/34

https://peerj.com
https://doi.org/10.7717/peerjcs.1031/fig-9
http://dx.doi.org/10.7717/peerj-cs.1031


Figure 10 The accuracy learning curves of training and testing derived from the four modified CNN
base learners, when the number of epochs is 30 on the colon histopathological image benchmark
Stoean’s dataset used in this study: (A) modified DenseNet121, (B) modified InceptionV3, (C) modified
MobileNetV2, and (D) modified VGG16.

Full-size DOI: 10.7717/peerjcs.1031/fig-10

The results of the E-CNN and their individuals’ base learning with the 30 epochs are
illustrated in Table 6. As depicted in this table, the results show that the modified models
outperformed the samemodels when the number of epochs was a set of 10. For example, the
modified DenseNet121, MobileNetV2, inceptionv3, and VGG16 with 30 epochs increased
the accuracy by 6%, 2%, 4%, and 7%, respectively. This may indicate greater success when
increasing the number of epochs and making the deep learning models train enough.
Furthermore, the increased performance of the base learner affects the ensemble models.
Thus, the results of E-CNN (product rule) and E-CNN (majority voting) are increased by
around 2% and 1.0%, respectively compared to the same ensemble when the number of
epochs was ten. Figure 12 confirms the confusion matrix of the E-CNN (product rule).
These results indicate that the individual learners that we have modified and their ensemble
perform robustly better and are not overfitted when increasing the number of epochs.

Moreover, to validate the proposed modified models and their ensembles, we applied
these models to the second colon histopathological dataset called the Kather dataset (Kather
et al., 2016). This dataset contains 5,000 histological images of human colon cancer from
eight distinct kinds of tissue. Table 7 gives the accuracy, sensitivity, and specificity of the
proposed individual pretrained models, E-CNN (product rule), and E-CNN (majority
voting). Besides, the proposed modified models and their ensembles are compared to
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Figure 11 The loss learning curves of training and testing derived from the four modified CNN base
learners, when the number of epochs is 30 on the colon histopathological image benchmark Stoean’s
dataset used in this study: (A) modified DenseNet121, (B) modified InceptionV3, (C) modifiedMo-
bileNetV2, and (D) modified VGG16.

Full-size DOI: 10.7717/peerjcs.1031/fig-11

similar experiments previously used to assess the classification of the Kather dataset. Based
on the results, the proposed modified models are able to separate eight different classes
in the histopathological images. Both modified InceptionV3 and DenseNet121 achieved
testing accuracy of roughly 89%, with a standard deviation of less than 0.5%. These results
outperform the ResNet152 feature extraction results in Ohata et al. (2021) by around 9%.
That is because the fine-tuned is capable of extracting high-level features from the input
images. Furthermore, by using the modified VGG16 on the same dataset, the obtained
result has roughly 83% test accuracy, while Rachapudi & Lavanya Devi (2021) achieved a
test accuracy of 77% when utilizing CNN architecture. This implies that the modification
to the pretrained models gets an acceptable result on the histopathological image dataset.
The E-CCN (product rule) and E-CNN (majority voting) achieved promising results on
the Kather dataset. As shown in Table 7, the E-CCN (product rule) and E-CNN (majority
voting) performed better than all individual models, with an accuracy of 91.28% and
90.63%, respectively, which is better than the DensNet121 with only around 2%. These
results demonstrate the effectiveness of the proposed modified pretrained models and their
ensemble in this classification task.
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Table 7 Evaluation results for the proposed E-CNN, its individuals (modified TLmodels) when number of epochs= 30, and the standard TL
models on Kather’s colon histopathlogical images dataset (Kather et al., 2016) based on the average accuracy, sensitivity, specificity, and average
standard deviation (STD) in 10 runs, best results in bold.

Pretrained models Accuracy Sensitivity Specificity

CNN architecture in Rachapudi & Lavanya Devi (2021) 77.0 – –
ResNet152 feature extraction in Rachapudi & Lavanya Devi
(2021)

80.004± 1.307 – –

NASNetMobile feature extraction in Ohata et al. (2021) 89.263± 1.704 – –
Modified DenseNet121 89.4.± 0.56 78.32± 0.49 99.0± 0.2
Modified MobileNetV2 87.27± 0.57 76.4± 0.5 98.7± 0.43
Modified InceptionV3 89.04± 0.36 78.0± 0.32 99.4± 0.64
Modified VGG16 83.3± 1.38 72.9± 1.26 99.1± 0.0
Proposed E-CNN (product) 91.28± 3.4 79.97± 3.0 99.1± 0.0
Proposed E-CNN (Majority voting) 90.63± 4.03 79.4± 4.02 99.1± 0.0

Discussion
According to the above experimental results, it is clear that the proposed E-CNNs and
adapted TL predictive models outperform other state-of-the-art models and standard
pretrainedmodels in the colon histopathological image classification task. The experimental
results indicate that adapting the pretrained models for medical image classification tasks
improves classification tasks. The results in Tables 4 and 5 demonstrate the critical
importance of the introduced adapted models (DenseNet121, MobileNetV2, InceptionV3,
and VGG16) in comparison to conventional methods. For example, the adaptive DenseNet
model outperformed the standard DenseNet model. These findings show that tailoring the
pretrained models to a specific classification task can boost performance. It has also been
experimentally verified that using these models in medical image classification results in
superior performance when compared to training CNN from scratch (as in previous works
by Postavaru et al., 2017 and Stoean, 2020). One reason for this finding is that training a
CNN from scratch would necessitate a large number of training samples. Moreover, it must
be confirmed that the large number of parameters of the CNN are trained effectively and
with a high degree of generalization to obtain acceptable results. Thus, the limitation of the
number of training samples causes overfitting in classification tasks. Furthermore, based
on the results, it was found that the selection of appropriate hyperparameters in pretrained
models plays a vital role in the proper learning and performance of these models.
In this study, two ensemble learning (E-CNN (Majority voting), E-CNN (product rule))
models had been designed to further boost the colon histopathological image classification
performance. In the proposed ensemble learning models, the adaptive pretrained models
were used as base classifiers. Through the experimental results, one can find that ensemble
learning outperformed using individual classifiers. Furthermore, using product rules in the
ensemble allows the probabilities of independent events to be fused, ultimately improving
performance. This finding is in line with the results in Table 4, where the proposed E-CNN
(product) outperformed the proposed E-CNN (majority voting).

Furthermore, the T -test is used to compare the proposed E-CNN product to the
previously related studies on the same dataset. This test is performed to prove that
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Figure 12 Confusionmatrix of the E-CNN (product rule) on the Stoean testing dataset when number
of epochs= 30.

Full-size DOI: 10.7717/peerjcs.1031/fig-12

the improvement made by the proposed E-CNN (product) and the state-of-the-art is
statistically significant. The T -test is carried out based on the average accuracy and the
standard deviation of the test samples (20% of the dataset), which are obtained by the
E-CNN (product) over ten independent runs. By handling a T -test with a 95% spectrum
of significance (alpha = 0.05) on the collected p-values and the classification accuracy, the
corresponding difference statistics are shown in Table 5. As shown in Table 5, the proposed
E-CNN (product) outperforms most of the related works on the colon histopathological
image dataset, where the majority of the p-values of < 0.0001. For example, comparing the
proposed E-CCNN with CNN from scratch in Stoean (2020), E-CNN is significantly better
with a p-value < 0.001. These findings show that using the E-CNN (product) is effective
for handling medical image classification tasks.

In summary, it has been demonstrated that the use of the proposed TL models assists
in the colon histopathological image classification task, which can be used in the medical
domain. Besides, using ensemble learning for the machine learning classification tasks can
improve the classification results.
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CONCLUSION AND FUTURE WORK
Deep learning plays a key role in diagnosing colon cancer by grading captured images
from colon histopathological images. In this study, we introduced a new set of transfer
learning-based methods to help classify colon cancer from histopathological images,
which can be used to discriminate between different classes in this domain. To solve this
classification task, the pre-trained CNNmodels DenseNet121, MobileNetV2, InceptionV3,
and VGG16 were used as backbone models.

We introduced the TL technique based on a block-wise fine-tuning process to transfer
learned experience to colon histopathological images. To accomplish this, we added new
dense and drop-out layers to the pretrained models, followed by new FCC with softmax
layers to handle the four-class classification task. The adaptability of the proposed models
has been enhanced further by the utilized ensemble learning. Two deep ensemble learning
methods (E-CNN (product) and E-CNN (Majority voting)) have been proposed. The
adapted pretrained models were used as individual classifiers in these proposed ensembles.
Next, their output probabilities were fused using the majority voting and the product rule.
The acquired results revealed the efficiency of the suggested E-CNNs and their individuals.

We achieved accuracy results of 95.20% and 94.52% for the proposed E-CNN (product)
and E-CNN (majority voting), respectively. The proposed E-CNNs and its individual
performances were evaluated and compared against the standard (without adaption)
pretrained models (DenseNet121, MobileNetV2, InceptionV3, and VGG16models) as well
as state-of-the-art pretrained models and CNN from scratch on colon histopathological
images. On all evaluation metrics and the colon histopathological images benchmark
dataset, the proposed E-CNNs considerably outperformed the standard pretrained and
state-of-the-art CNN from scratch models. The results indicate that the adaptation of
pretrained models for TL is a viable option for dealing with the limited number of samples
in any new classification task. As a result, the findings indicate that E-CNNs are being
used in diagnostic pathology to assist pathologists in making final decisions and accurately
diagnosing colon cancer.

Future research could be considered to introduce a new strategy to select the best
hyperparameters for the adaptive pretrained models—we recommend wrapper methods
for this task.
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