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ABSTRACT
The intelligence of energy storage devices has led to a sharp increase in the amount of
detection data generated. Data sharing among distributed energy storage networks can
realize collaborative control and comprehensive analysis, which effectively improves
the clustering and intelligence. However, data security problems have become the
main obstacle for energy storage devices to share data for joint modeling and analysis.
The security issues caused by information leakage far outweigh property losses. In this
article, we first proposed a blockchain-based machine learning scheme for secure data
sharing in distributed energy storage networks. Then, we formulated the data sharing
problem into a machine-learning problem by incorporating secure federated learning.
Innovative verification methods and consensus mechanisms were used to encourage
participants to act honestly, and to use well-designed incentive mechanisms to ensure
the sustainable and stable operation of the system. We implemented the scheme of
SFedChain and experimented on real datasets with different settings. The numerical
results show that SFedChain is promising.

Subjects Artificial Intelligence, Distributed and Parallel Computing, Natural Language and
Speech, Internet of Things, Blockchain
Keywords Blockchain, Data sharing, Federated learning, Smart contract, Energy storage

INTRODUCTION
With the rise of a new round of energy revolution, energy and information are highly
integrated. Energy storage as one of the areas with the most large-scale development
potential in renewable energy, generates massive amounts of data with the improvement
of informatization and intelligence. While data derives value, its information security
issues have also received extensive attention (Stoyanova et al., 2020; Cook et al., 2017). Data
leakage problems may occur in terminals, networks, storage, and the cloud, etc, which
will cause serious obstacles to the construction of power information network security.
In this regard, the traditional privacy protection strategy can be mainly divided into the
privacy protection of input data and output data. The privacy protection of input data is
mainly based on publishing anonymous data, such as k-anonymity, l-diversity, t-closeness,
and differential privacy. k-anonymity, l-diversity and t-closeness (Brickell & Shmatikov,
2008; Sei et al., 2019). They usually replace the sensitive information contained in the data
with randomly generated data or remove it directly. However, if the attacker has sufficient
background knowledge of the original data, or attacks through inference or other methods,
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it will not be able to effectively protect the confidential information. Differential privacy
(Dwork, 2008) technology achieves a balance between model performance and privacy
protection by adding noise to the model or generated results, it is considered a reliable
privacy protection method. Yin et al. (2018) applied differential privacy technology to hide
the original trajectory and location data of the information by adding noise to the selected
data in the location information tree model, which protects the location privacy of big
data in the sensor network. The experimental results ofHitaj, Ateniese & Pérez-Cruz (2017)
show that a data privacy protection strategy that only incorporates differential privacy may
leak original data using generative adversarial network (GAN) learning. In order to prevent
the inference of the original confidential data through the intermediate state information
during the training of the Latent Dirichlet Allocation model, Zhao et al. (2021) proposed
a privacy protection algorithm, Hierarchical Dirichlet Process-Latent Dirichlet Allocation
(HDP-LDA) based on differential privacy, however, the algorithm is only applicable to
a single model scenario and is not universal, so it is difficult to be effectively promoted.
Therefore, how to improve the availability of data under the premise of protecting data
privacy remains to be further studied.

The privacy protection of output data is mainly to pertube or audit the result (Aggarwal,
2005) such as association rule hiding, query auditing and classification accuracy. The
existing association rule hiding technology (Gkoulalas-Divanis & Verykios, 2009; Wu &
Wang, 2008) directly operates on the original transaction dataset. When the transaction
dataset is relatively large, the time utilization rate will be relatively low, at the same time, it
is difficult to achieve a good compromise between sensitive information hiding and data
quality by artificially adding rules to the original transaction dataset to hide sensitive
information. In Hou et al. (2018) and Thomas (2007), the authors provide effective
query audit algorithms and frameworks that leverage security review mechanisms for
system privacy protection and access control. The classification accuracy improvement
method (Samanthula, Elmehdwi & Jiang, 2015) achieves privacy protection by deforming
confidential data when the classification accuracy of confidential data is close to that
of reconstructed data, but the existence of a large amount of heterogeneous data and the
limitations of restrictionsmake thismethod difficult to achieve a wide range of applications.

Data privacy protection algorithm based on deep learning can further improve data
availability and prevent the risk of data leakage more efficiently compared with traditional
data privacy protection strategies. Therefore, many excellent models for deep learning
privacy protection have been proposed. Federal Learning (Bonawitz et al., 2019) stands out
for its unique privacy policy. Multiple collaborators do not need to upload their raw data to
the central server for iterative training during the deep learning model training process and
get better training results than their respective local models. Konečný et al. (2016) proposed
an efficient optimization algorithm to deal with the statistical heterogeneous problem
of data in federated learning. Fallah, Mokhtari & Ozdaglar (2020) proposed personalized
federated learning, which can be better done by localizing the global model by using a local
data structure. Nevertheless, traditional federal learning techniques still have some privacy
leakage problems due to the existence of curious parameter server or dishonest participants.
Nasr, Shokri & Houmansadr (2018) indicates that secret membership information can be
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obtained by performing member inferring attacks. Zhu & Han (2020) uses the depth
gradient leakage algorithm to reduce the difference between the virtual gradient and the
real gradient to obtain private data.

Due to the decentralization of energy storage devices and the confidentiality of generated
data, how to protect privacy while collecting data is a key issue. Recently, the issue of multi-
party data sharing has received widespread attention. For data sharing on distributed data
streams, Dong et al. (2015) proposed a scheme for safe sharing of sensitive data on big data
platforms. Huang et al. (2021) designed an accountable and efficient data sharing scheme
ADS for industrial IoT, which can punish participants with data leakage problems. It is
worth noting that Blockchain (Huh, Cho & Kim, 2017), as a decentralized, tamper-proof,
and traceable distributed ledger technology, effectively guarantees the confidentiality of
data and the security of data sharing by using consensus protocols. Due to data trust
and security issues in the edge computing environment, Ma et al. (2020b) proposed a
blockchain-based edge computing trusted data management scheme BlockTDM. Based on
blockchain technology, Ma et al. (2020a) realized the secure utilization and decentralized
management of big data in the Internet of Things. In the above work, a consensus algorithm
that achieves the consistency of all participating nodes is indispensable as a key technology.
In Zheng et al. (2017), miners need to solve tedious mathematical problems and compete
to produce blocks, which seriously affects the efficiency of the system, so it is not suitable
for scenarios with frequent transactions.

Despite extensive research has been conducted on distributed multi-party data sharing,
there are still two serious problems that have received less attention so far. The first is that
the existing work usually targets the attack threats of the central server or collaborators,
while ignoring the model quality problems caused by dishonest collaborators destroying
the joint modeling process. The second is that participants’ concerns about data privacy
leakage in the process of distributed multi-party data sharing have led to the continuous
decline of users’ willingness to share data.

To the end, there are many challenges in distributed multi-party collaborative data
sharing in distributed energy storage networks. We have established a new mechanism
to ensure secure data sharing between collaborators who do not trust each other, and
proposed a scheme based on blockchain and federated learning named SFedChain. Privacy
protection and data sharing are carried out in the joint modeling by encrypting the original
information, which can ensure the confidentiality of collaborators’ data, the traceability
of shared events, and the robustness of the training model. Specifically, we adopt the
‘‘Three Chains in One’’ approach to ensure the secure storage of data, auditability, and
traceability. In addition, the use of encryption technology provides a further guarantee
for the secure sharing of parameters. The adoption of novel consensus algorithms and
incentive mechanisms and the use of election collaborators for parameter aggregation can
effectively improve the security of the system and maximize the benefits of the system. To
sum up, The specific contributions of this paper are as follows:
1. We proposed SFedChain, a novel distributed multi-party data sharing collaboration

training scheme, which effectively reduces the risk of data leakage and achieves secure
data sharing in the process of joint modeling.
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2. SFedChain not only protects the privacy of data holders, but also realizes the secure
storage of data, and the auditability and traceability of the sharing process. The adoption
of efficient consensus algorithms and incentive mechanisms promotes collaborators
to act honestly in the joint modeling process, thereby generating a high-performance
joint modeling model.

3. We implemented SFedChain prototype and evaluate its performance in terms of
training accuracy and training time. We also evaluate the effectiveness of our proposed
model with benchmark, open real-world datasets for data categorization.
The rest of the article is organized as follows: in ‘System Model’, we present our

system model. In ‘Construction of Sfedchain Scheme’, we give implementation details
of SFedChain. In ‘Security Analysis and Performance Evaluation’, we present security
analysis for our proposed scheme, and evaluate the performance of the SFedChain. Finally,
‘Conclusion’ summarizes this article.

SYSTEM MODEL
In this article, we assume a joint modeling scenario involving multiple collaborators. Each
collaborator has a dataset that can train a local model, multiple collaborators work together
to jointly model the requested task. We used the ‘‘Three-in-One’’ blockchain network
to archive, retrieve, and audit the joint modeling process to ensure its safety, and the
consortium blockchain as the infrastructure for the distributed energy storage network.
An illustration of data protection among various devices is shown in Fig. 1. We consider
one TaskRequester (TR), X data holders (DHs), Y (Y ≤ X) task collaborators selected
according to SFedChain’s task-related parties retrieval strategy, and Z (Z ≤Y ) consensus
members responsible for the verification of the aggregated model. For Y collaborators, each
collaborator has a local dataset Di= (d1,d2,...,dn), after the task requester publishes the
task, the system first retrieves Y collaborators related to the task from the X data holders
through the blockchain. The collaborators use their local data set to train to obtain the
local model, and use blockchain to record the parameters of each local model. The global
model (GM) is obtained using SFedChain’s aggregation strategy. After continuous iterative
training. Finally, the joint modeling model GM is eventually recorded in the blockchain,
and the task requester obtains the result Req(GM) through the blockchain.

SFedChain scheme
Before we introduce SFedChain, we will outline the relevant concepts and keyword
definitions in SFedChain.

MasterChain: MasterChain is used to register new sites and new users, records the main
configuration information of the site, manage user data access control, and store the joint
modeling model. We use MasterChain to publish the requested task.

RetrievalChain: RetrievalChain is used to record the summary of site document
information and the Unified Retrieval Graph that is regularly established, and it is mainly
responsible for the retrieval of task-related parties.

ArgChain: The upload of local model parameters by each party and the update of the
aggregated model are recorded in ArgChain in the form of transactions.
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Figure 1 Scenario of secure multi-party data sharing. An illustration of data protection among various
devices.

Full-size DOI: 10.7717/peerjcs.1027/fig-1

DataHolder: DataHolder is a energy storage device registered with MasterChain. It has
private local data and can rely on its own local dataset to train to participate in the joint
modeling.

TaskRequester: TaskRequester is the user who publishes the requested task. It needs to
pay the corresponding coin for the requested task to start the joint modeling.

Worker: In SFedChain, Worker is the task-related DataHolder obtained from
RetrievalChain according to the requested task. It is similar to the role of participant
in traditional distributed deep learning, but it can’t train alone to obtain a joint modeling
model, and can only use its limited dataset for local training to participate in joint modeling
tasks.

Committee Members: In each round of local model parameter aggregation, Z Workers
with higher CreditCoin are selected from the Y Workers participating in the joint modeling
to form Committee Members. The Worker with the highest CreditCoin is selected as the
Leader of the committee.

CreditCoin: At the beginning of the joint modeling process, SFedChain allocates the
same amount of CreditCoin to the Workers participating in the joint modeling process to
represent the initial credit of each Worker in the joint modeling process.

In the scenario of distributed energy storage networks, we designed the system model
of SFedChain. We combined blockchain technology with traditional federated learning
technology to achieve secure and efficient distributed data sharing. MasterChain was
mainly responsible for issuing requested tasks and recording joint modeling models, which
can improve the efficiency of the system in processing tasks. RetrievalChain was used to
record the Unified Retrieval Graph that as generated regularly, and realized the quick
retrieval of Workers. Workers uses its dataset to train local models, we combined the
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federated learning technology and use the parameter entry method to ensure the safety of
parameter sharing in the joint modeling process. Committee Members and Leader in the
committee were selected for aggregation of local model parameters through SFedChain’s
novel aggregation strategy. Therefore, the system does not require a reliable third party for
parameter aggregation, which further ensures the security of the joint modeling process.
At the same time, the system introduces an incentive mechanism to encourage the active
participation of DataHolder by rewarding honest participants. Eventually, TaskRequester
will obtain the result of the request through MasterChain.

Threat model
We paid attention to the secure data sharing between distributed multiple parties, and
selected Y Workers related to the requested task among the X data providers to complete
a joint modeling task. In a real-world industrial environment, task requesters and co-
modeling participants are usually considered dishonest. They do not want to pay for the
requested task or deliberately sabotage the joint modeling process and steal confidential
information from other participants. From the above analysis, we can see that the proposed
system model may face the following three threats:
1. Quality of the locally trained model: Workers may provide poorly trained model

parameters due to local data set quality problems, or malicious Workers want to get
rewards but do not participate in training, so they directly provide incorrect local
models.

2. Instability of the parameter aggregation service: A dishonest parameter aggregation
server may provide incorrect aggregation models, which will result in a serious
degradation of the quality of the joint modeling model, or the parameter aggregation
service may suffer malicious attacks and cause the joint modeling process to be
interrupted.

3. Privacy protection in the data sharing: Workers and DataHolders participating in the
joint modeling process want to obtain the parameter information of other participants
through inference attacks or other methods, thereby causing user privacy leakage.

Architecture design
The SFedChain architecture we proposed consists of three parts: MasterChain module,
RetrievalChain module, and ArgChain module based on federated learning. MasterChain
module establishes a secure connection between all participants, and records the joint
modeling model of each requested task to achieve a rapid response to the same requested
task of other users. RetrievalChain module uses the regularly generated Unified Retrieval
Graph to achieve efficient retrieval of the relevant DataHolders of the requested task, and
uses the retrieved Workers to implement joint modeling. ArgChain module combines with
traditional federated learning to realize the secure sharing of local model parameters, and
uses novel smart contract and consensus mechanism to improve the quality and efficiency
of the joint modeling model. We use the ‘‘three-chain-in-one’’ architecture to achieve
secure joint modeling without the original data coming out of the local situation, and
maintain the system’s lasting operation through all DataHolders.
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Figure 2 Working mechanism of our proposed method. The working mechanism of our proposed ar-
chitecture.

Full-size DOI: 10.7717/peerjcs.1027/fig-2

Before a new user initiates a requested task or a new DataHolder participates in joint
modeling, both should first register through MasterChain. TaskRequester publishes
the requested task to MasterChain through its nearby DataHolderReq site server, Fig.
2 shows the working mechanism of our proposed architecture, DataHolderReq first
searches MasterChain whether the joint modeling model of the same requested task
has been recorded. If found, the system will download the joint modeling model GMi

recorded in MasterChain, and then return the result of the requested task Req(GMi)
to the TaskRequester. Otherwise, for a new task, the task-related information is sent to
RetrievalChain to retrieve the task-related DataHolders, and then, the system will use
the retrieved Workers to perform the joint modeling process through ArgChain. In each
iteration, the new CreditCoin owned by eachWorker is calculated based on the CreditCoin
owned by each task-related parties and the local model accuracy, and then new Leader in
committee and Committee Members are elected to aggregate and agree on the joint model.
Finally, the result Req(GMReq) of the requested task is returned to the TaskRequester
in the form of a transaction through MasterChain. The coin paid by TaskRequester are
distributed in the same proportion according to the proportion of CreditCoin ultimately
owned by Workers participating in the joint modeling, in this way, more data holders will
be attracted to join the system.

CONSTRUCTION OF SFEDCHAIN SCHEME
In this section, we design and analyze the SFedChain scheme. Firstly, we design the Unified
Retrieval Graph to realize the efficient retrieval of the task-related parties and protect the
privacy of the DataHolder. Furthermore, we described in detail the data sharing process of
our proposed model SFedChain. Finally, this article adopts the verify upload mechanism
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Figure 3 The process of building unified retrieval graph. The legend describes the establishment of the
unified retrieval graph.

Full-size DOI: 10.7717/peerjcs.1027/fig-3

of encrypted parameters and the dynamic weight consensus protocol based on CreditCoin
to improve the accuracy of the joint modeling model.

Unified retrieval graph
As a classic image data information extraction technology, CNN has been applied in
many fields such as image segmentation, video classification, and target recognition (Liu,
Liu & Zhang, 2022). For traditional CNN technology, an input image is processed by a
convolutional layer, a pooling layer, and a linear layer to obtain the final result. But for
text data, Chen (2015) proposed that the CNN model can also learn the content of text
information. The output of the operating data of each device in the energy storage networks
is mostly recorded in text format. How to use text data to measure the similarity of data
sets between DataHolders and to achieve retrieval of task-related parties, inspired by Liu,
Guo & Chen (2021), we proposed the following method. The process is shown in Fig. 3.

For the processing of text data, the use of pre-trained language models (Yamada &
Shindo, 2019; Yamada et al., 2020) for text characterization is considered a reliable method.
We first used the selected pre-trained language model to process the text data of each
DataHolder, then use the convolutional layer and the ReLU activation function to process
to obtain the feature map representation of data information of each DataHolder. Finally,
the sparse representation in each channel was obtained throughmulti-channel convolution
kernel processing, Sparsity = Number of non−zero values in vector

Total number of vector elements , the data information owned
by each DataHolder is abstracted into a matrix represented by sparsity. Since we use the
sparsity expression of text statistics to retrieve Workers, it is difficult to steal the original
information.

In order to continue to simplify the calculation of data similarity between DataHolders,
we further processed the sparsity expression of data of each DataHolder. For the i− th
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DataHolder, we used DATAi=
[[
d i11,d

i
12,...,d

i
1n
]
,...,

[
d im1,d

i
m1,...,d

i
mn
]]

represents the
data it holds, where m represents the number of texts of the filtered DataHolder. Since the
Jaccard distance formula has the advantage of being independent of position and order,
this article used it to calculate data similarity. Communication efficiency will also affect the
creation of the Unified Retrieval Graph, the actual physical distance between DataHolders
will become a factor that must be considered. Therefore, we proposed an improved Jaccard
distance formula suitable for our proposed system

Similarity(NODE i,NODE j)=
|NODE i∩NODE j |

|NODE i∪NODE j |+α∗distance(NODE i,NODE j)
(1)

where NODE is the sparse representation matrix of DataHolder, distance represents the
actual physical distance between DataHolderi and DataHolderj and α is a hyperparameter,
which is used to adjust the holding ratio of the actual physical distance.

In order to improve the efficiency of calculation and processing, we used graphs to
express the relationship between DataHolders, as shown in the following definition 1:

Definition 1
(
Unified Retrieval Graph

)
: A Unified Retrieval Graph G={V ,E} consists of

a series of nodes and edges. Each vertexVi represents aDataHolder, and its weight represents
the identity information of DataHolder, such as ID, data type, data size, etc. Each edge
Eij connects vertices Vi and Vj , and its weight WEij represents the ratio of the similarity

between the two vertices to the maximum vertex similarity value (ŴEij =
WEij

Max
(
WEij

)).
Finally, with the assistance of Unified Retrieval Graph, when users submit tasks, we

can find the parties involved in the task very accurately and efficiently. In order to ensure
the timeliness of the unified search graph search, it is updated after performing a certain
number of search operations or adding a new data holder.

Task-related parties retrieval
The sharing of raw data will not only bring security threats, but also a series of privacy
leaks. Therefore, we do not share the original data of DataHolder, and use the Unified
Retrieval Graph to retrieve the task-related parties. When a TaskRequester publishes a
requested task, the relevant information of the task will be recorded in the MasterChain
in the form of a transaction. The MasterChain will send the processed task information to
RetrievalChain to retrieve the task-related parties. The retrieval process in RetrievalChain
is shown in Fig. 4.

RetrievalChain obtains IDDH (the ID of the DataHolder) information of nearby nodes
through IDTR (the ID of the TaskRequester). According to the coin paid by TaskRequester,
the ratio of retrieving the number of DataHolders is ratioretrieval = coin

CONSTcoin
.We first traverse

the Unified Retrieval Graph, and then query the vertices VDH representing IDDH , retrieve
its adjacent edges. If the weight WEi,j of the adjacent edge Ei,j is less than ratioretrieval , the
vertex Vi connected by the adjacent edge Ei,j will be included in the task-related parties
set SETDH

(
Vj ∈ SETDH

)
. After the traversal is over, the nodes contained in the set SETDH

are the Workers participating in the joint modeling. At the same time, the equal number
of CreditCoins are equally divided among Workers to identify the initial credit of each
participant.
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Figure 4 Task-related parties retrieval process. The retrieval process in RetrievalChain.
Full-size DOI: 10.7717/peerjcs.1027/fig-4

Data sharing process
In distributed energy storage networks, the first energy storage device to join the system
is responsible for the deployment of the blockchain network. Subsequent devices need to
register their own nodes through MasterChain, and then use their site servers to jointly
maintain the operation of the blockchain network. Before publishing the requested task, the
new TaskRequester should first register as a user through the nearby device DataHolderreq,
and then initialize the requested task Req(r1,r2,...,rn) and pay a certain amount of
coins, and then DataHolderreq submits the requested task to MasterChain in the form of a
transaction.MasterChain queries its recorded historical jointmodel, if there is a jointmodel
GMi for the same request task and the coin paid by TaskRequester is less than or equal to
the coin spent on establishment of GMi, DataHolderreq will download the model GMi and
return the result Req(GM ) to TaskRequester. Finally, the coin paid by the TaskRequester
are distributed according to the proportion of CreditCoin owned by each Worker after
GMi is jointly modeled. On the contrary, If the joint modeling model GM that matches
the requested task is not found, or the GM is hit but the coin paid by the TaskRequester is
more than the coin paid by the user when the GMi is established, the system will retrain
the model for the requested task. During joint modeling, the system first uses the Unified
Retrieval Graph to perform task-related parties retrieval through RetrievalChain, and then
performs joint modeling using the retrieved Workers. After multiple iterations of training
through ArgChain, the system finally obtains the joint modeling model GMReq that satisfies
the requested task, and then uploads GMReq to MasterChain in the form of a transaction,
and returns the result Req(GMReq) to TaskRequester, finally the system performs the
remuneration distribution of coin paid by TaskRequester.

meng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1027 10/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1027/fig-4
http://dx.doi.org/10.7717/peerj-cs.1027


Figure 5 Data sharing process in distributed energy storage network.
Full-size DOI: 10.7717/peerjcs.1027/fig-5

The detailed steps of our data sharing scheme are as follows, Fig. 5 shows the process of
data sharing.
1. System deployment: The first DataHolder to join the system is responsible for the

deployment of the system. First, it will create MasterChain, RetrievalChain and
ArgChain, and then register its node information in MasterChain. There are two main
types of transactions in MasterChain: registration records of new users and new nodes,
and release records of joint models.The main transaction forms in RetrievalChain
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include: update records of Unified Retrieval Graph and retrieval records of task-related
parties. The transaction forms in ArgChain mainly include: the upload record of local
training models and aggregate model.

2. System Initialization: When a new DataHolder applies to join the system, the system
distributes IDDH throughMasterChain (IDDH consists of device code, module code and
sensor code), and then it will work with other DataHolder to maintain the operation
of the system. Similarly, a new user should first register with the nearby DataHolder
before posting the requested task to obtain its unique IDuser .

3. Task Request: Task Requester submits the requested task Req(r1,r2,...,rn) through
its nearby DataHolder Req, and pays the corresponding coin according to the expected
model effect. MasterChain checks whether the TaskRequester has been registered. If
the check passes, the nearby energy storage deivce DataHolder Req uploads the task to
MasterChain as a transaction.Otherwise, the system performs a new user registration
operation.

4. Historical joint model query: Once the task submitted by TaskRequester is accepted by
MasterChain, the system will query the historical union model. If there is a joint model
GMi of the same requested task, the coin paid by TaskRequester is less than or equal
to the coin i spent on establishment of GMi, and greater than the minimum payment
fee αcoin i. Then, the result ReqGMi is returned to TaskRequester, and the coins paid
by it are distributed according to the proportion of CreditCoin owned by each worker
after GMi joint modeling. On the contrary, if the joint model GM that matches the
task is not found, or GMi is queried but TaskRequester paid more coins than GMi was
created, retrain the joint model.

5. Retrieval task-related parties: MasterChain obtains the relevant information of the
nearby energy storage device DataHolderReq through the requested task, and then
sends the obtained IDDH to RetrievalChain for task related party retrieval and make
the distribution of CreditCoin. Finally, RetriavalChain sends the retrieved Workers to
ArgChain for joint modeling.

6. Model training: ArgChain obtains Y Workers participating in joint modeling from
RetrievalChain. Each Worker uses its local dataset and initial model GMReq for local
model training. After the local model training is over, ArgChain’s smart contract
algorithm will verify the local model parameters, and then upload theW (W ≤Y ) local
model parameters that have passed the verification to the ArgChain. At the same time,
the CreditCoin owned by each worker will also be adjusted according to the training
quality of its local model.

7. Consensus process: We select Z (Z =µY ) Workers with the highest accuracy from W
honest workers to form Committee Members. At the same time, we select the Worker
with the highest accuracy as the Leader of the committee for local model parameter
aggregation, and send the aggregation results to the committee members for consensus.
If the consensus is passed, the Leader of the committee will release the aggregation
model GMReq and upload it to AgrChain, which can facilitate theWorkers participating
in the joint modeling process to download and update their local models.
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8. Complete the requested task:After several iterations of training, the joint modeling
model GMfinal

Req is finally established. According to the proportion of CreditCoin held
by each Worker, the system distributes the coin paid by TaskRequester as reward to
Workers participating in joint modeling, which can encourage DataHolder to actively
participate in joint modeling of requested task next time. Finally, the system will
upload and store the joint modeling model GMfinal

Req to MasterChain, and return the
result Req(GM) to the TaskRequester.

SFecChain aggregation strategy
For a DataHolder, it is difficult to guarantee the training quality of the local model due to
its limited resources, and to effectively protect the privacy of users by sharing the original
data information of all parties for centralized training. As a result, the aggregation strategy
of SFecChain not only expands the amount of data required but also protects data privacy
of users by integrating multiparty DataHolders’ local model parameters for joint model
training without the original data being local.

In the local model parameter aggregation stage, dishonestWorkers may upload incorrect
local model parameters, and it is difficult to guarantee the reliability of the Leader in
committee responsible for local model parameter aggregation. Therefore, it is difficult to
establish an accurate and efficient joint model. Existing consensus protocols, such as PoW,
etc. miner requires huge computational overhead to solve cumbersome data problems,
and its long consensus process seriously affects the efficiency of system modeling, so it is
not suitable for scenarios with frequent transactions. To solve these problems, inspired by
Tang, Zhang & Hu (2020), we proposed a credit-based dynamic weight consensus protocol
combined with deep learning. The system can effectively identify dishonest Workers
participating in each round of joint modeling, and can also use the historical credit of the
Workers participating in joint modeling and the accuracy of each round of local model
training, and combine with the way of dynamically selecting committees for consensus.
Eventually a high-quality joint model will be obtained.

Encrypted parameter upload
In order to ensure the secure sharing of local model parameters during the joint modeling,
we integrate the differential privacy mechanism into SFedChain. The privacy of Workers is
protected by adding noise to local model parameters. We use smart contract of ArgChain
to filter the malicious behavior of dishonest participants in the joint modeling, which
effectively guarantees the quality of the joint training model, and combined with the
distributed ledger technology of ArgChain to further ensure the security of local model
parameter sharing.

After the local training of the Workers participating in the joint model training is
completed, we add noise that conforms to the Laplace distribution to it, and then upload
it to ArgChain. The privacy of users is protected through a differential privacy mechanism.
We use the selected random algorithm L. For any two local model parameters LMi and
LMj participating in joint modeling, we make them satisfy:

Pr[M (LM i)∈ S]≤ eεPr
[
M
(
LM j

)
∈ S
]
+δ
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The system provides differential privacy protection for the local model parameters
LMi and LMj satisfying ε. Specifically, we add random noise with a density function of
f (x|u,b)= 1

2be
−

x−u
b that obeys the Laplace distribution to the local model parameters LMi

and LMj , and select a suitable differential privacy budget ε to obtain the processed local
model parameters L̂Mi and L̂Mj . A good trade-off between model quality and privacy
protection is achieved.

Algorithm 1 Differential private parameter verification
Input: Workers participating in joint modeling P
Output: Workers who have passed ArgChain smart contract verification P̂

1: avg =
∑length(P)

i=1 Pi.accuracy
length(P)

2: threshold = avg−u× (max(P.accuracy)−avg )
3: while each Worker pi ∈ P do
4: if pi.accuracy ≥ threshold then
5: P̂← pi
6: end if
7: Add random noise that obeys Laplace distribution to construct a local model that

satisfies ε differential privacy protection p̂i.model
8: end while
9: return P̂

Since Workers participating in joint modeling may upload local model parameters of
poor quality, or dishonest Workers maliciously upload incorrect local model parameters,
these behaviors will seriously affect the quality of the final joint training model. Therefore,
it is particularly important to screen non-compliant local model parameters. In response
to the above problems, we propose a differential privacy protection mechanism for local
model parameters and a parameter verification mechanism based on ArgChain’s smart
contracts. Algorithm 1 illustrates the verification process of the smart contract algorithm
of ArgChain.

Dynamic weight consensus protocol based on credit
After the local model parameters of Y Workers participating in the joint modeling are
verified by the smart contract of ArgChain. Package the verified local model parameters
Ŷ
(
Ŷ ≤Y

)
, and then upload them to ArgChain in the form of transactions. The process

for training work based consensus is illustrated in Fig. 6. The local model parameters in
Y in each round will be aggregated by the miners. A conventional idea is that the Worker
with the highest accuracy of local model training in each round has high credibility and
can be used to aggregate local model parameters. This is considered a greedy strategy. The
training accuracy of local model is not necessarily related to whether it is honest or not,
and the reliability of the aggregation process cannot be guaranteed. In order to ensure the
accuracy of local model parameter aggregation, we propose a credit-based dynamic weight
consensus protocol.
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Figure 6 Consensus process of dynamic weight consesus protocol. The process for training work based
consensus.

Full-size DOI: 10.7717/peerjcs.1027/fig-6

We comprehensively consider the historical credit of the Y Workers participating in
the joint modeling and the training accuracy of each round of local model, and then we
calculate the new credit value of the YWorkers in the new round. The Leader in committee
and Z Committee Members are elected through the new credit value for the aggregation of
local model parameters and the consensus of the aggregation results. Algorithm 2 illustrates
the overall process of credit-based dynamic weight parameter aggregation.

SECURITY ANALYSIS AND PERFORMANCE EVALUATION
We have established a multi-party data security sharing and privacy protection mechanism
in distributed energy storage networks by applying blockchain technology. By integrating
into the traditional federated learning mechanism, the ‘‘Three Chains in One’’ structure
has been established. We solved the threat model proposed in the ‘‘Threat model’’ section.
1. Security proof for SFedChain: The traditional single chain structure of blockchain is

difficult to meet the requirements of data retrieval, calculation and privacy protection
at the same time. Therefore, we propose a ‘‘three chains in one’’ architecture including
MasterChain, RetrievalChain, and ArgChain. MasterChain is mainly responsible for
the publication of events of requested task and the quick query of historical aggregation
models. RetrievalChain is mainly responsible for regular update of the Unified Retrieval
Graph. ArgChain mainly carries out the secure sharing of parameters of the federated
learning. They perform their respective duties to improve the network performance of
the system to achieve data security sharing and privacy protection.
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Algorithm 2 Credit-based dynamic weight parameter aggregation

Input: Workers participating in joint modeling P , Workers verified by ArgChain P̂ , itera-
tion times iter = 1

Output: Encrypted global model,GM
1: if length(verified(P))= length(P) then
2: while each participant pi ∈ P− P̂ do
3: pi.CreditCoin= pi.CreditCoin−u×pi.CreditCoin
4: sumr = sumr+u×pi.CreditCoin
5: end while
6: while each participant pi ∈ P̂ do
7: pi.CreditCoin= pi.CreditCoin+ sumr

length(P̂)
8: end while
9: while each participant pi ∈ P̂ do
10: SCreditCoini =

epi .CreditCoin∑length(P̂)
j=1 epj .CreditCoin

11: SAcci =
epi .accuracy∑length(P̂)

j=1 epj .accuracy

12: end while
13: C = SCreditCoin+SAcc
14: while each ci ∈C do
15: SCi =

ci∑length(C)
j=1 ecj

16: end while
17: while iter ≤ length(P̂) do
18: Get the Pk corresponding to the maximum value in SC as Leader in committee,

and get the P̃ corresponding to the larger µ × length(P̂) values in SC to form
Committee Members for consensus

19: GM =
∑length(P̂)

j=1 SCj ×Pj .weight
20: if consensus(GM )= true then
21: return GM to ArgChain;
22: else
23: P̂ = P̂−Pk
24: end if
25: iter = iter+1
26: end while
27: return 0
28: end if

2. Smart contract verificationmechanism of ArgChain combinedwith differential privacy:
Before uploading the trained local model parameters to ArgChain, the real data can be
hidden by perturbing the local model parameters and adding noise that conforms to
the Laplace distribution. Attacks with background knowledge can be avoided to obtain
the original data information of the DataHolder. The trained local model parameters
are verified through smart contract of ArgChain. Since DataHolder may train poor
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quality model parameters or dishonest DataHolder maliciously upload incorrect local
model parameters, these factors will lead to lower quality of the joint model. Filtering
the uploaded local model parameters through ArgChain’s smart contract can guarantee
the training quality of the joint model.

3. No fixed aggregation server: In the aggregation phase of the local model parameters.
A dishonest parameter aggregation server generates incorrect aggregation parameters,
or the parameter aggregation server is attacked by a malicious attacker, which may
cause the interruption of the parameter aggregation process. We propose a method of
dynamically selecting parameter aggregation server and Committee Members based
on the credit of Workers to perform parameter aggregation services, and to agree on
the result of parameter aggregation to ensure the safety and accuracy of the parameter
aggregation process.

4. The quality of the joint trainingmodel: In order to obtain a higher-quality joint training
model, we propose a local model parameter aggregation algorithm based on dynamic
weight allocation. Specifically, the new CreditCoin owned by eachWorker is calculated
by using the CreditCoin owned by the Worker and the accuracy of each round of local
training. Perform softmax on the new CreditCoin, and perform a weighted summation
of its local model parameters according to its different proportions to obtain the joint
model parameters for each round.

5. Incentive mechanism: In order to ensure the durable operation of SFedChain and
attract more DataHolders to participate in the joint modeling of the requested task.
We propose to pay rewards for participating in joint modeling workers to attract more
DataHolders to join. TaskRequester pays Coin for its requested task. According to the
performance of Workers’ joint modeling process, different amounts of rewards are
allocated to improve the enthusiasm of DataHolder to participate.

Evaluation setup
We used 20 Newsgroups and AG News to simulate the adaptability and high efficiency of
SFedChain, which are international standard datasets that are often used to evaluate text-
related machine learning algorithms. The 20 newsgroup dataset is a collection newsgroup
documents. This dataset collected about 20,000 newsgroup documents, which were evenly
divided into 20 newsgroup collections with different topics. It has become a popular data
set for experiments in text applications of machine learning techniques. The AG news is a
collection of more than one million news articles. News articles were gathered from more
than 2,000 news sources by ComeToMyHead in more than one year of activity. The dataset
includes 120,000 training samples and 7,600 test samples. Each sample was a short text
with four types of labels. We used these two datasets to simulate the text data generated by
the equipment operation and monitoring of each device.

We simulated different numbers of energy storage devices, which have their own local
dataset and can be independently modeled. We used the selected dataset to split the data
entries, and regroup according to the number of groups set in each experiment, to simulate
DataHolders in SFedChain. We used text topic classification analysis to simulate the
requested task of the TaskRequester, and implemented our improved attention mechanism
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Figure 7 (A–B) Accuracy in various datasets. (A) Training on 20 Newsgroups dataset. (B) Training on
AG News dataset. The performance comparison between our proposed model and the benchmark method
text graph convolutional networks on various datasets.

Full-size DOI: 10.7717/peerjcs.1027/fig-7

on text data to perform the joint modeling process of the SFedChain scheme in the process
of distributed multi-party data sharing.

We perform a lot of simulations on Linux ubuntu 4.15.0-45-generic, and the hardware
conguration is as follows: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz, 251G, 10TB
hard drive, interpreter Python 3.8.10, and pytorch 1.7.0, We analyzed and evaluated the
performance of the SFedChain scheme, and gave the following experimental results.

Numerical results
We use 20 Newsgroup and AG News benchmark datasets to evaluate the accuracy of our
proposed model. In order to ensure the accuracy of the experimental results, we conducted
10 experiments and took the average of the results. The performance comparison between
our proposed model and the benchmark method text graph convolutional networks (Yao,
Mao & Luo, 2019) on various datasets is shown in Fig. 7. From Fig. 7A, we can see that
compared to the benchmark method, most of our test groups have obtained a higher
accuracy, which shows that our proposed SFedChain has a high diagnostic ability. At the
same time, we can see that the more data that each DataHolder has, the higher the accuracy
of the joint model built together. This is because that the accuracy of the model has a
certain relationship with the number of datasets and computing resources owned by the
DataHolder in the actual environment. Figure 7B shows the accuracy results with various
number of data providers. As data providers increase, the accuracy curve of the model
first grows and eventually stabilizes. This means that the lack of data volume affects the
accuracy of the model to a certain extent. Eventually, as the data volume saturates, the
model reaches the limit of its diagnostic ability. Therefore, we determine the number of
Workers according to the minimum and maximum payment amount of the request task
to adapt to the model’s diagnostic ability.
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Figure 8 Running time in various datasets. The running time of our proposed mechanism in different
subdatasets.

Full-size DOI: 10.7717/peerjcs.1027/fig-8

However, the time to build amodel is also a key factor tomeasure the performance of the
model. Therefore, we evaluated the time for each DataHolder to build the local model and
the joint model, and compared it with the benchmark method text graph convolutional
networks model. Figure 8A shows that the running time of our proposed mechanism in
different subdatasets. The results show that compared with the benchmark method, the
time spent on establishing the joint model of our proposed scheme is significantly reduced,
and it can well meet the waiting time of the TaskRequester. From Fig. 8B, we can see
that as the DataHolder increases, its running time can still remain stable. The processing
time spent to establish the joint model will not change significantly due to the continuous
addition of DataHolder, which shows that the model we proposed has good compatibility.
Due to the existence of malicious workers, the performance of the joint model is affected to
different degrees. Therefore, we simulate the anti-interference of our model by simulating
different proportions of malicious attackers to conduct simulation experiments. We use
the AG News dataset as the experimental dataset to simulate a scenario of joint modeling
of 50 energy storage nodes, and simulate malicious nodes by modifying the dataset in the
nodes to be mismatched label pairs. We set different proportions of malicious attackers:
attack strength 10%, attack strength 20%, attack strength 30%, attack strength 40%, attack
strength 50%. From Fig. 9, we can see that the presence of a small number of dishonest
nodes does not affect the accuracy of our proposed model for joint modeling. The system
can dynamically distinguish malicious nodes through the dynamic weight consensus
protocol and smart contract mechanism to ensure the quality of the training data set,
thereby effectively improving the performance of the system.

Through the above evaluation, we can observe that with the addition of the new data
holder, the accuracy of the joint modeling model can be continuously improved without
significantly increasing the time spent in the joint modeling process. So our scheme can
attract more data holders to join to improve the joint modeling effect of the request task.
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Figure 9 Accuracy and Loss under various attack strengths. The anti-interference of our model by sim-
ulating different proportions of malicious attackers.

Full-size DOI: 10.7717/peerjcs.1027/fig-9

As the number of data holders participating in joint modeling increases, the system needs
to perform more local model aggregation and updates, which causes a slight increase in
system overhead. However, with the addition of more data holders, the data scale of joint
modeling is further improved, and SFedChain’s secure data sharing mechanism brings
a significant increase in the performance of joint modeling models, which effectively
improves the quality of service in distributed energy storage networks.

CONCLUSION
In this article, we proposed a blockchain-based machine learning scheme for privacy data
sharing in distributed energy storage networks. A series of security analysis and simulation
experiments show that our proposed scheme not only protects data privacy, but also further
improves the accuracy of the joint modeling model in energy storage device applications
through a secure data sharing mechanism. The combination of blockchain and machine
learning is an effective way to realize the safe sharing of data. However, the question
of how to use blockchain technology to further ensure privacy protection in the data
sharing process is still worthy of attention, as is determining how to gather more valuable
data information from distributed multi-party data holders. Therefore, machine learning
algorithms suitable for joint modeling scenarios still need further research. In addition,
due to the limitation of communication bandwidth, determining how to further reduce
the communication overhead of the joint model modeling process remains to be further
discussed.
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