
Submitted 8 September 2021
Accepted 7 June 2022
Published 25 July 2022

Corresponding author
Caifan Du, cfdu@utexas.edu

Academic editor
Silvio Peroni

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.1022

Copyright
2022 Du et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Understanding progress in software
citation: a study of software citation in
the CORD-19 corpus
Caifan Du1, Johanna Cohoon1, Patrice Lopez2 and James Howison1

1The University of Texas at Austin, Austin, TX, United States of America
2 Science-miner, Naves, France

ABSTRACT
In this paper, we investigate progress toward improved software citation by examining
current software citation practices. We first introduce our machine learning based
data pipeline that extracts software mentions from the CORD-19 corpus, a regularly
updated collection of more than 280,000 scholarly articles on COVID-19 and related
historical coronaviruses. We then closely examine a stratified sample of extracted
software mentions from recent CORD-19 publications to understand the status of
software citation.We also searched online for thementioned software projects and their
citation requests. We evaluate both practices of referencing software in publications
and making software citable in comparison with earlier findings and recent advocacy
recommendations. We found increased mentions of software versions, increased open
source practices, and improved software accessibility. Yet, we also found a continuation
of high numbers of informal mentions that did not sufficiently credit software authors.
Existing software citation requests were diverse but did notmatchwith software citation
advocacy recommendations nor were they frequently followed by researchers authoring
papers. Finally, we discuss implications for software citation advocacy and standard
making efforts seeking to improve the situation. Our results show the diversity of
software citation practices and how they differ from advocacy recommendations,
provide a baseline for assessing the progress of software citation implementation, and
enrich the understanding of existing challenges.

Subjects Data Science, Social Computing
Keywords Software citation, Science policy, Scholarly communication

INTRODUCTION
Software is crucial to research, but its visibility in scholarly records is problematic,
undermining research policy goals (Mayernik et al., 2017; Howison & Bullard, 2016;
Bouquin et al., 2020). These goals include facilitating more verifiable and reproducible
research by explicitly referencing software in scholarly communications (Howison &
Bullard, 2016), ensuring sufficient credit for research software work within the scientific
reputation economy (Bouquin et al., 2020; Howison & Herbsleb, 2011), and tracking the
research impact of software for decisions of funding and support (Katz & Smith, 2015;
Mayernik et al., 2017; Allen, Teuben & Ryan, 2018). Making software visible in scholarly
communication and evaluation can enable these goals. It is also instrumental to incentivize

How to cite this article Du C, Cohoon J, Lopez P, Howison J. 2022. Understanding progress in software citation: a study of software cita-
tion in the CORD-19 corpus. PeerJ Comput. Sci. 8:e1022 http://doi.org/10.7717/peerj-cs.1022

https://peerj.com/computer-science
mailto:cfdu@utexas.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1022


high quality software work that buttresses more robust and useful research. Thus, there is a
need to improve the visibility of software in research. Corresponding advocacy efforts have
been gaining traction recently, pushing toward machine- and human-actionable software
citations in scholarly communications.

A body of research has investigated software visibility in the scholarly record, with results
largely confirming the frustration research software practitioners express (e.g., Howison
& Bullard, 2016; Pan et al., 2018; Bouquin et al., 2020). For instance, in contrast with the
well established practice of citing publications, Howison and Bullard found through their
examination of biology articles published between 2000 and 2010 that software citation
‘‘practices are varied and appear relatively ad hoc’’ (Howison & Bullard, 2016). They found
43% ofmentions of software were ‘‘informal’’ mentions without bibliographical references,
largely noting the software ‘‘name-only’’; 39% of mentions appeared in bibliographies;
19% of mentions were presented in a ‘‘like instrument’’ manner which gave the software
name and its (usually commercial) publisher with an address. Only 28.5% of the mentions
were found to provide version information; only 6% of those versions could be found
online. Similarly, Pan et al. (2018) traced specific cases of software through 481 papers
and found ‘‘researchers mention and cite the tools in diverse ways, many of which fall
short of a traditional formal citation’’. Finally, Bouquin and colleagues studied practices
in the Astronomy literature, examining publisher-provided XML for over 76,000 articles
published between 1995 and 2018 (Bouquin et al., 2020). Using a list of nine known software
packages, they highlighted the ‘‘variation’’ in how these packages were mentioned. They
identified diverse ‘‘software aliases’’ in different locations within papers, highlighting false
positives due to name ambiguity (e.g., a package named after a planet). They concluded
that while software is valued, the inability to ‘‘systematically identify software citations’’
due to their variability can lead ‘‘people to doubt the value of citing software’’ and the
authors highlight the importance of advocacy efforts to standardize practices.

These studies have also noted that it is important that software providers indicate how
they would like to be credited within papers. Howison and Bullard found only 18% of
mentioned packages provided a ‘‘request for citation’’, but these requests appeared to be
effective: 68% of the mentions of those packages followed those requests. Bouquin and
colleagues identified ‘‘preferred citations’’ statements made by software providers online
for all their studied packages, reporting that these were often requesting multiple preferred
citations or sometimes made inconsistent citation requests across different locations.

Advocacy around software citation has called for new (or clarified) practices
among software providers, end-user researchers, and publication venue editors. The
FORCE11 organization has been one venue for this work through the Software Citation
Working Group (and its follow-up initiatives), leading to the publication of clear
recommendations (Smith, Katz & Niemeyer, 2016; Katz et al., 2019; Katz et al., 2021;
Chue Hong et al., 2019). This advocacy has also connected with similar issues in the
sphere of research data, including DataCite (Brase, Lautenschlager & Sens, 2015) and FAIR
principles (Hong et al., 2021). Additional work has focused on the accessibility of software
metadata, such as through software catalogs (Allen & Schmidt, 2014; Monteil et al., 2020;
Muench et al., 2020). Other efforts have encouraged unambiguous and machine-actionable

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 2/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


formats of ‘‘requests for citation’’, for instance, the CITATION.cff file (Druskat et al.,
2021).

Finally, discovery techniques also have advanced for improving software visibility.
Prototype systems such as Depsy (Piwowar & Priem, 2016), CiteAs (Du et al., 2021b), and
the recently added software citation discovery feature on GitHub (GitHub, 2021) increase
the chance that research software is identified and cited. Publicationmining has also sought
to identify software reported in research papers. Krüger & Schindler (2020) reviewed 18
studies that use different techniques to extract software mentions from articles. Machine
learning (ML) approaches are themost likely to scale such discoveries. Accordingly, corpora
with manual annotation of software mentions have been developed (e.g., Schindler et al.,
2021;Du et al., 2021a). SupervisedML-based software extraction over large collections with
acceptable computational performance is now possible (Lopez et al., 2021a; Lopez et al.,
2021b; Schindler et al., 2022; Wade & Williams, 2021). Community efforts titled ‘‘Habeus
Corpus’’ was launched and continue to investigate these emerging collections of extracted
software mentions (Habeas Corpus, 2021).

The growing capability to extract software mentions from publications at large scale
now allows us to better assess how software is mentioned in scholarly records. Thus,
in this study, we identify the baseline, opportunities, and challenges for the ongoing
effort of making software visible in scholarship. For this purpose, we created a combined
annotation scheme based on empirical descriptions of software citation practices and
recommendations from advocacy. We used that scheme to annotate a stratified sample
of a recently released collection of software mentions automatically extracted from the
CORD-19 set of open access publications (Lopez et al., 2021a). In this way, we systematically
document and analyze existing practices for software citation.Our annotation results enable
us to understand the current status of software citation implementation, provide a baseline
for future assessment, and comparewith previous findings and advocacy recommendations.
Through this analysis, we identify changes, challenges, and pathways for software citation
implementation and advocacy.

RESEARCH QUESTIONS
1. How is software mentioned in recently published literature? Have these patterns

changed from previous studies? How do current patterns compare to recently published
guidelines for software citation?

2. How widespread are requests for citation? What form do they take? How do these
requests compare to recently published guidance?

DATA & METHODS
To answer these research questions, we first obtained a sample of software mentions
extracted from recent literature, leveraging aML-based software entity recognition pipeline.
Then, we assembled an annotation scheme built upon both past research and existing
recommendations for software citation. We also annotated relevant practices that enable

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 3/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


1Note these two sets have large overlaps.
We present these numbers because there is
no perfect global identifier in this corpus
release.

the citation of software by looking for and examining the online records of mentioned
software.

CORD-19 dataset
We used CORD-19, the COVID-19 Open Research Dataset (Wang et al., 2020), to obtain
software mentions in recent publications. The CORD-19 was initially released in March
2020 by the Allen Institute for AI as a large-scale collection of publications and preprints on
COVID-19 and past related coronavirus research. The initial release included about 28,000
papers; the dataset has been growing through regular updates. We used the 22 March 2021
release in the CORD-19 release history as our base corpus for software mention extraction,
downloaded from https://www.semanticscholar.org/cord19/download. Out of its 490,904
bibliographical entries, this release includes 274,400 publications that can be uniquely
identified by a distinct DOI (Digital Object Identifier) and 238,283 publications that can
be uniquely identified by a distinct PubMed ID.1 For reasons discussed below, we did not
use the released extracted article content in JSON format, but harvested the open access
PDFs instead using the identifiers of articles in the dataset as our starting point.

The CORD-19 dataset is not noise-free (Kanakia et al., 2020). According to the metadata
released along with the dataset, the earliest publication dates back to 1800s. Given our
purpose of understanding the very recent software citation practices, we first extracted
software mentions from the full corpus, then concentrated on the extracted mentions
from articles published since 2016 for detailed analysis, the same year during which the
Software Citation Principles (Smith, Katz & Niemeyer, 2016) was published. Metadata in
the CORD-19 dataset release indicate that 80% of its contents were published after 2020,
and 87% were published after 2016. This is because the contents of CORD-19 primarily
focus on COVID-19, which emerged only in 2019. Thus, its large number of publications
in recent years provide a rich base for us to investigate recent software citation practices.

Software mention extraction
We harvested the open access versions of these articles using the article metadata in the
CORD-19 release, including both PDF and structured XML formats where available.
This choice allows for more complete and reliable full-text extraction of software using
our Softcite pipeline. The main components of the Softcite pipeline include three pieces
of software: a full-text PDF harvester (Article Dataset Builder, 2021), a machine learning
library for extracting structured content from scholarly PDFs (GROBID, 2021), and a
software mention recognizer powered by a set of machine learning and deep learning
models (Softcite Software Mention Recognizer, 2021).

Using the Softcite pipeline, we harvested more full-text articles than those released in the
CORD-19 JSON corpus. Software mentions then were extracted from these reharvested
open access publications. The extraction method is described in detail in (Lopez et al.,
2021b). In short, the pipeline obtains PDFs, structures them using GROBID (GROBID,
2021; Lopez, 2009), and runs the software mention recognizer (Softcite Software Mention
Recognizer, 2021) based on a fine-tuned SciBERT+CRF model (Beltagy, Lo & Cohan, 2019)
trained on the softcite-dataset (Du et al., 2021a).

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 4/35

https://peerj.com
https://www.semanticscholar.org/cord19/download
http://dx.doi.org/10.7717/peerj-cs.1022


While Wade & Williams (2021) also published software mention extractions from
CORD-19 based on the softcite-dataset, our extraction enhances the performance in a
number of ways, mainly: (1) a more complete number of full-text articles in PDF were
obtained, along with their DOI metadata retrieved from CrossRef API; (2) additional
techniques to cope with the extreme label imbalance caused by the sparsity of software
mentions in publications; (3) extraction of additional attributes (version, URL, publisher,
context of mention); and (4) entity disambiguation, including normalization and using
Wikidata to identify false positives (e.g., the mention of algorithms but not a particular
software instantiation). Finally, the pipeline also attaches in-text and bibliographic
references to software mentions when available; these references are disambiguated against
and matched with their registered CrossRef DOI. This final step allows us to more
efficiently examine formal citation of software. Overall, the Softcite pipeline demonstrated
good performance when recognizing mentions of software, its version, publisher, and/or
URL mentioned together in text (average f1-score 79.1), with acceptable computational
performance for processing very large collections of literature in PDF (evaluation reported
in Lopez et al., 2021b).

The softcite-dataset that underlies our extraction pipeline of software mentions is
human-curated annotations of biomedical and economic literature, with the majority of
annotated software mentions identified in biomedical research publications. The shared
focus on biomedicine therefore makes this training set line up well with the examination
of the CORD-19 papers.

Descriptive statistics of extracted software
We published the full extraction results as the Softcite-CORD-19 dataset under CC-
BY−4.0 (Lopez et al., 2021a). In this study, we used published version 0.2.1 (Lopez et al.,
2021a), which is based on the CORD-19 dataset release on 22 March 2021. This version
contains total 295,609 mentions of software, including their semantic and layout details,
bibliographical references linking to the in-text software mentions (N = 55,407), and
metadata of all the documents in which software mentions are recognized (N = 76,448;
out of total 211,213 re-harvested open access full-text documents).

Figure 1 shows an overall breakdown of all the 295,609 software mentions in the
Softcite-CORD-19 dataset and what (and how many) details are mentioned along in their
article context. These extraction results are conditional on the extraction performance of
our pipeline (Lopez et al., 2021b). About 50% of the extracted software mentions are solely
names of the software without further details; 35% provide a version; 21% mention their
publisher; and 9% have a URL given in the text.

Stratified sampling
To get an overview of how software has been mentioned in recent publications, we took
software mentions extracted from the 61,175 articles (87%) published since 2016 in the
Softcite-CORD-19 dataset as our sample frame. This sample frame contains 250,163
extracted software mentions. Due to the time when COVID-19 emerged, the sample frame
is skewed toward software mentions in publications after 2019; software mentions from
articles published since 2020 totals 85% of the extracted mentions in our sample frame.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


2There are also numerous preprints in the
CORD-19 corpus.

Figure 1 Number of extracted software mentions and their associated details in the Softcite-CORD-19
dataset. The figure was created using UpSetR (Conway, Lex & Gehlenborg, 2017).

Full-size DOI: 10.7717/peerjcs.1022/fig-1

We systematically constructed a random sample of software mentions from our sample
frame, stratified by the impact factor of the article’s publication venue as well as the article’s
mention density.

Impact factor
Because a scientific reader’s attention is often concentrated on a few publication venues
(Bradford, 1934; Brookes, 1985), these venues may have an outsized effect on their
perception of the scientific reporting practices. The journal impact factor, developed
by the Institute of Scientific Information (ISI) and annually calculated and published by
the ISI Web of Science (WoS), is calculated based on the citations to one journal within
a given period of time. Because citation to one journal is an outcome of one’s scientific
attention, we used the journal impact factor as the proxy of collective scientific attention.
We matched the 6,997 distinct journal titles in the Softcite-CORD-19 dataset (version
0.2.1) using CrossRef DOI metadata to the 12,312 indexed journals in the ISI WoS 2020
Journal Citation Report. 78% of the publications (N = 47,959) in the sample frame were
identified as articles from a venue with an indexed journal impact factor.

We then divided the publications in the sample frame into different strata based on
the range that their journal impact factor ranking falls in: 1–10, 11–100, 101–1,000,
1,001–12,982, and a ‘‘No impact factor’’ group for those articles from venues without
an indexed impact factor.2 This stratification balanced the coverage of articles from
journals that receive different levels of attention in our sample. This choice also enabled
us to examine software citation practices in comparison with the prior analysis of 90
biological publications from 2000 to 2010 in (Howison & Bullard, 2016). In that study, 90
articles from journals indexed in the 2010 ISI WoS biology-related subject headings were

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 6/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-1
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 2 In our sample frame, number of articles mentioning software varies by mention density per
article. 25,116 articles in the sample frame (41%) had only one software mention, while one particular ar-
ticle had the most software mention (N = 330). Only 11% of the articles in the sample frame had more
than 9 software mentions.

Full-size DOI: 10.7717/peerjcs.1022/fig-2

randomly sampled by a 3-tier journal impact stratification: journals with impact factor
ranked 1 through 10, then those ranked 11–100, finally those ranked 111–1,455.

Mention density
The number of software mentions extracted per article, i.e., the mention density, varied
significantly in the sample frame. The average mention density is 4.1 with a standard
deviation of 7.2, and ranges from one to 330 mentions per article. In Fig. 2, this variance
in our sample frame is further illustrated. Because of this variation, we also stratified our
sample by mention density.

The variation of mention density across articles could be the result of changing practices
of mentioning software over time, different genres of publications across venues and
domains, requirements of journals, and/or writing conventions of authors, and so forth.
Figure 3 demonstrates the distribution of mention density in different impact strata:
Articles in the top impact factor stratum have a narrower distribution of mention density.
Articles in lower/no journal impact factor strata have more articles with more than eight
software mentions; these strata also have outlier articles where more than 100 software
mentions are recognized. To ensure representation of these different distributions, we
grouped the articles in our sample frame into three subsets by their mention density. The
resulting sample frame and the number of articles in each stratum are summarized in

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 7/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-2
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 3 The distribution of mention density in each journal impact factor stratum. The horizontal
line within each violin plot denotes the median mention density in the distribution.

Full-size DOI: 10.7717/peerjcs.1022/fig-3

Table 1 Number of articles and their percentage in the sample frame from each sample stratum.

Mention density
impact strata

[0, 1]
(41.06%)

[2, 8]
(48.13%)

[9, 350]
(10.82%)

[1, 10] (0.05%) 17 16 0
[11, 100] (0.95%) 179 259 142
[101, 1,000] (9.31%) 2,201 2,708 784
[1,001, 12,982] (51.14%) 13,606 15,291 2,385
No Impact Factor (38.56%) 9,113 11,168 3,306

Table 1, which also shows the uneven distribution of articles across different strata. Our
stratification therefore supports more balanced sampling.

We examined annotation results in each stratum after annotation. However, we did not
find substantial differences across any strata, so we do not report results broken down by
these strata in this article.

We randomly sampled 15 articles from each stratum. Because there is no article in
the stratum with the highest mention density ([9,350]) and highest journal impact rank
([1,10]), we skipped this stratum and obtained a sample of 210 articles from the remaining
14 strata. Next, we randomly sampled one software mention from all the extracted
mentions of each article. Given that the CORD-19 dataset is a somewhat noisy corpus,
when we encountered an article that is not a research article (e.g., scientific news postings),
we moved to the next article in the same sample stratum and randomly sampled an

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 8/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-3
http://dx.doi.org/10.7717/peerj-cs.1022


extracted mention from this article to replace the original one. Accordingly, we gained a
sample of 210 extracted software mentions. The scripts for implementing this stratified
sampling procedure as well as all the analyses and figures discussed in the following sections
can be found in https://github.com/caifand/cord19-sw-analysis.

Annotation
We developed a coding scheme to manually validate and annotate the sampled extraction
results. Based on empirical descriptions of software citation practices and recommendations
from advocacy, this coding scheme allows for capture of current practices for software
citation and comparison to advocated-for best practices (Smith, Katz & Niemeyer, 2016;
Katz et al., 2019; Hong et al., 2021). The full coding scheme contains 57 codes. Some codes
were annotated based only on the content of the mention and its original article, while
others, such as those regarding the access and archiving status of software, required
annotators to conduct web searches and locate online presences of the mentioned software.

The first codes in our scheme validate the extracted mentions and their details. These
codes require examination of the extracted mention content (sentences from original
full-texts that mentioned software) and their accompanying bibliographical items. The
original PDF publications were also examined to confirm whether the extracted results
were consistent with the source article. For any problematic software extraction results, we
manually corrected the extraction and annotated them accordingly. If it was not found in
the corresponding PDF, we randomly sampled another mention from the same article, or
moved to the next article in the sample frame and randomly sampled one of its mentions if
the original article had only a single extracted mention. Throughout the sample annotation
process, we found 5% of the automatically extracted software mentions are false positives
(95% CI [0.03, 0.09]).

Figure 4 presents the remainder of our codes. We first replicated the coding scheme
applied by Howison & Bullard (2016), including codes about the in-text software mentions
and their bibliographical entries, the functions of these software mentions, the access to the
mentioned software, and whether the software citation aligns with a discoverable citation
request (codes A1–B1, B3–C3, D1–D5, & E1). We then added codes E2–E14 to specify the
format, contents, and location of citation requests. Next, we identify whether these codes
meet the advocacy recommendations for software citation, particularly those discussed
in Smith, Katz & Niemeyer (2016) and Katz et al. (2019). This mapping from empirical
descriptions to advocacy recommendations allows us to compare annotated practices with
advocacy recommendations.

Here we explain how the codes are mapped from the scheme of empirical descriptions
(Howison & Bullard, 2016) to specific advocacy recommendations, as the crosswalk in Fig. 4
shows. For example, if a software mention includes the name and version of the software,
credits its creator(s), and provides a URL to facilitate the access (codes A1–A4), then the
basic requirements of the Software Citation Principles (Smith, Katz & Niemeyer, 2016) are
met. If the mention enables the access to the software, no matter it is open source or closed
source, then it further conforms with later recommendations (codes D2–D5; particularly,
Katz et al. (2019) have specified citation expectations for closed source software as the code

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 9/35

https://peerj.com
https://github.com/caifand/cord19-sw-analysis
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 4 A crosswalk between the software extraction coding scheme and advocacy recommendations.
Full-size DOI: 10.7717/peerjcs.1022/fig-4

D2 concerns). If a mentioned piece of software has an available citation request online for
the mentioned software and it requests to cite the software artifact rather than any other
complementary artifact (such as a publication or user manual) and if specific formats of
citationmetadata (e.g., CITATION.cff, CodeMeta) are adopted, these practices also comply
with the advocacy recommendations (codes E7, E8, E10). In cases where a citation request
is declared by domain-specific metadata, such as by an R DESCRIPTION/CITATION file,

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 10/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-4
http://dx.doi.org/10.7717/peerj-cs.1022


it does not conform with those software citation advocacy recommendations, but meets
one of the FAIR Principles for Research Software (FAIR4RS) that the software metadata
should be findable. While the FAIR4RS Principles are not primarily advocated for software
citation implementation, we included them for reference.

To better examine the extent to which existing citation practices align with
advocacy recommendations, we added codes that are primarily derived from advocacy
recommendations (codes B2, C4–C5, D6, F1–F3). These codes concern whether the
software artifact itself is referenced in the bibliography with a unique and/or persistent
identifier and whether the software artifact is archived, registered with an persistent
identifier, or has available metadata online. These emphases from current advocacy
recommendations ensure that the software artifact can be referenced like traditional
research products such as scholarly publications. In particular, valid form of metadata
available (codes E7–E9, F2 & F3) and/or a unique and persistent identifier make the
software in accordance with the FAIR4RS ‘‘Findable’’ principle (codes F1, F2, and/or F3).
If the software code follows standard open source (code D6), then it is ‘‘reusable’’ in the
sense of the FAIR4RS definition (specifically, see FAIR4RS principle R1.1 in Hong et al.,
2021). Given our emphasis on software citation, we considered only the aspects of FAIR4RS
related to software citation.

To confirm the inter-annotator reliability of the coding scheme, two authors initially
annotated a sub-sample (10% of the full sample). They achieved 93.3% percentage
agreement across all the codes in the full coding scheme; discussions resolved the remaining
disagreements. Later, a third author joined as an annotator using the validated coding
scheme. Questions emerging from the annotation process were then discussed among
annotators to reach consensus and refine the coding scheme accordingly. Finally, after the
annotation was finished, one author wrote a script to validate the logical constraints and
consistency between coding results, and re-annotated when violations of logical constraints
were identified.

RESULTS
As our annotation scheme is extended from previous empirical descriptions of software
citation practices, we are able to compare our results with earlier findings from Howison &
Bullard (2016) to see if software citation practices have changed. The annotation scheme also
allows us to compare existing practices with advocacy recommendations and understand
whether they converge or deviate. In this section, we report the annotation results with
these considerations. We first describe the forms that software mentions take in our sample
and the functions of scholarly citation they are able to realize. Next, we discuss the extent to
which the mentioned software is citable as the advocacy has recommended by examining
their metadata availability, archiving status, and persistent identification. Finally, we
present findings about how software citation has been requested by software creators and
publishers. Our annotation was conducted in August 2021 and all the annotations about
software online presences correspond to results of web searches conducted then. We report
all the proportions of coded categories with 95% confidence interval. These results were
calculated using the prop.test function in the base R package stats (R Core Team, 2019).

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 11/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 5 18% of the software mentions in the sample were formal citations (the transparent bar on the
left) of either the software itself, a domain publication, or a software publication. The remaining 82%
were informal mentions without bibliographical references, including those mentioning software name
only, following a ‘‘like instrument’’ style, providing a URL in text, or other forms of casual mentions that
might refer to a version and/or software creator. Error bars show the 95% confidence interval estimates.

Full-size DOI: 10.7717/peerjcs.1022/fig-5

How software is mentioned
Forms of software mention
Overall, 82% of the software mentions in our sample (N = 172; 95% [0.76, 0.87]) were
informal without a bibliographical reference (Fig. 5). Most of these informal mentions
only gave the name of the software; sometimes they additionally referred to a version,
software creator or publisher, and/or a URL. 30% of the mentions (N = 63; [0.24, 0.37])
only referred to the software by its name (Fig. 5). Because our annotation procedures
rely on the results of the software mention recognizer, it is possible that we have missed
mentions that provided no name (e.g., ‘‘using a program we wrote’’). However, we do not
expect these would have been substantial, given that Howison & Bullard (2016) only found
1% ([0, 0.04]) unnamed software mentions in their corpus.

Consistent with findings from Howison & Bullard (2016), we found software was
sometimes mentioned ‘‘like instrument’’ (22% of the sample, N = 46, [0.17, 0.28]) in that
it is similar to how researchers conventionally reference scientific instruments provided by
vendors or manufacturers when authoring academic publications. This kind of mentions
specify the software name, the name of its provider, and often the geographical location of
the provider (e.g., ‘‘STATA, StataCorp, College Station, TX’’). 4% of the mentions (N = 9;
[0.02, 0.08]) in the sample provided a URL in text for software access. These results are
indistinguishable from the findings in Howison & Bullard (2016) that 19% ([0.14, 0.24])
of the software mentions identified in the biology literature sample were in the ‘‘like
instrument’’ style and 5% ([0.03, 0.08]) gave a URL.

In contrast to findings from Howison & Bullard (2016), we did not find any software
mentions citing a software manual or its project. The majority of formal citations still cited
a publication—either a domain science publication (5%, N = 11, [0.02, 0.09]), or, more

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 12/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-5
http://dx.doi.org/10.7717/peerj-cs.1022


commonly, a software publication (11%, N = 24, [0.08, 0.17]). In Howison & Bullard’s
sample, even more software mentions cited a publication (37%; [0.31, 0.43]).

Software Citation Principles (Smith, Katz & Niemeyer, 2016) suggest that the software
artifact itself should be cited as a first-class research product; any relevant publications
should be cited as companions. In this case, we found three formal citations of the software
artifact in bibliography (1.4%; [0.004, 0.05]), which was not found in Howison & Bullard
(2016), but none of them included an identifier such as a persistent DOI or a commit hash
(Katz et al., 2019). Thus, none of these software mentions or citations met the Software
Citation Principles’ goal of unique identification or persistence. The identification of the
mentioned software, especially when a specific version is involved, mainly relies on whether
there is a URL referenced in text, otherwise the academic readers would need to make use
of any clue revealed by the software mention to look for the software.

Functions of software mentions
Traditional scholarly citation allows for the identification, access, and subsequently
verifying and building upon the cited work (Howison & Bullard, 2016). Software
citation advocacy seeks to enable these functions by recommending best practices for
referencing software in scholarly work (Katz et al., 2021). Howison & Bullard (2016)
found that informal software mentions could still function to some extent in scholarly
communications. We assessed and annotated the enabled functions of mentions in our
sample in accordance.

A software mention was annotated as ‘‘identifiable’’ if the information given
distinguished the software as a distinct entity. It was then annotated as ‘‘findable’’ when the
mention facilitated the online search and discovery of the software. 96% ([0.92, 0.98]) of the
software mentions were both identifiable and findable, enabling the annotator to discover
a distinct piece of software via web search (Fig. 6). These results suggest an improvement
on findable software from Howison & Bullard’s results: they found 93% ([0.88, 0.96])
of software mentions supported the successful identification of software but fewer (86%;
[0.80, 0.90]) enabled online discovery. Overall, it is positive that we were able to identify
and find almost all of the software even though 82% of all the identified mentions were
informal. This finding implies that most software has online presence(s).

We saw that 46% ([0.39, 0.53]) of the software mentions specified a version and 43%
([0.36, 0.50]) of the software mentions had a findable version online, an increase over
Howison & Bullard’s findings (28%, [0.22, 0.35], and 5%, [0.03, 0.10], respectively). 48%
([0.41, 0.56]) of the informal software mentions and 35% ([0.21, 0.53]) of the formal
citations identified specific versions (Fig. 7). 46% ([0.38, 0.53]) of the informal mentions
led to findable versions online and so did the 30% ([0.16, 0.47]) of the formal citations.
The annotation results also suggest that 78% ([0.61, 0.90]) of the formal citations and 35%
([0.28, 0.42]) of the informal mentions identified authorship and thus were able to give
credit. We interpret a likely reason for the difference between existing formal citations and
informal mentions in their strength to give credit and to identify versions: 92% ([0.77,
0.98]) of the formal software citations reference a publication, indicating clear authorship;
but a publication, even a ‘‘software paper’’, is not often version specific. Current software

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 13/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 6 Functions of software mentions in our sample (error bars show 95%CI): Do software men-
tions enable the identification and discovery of software and its versions? Do software mentions credit
its contributors? Do software mentions provide further configuration detail that facilitates reuse?

Full-size DOI: 10.7717/peerjcs.1022/fig-6

Figure 7 How do existing formal citations and informal mentions of software function? In our sam-
ple, informal mentions tended to provide more specific versions; and formal citations credited better.
Most formal citations in our sample referenced a publication rather than the software artifact (Error bars
show 95% CI).

Full-size DOI: 10.7717/peerjcs.1022/fig-7

citation advocacy has also recognized this: the credit given by publication is often one-off
and static, not sufficient to account for the dynamic authorship of the actual software work
across versions (Katz et al., 2019; Katz & Smith, 2015).

Proper crediting has been a strong motivation for software citation advocacy. In our
sample, 42% ([0.36, 0.49]) of the software mentions recognized the creators or publishers
of the software. In contrast, Howison & Bullard (2016) found around 77% ([0.70, 0.83])
of the mentions recognized creators or publishers. This is possibly driven by the 37%

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 14/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-6
https://doi.org/10.7717/peerjcs.1022/fig-7
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 8 Types of software mentions that serve different functions. Software mentions that give credit
were mostly driven by ‘‘like instrument’’ mentions and formal citations to a publication (Error bars show
95% CI).

Full-size DOI: 10.7717/peerjcs.1022/fig-8

of the software mentions in their sample that cited a publication while only 17% in
ours did. When looking more closely (Fig. 8), crediting mentions in our sample were
mostly ‘‘like instrument’’ mentions (49% of all the crediting mentions; [0.39, 0.60]),
and secondarily, formal citation of articles (30% of all the crediting mentions; [0.21,
0.41]). As we will discuss in the later section, ‘‘like instrument’’ mentions mostly credited
proprietary software publishers, who are in less need of scholarly credit. In cases of software
citation, information about the proprietary software publisher probably provides more
accountability for the software involved and thus contributes to the integrity of scientific
communication.

Finally, 10% ([0.06, 0.15]) of the mentions gave some additional detail about the actual
configuration of mentioned software, usually specifying an operation environment or
parameter settings. Such detail could facilitate the verification of the scientific method
employed and the reuse of mentioned software.

Another key condition of reuse is whether the mentioned software is accessible and
retrievable. Facilitating access is one advocated function of software citation (Smith, Katz
& Niemeyer, 2016) as well as the conventional concern of scholarly citation (Howison &
Bullard, 2016). For the 155 distinct pieces of software mentioned in our sample, 97%
([0.92, 0.99]) was accessible online, 68% ([0.60, 0.75]) of the mentioned software had
free access, 47% ([0.39, 0.55]) had source code available, and 43% ([0.35, 0.51]) had both
source code available and permission to modify it, such as an open source license, or a
statement of waived copyrights (as the ‘‘source code modifiable’’ category in Fig. 9). In
general, mentioned software in this sample was more accessible and actionable than that
in Howison & Bullard (2016), where 79% ([0.71, 0.85]) of the mentioned software was
accessible, 47% ([0.38, 0.56]) had free access, 32% ([0.24, 0.40]) had source code available,
and 20% ([0.14, 0.27]) had modifiable source code.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 15/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-8
http://dx.doi.org/10.7717/peerj-cs.1022


3We did not annotate metadata only
associated with a minted DOI as the
unique and persistent identifier category
covers this possibility. Hence, we focus on
other kinds of interoperable metadata.

Figure 9 Accessibility of the software mentioned (error bars show 95%CI). Accessible software in-
cludes software with restricted or paid access. Free access software includes those with open source code
available, or those in the form of executable or web services. Modifiable source code means the permission
to modify the source code is formally granted.

Full-size DOI: 10.7717/peerjcs.1022/fig-9

Software metadata, archiving, and identification
Advocates’ recommendations, such as Katz et al. (2019), recognize that sufficient citation
metadata, software archiving, and unique and persistent identifiers are needed to cite the
software artifact in a human- and machine-actionable manner (Smith, Katz & Niemeyer,
2016;Katz et al., 2019). These practices are essential for software and its citation in scholarly
literature to become as visible as traditional academic publications, such as being identifiable
and indexable by discovery tools. We therefore examined whether the 155 distinct pieces
of software mentioned in our sample meet these advocacy recommendations.

Metadata availability was assessed by looking for publicly accessible metadata, including
those primarily focused on software citation (i.e., CITATION.cff (Druskat et al., 2021)
and CodeMeta (Jones et al., 2017)) and metadata stored in public information registries3

such as bio.tools (Ison et al., 2016). We also annotated the availability of language-specific
software metadata such as R DESCRIPTION/CITATION files, Python setup.py files, and
Java Maven pom.xml files, etc., considering that these are interoperable with CodeMeta
through crosswalks.

We searched for archival copies of mentioned software within Zenodo (European
Organization For Nuclear Research and OpenAIRE, 2013), Figshare (https://figshare.com),
and Software Heritage (Cosmo & Zacchiroli, 2017) with their within-site search feature.
We considered searching institutional or domain-specific repositories but it is infeasible
to create an exhausted list of repositories for manual search. We also experimented with
using search engines like Google; it was neither effective to identify software archived in
specific archival repositories.

We assessed the use of unique and persistent identifiers by searching for DOIs, ARKs
(Archival Resource Keys), PURLs (Persistent URLs), and NBNs (National Bibliography

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 16/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-9
https://figshare.com
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 10 The property rights of the software mentioned (error bars show 95%CI). Five software men-
tions did not have an accessible record online, and their licensing status consequently could not be identi-
fied.

Full-size DOI: 10.7717/peerjcs.1022/fig-10

Numbers). We chose this list to focus on globally used and interoperable identifiers. We
considered other identifiers, including RRID, ASCL ID, and swMATH ID, some of which
are very useful in specific domains; but limited annotation labor turned our focus on
those globally used and indexed across systems of digital objects. Additionally, we did not
include SWHID (Software Heritage ID) (Software Heritage Development Documentation,
2021) because those are automatically generated once it is archived in Software Heritage,
already accounted for in our annotation about archiving.

As the advocacy recommendation efforts recognize, unique and persistent identification,
metadata accessibility, and archiving mechanisms can vary a lot between open source and
closed source software (Katz et al., 2019). We thus examine the software in our sample with
different property rights respectively. Particularly, we annotated closed source software
with some kind of paywall as ‘‘proprietary’’, software with a standard open source license
as ‘‘open source’’, and free access software without standard open source license as
‘‘non-commercial’’ (e.g., public domain software or software with source code available
but not following standard open source practices). As Fig. 10 shows, in our sample, five
cases were not accessible and thus we cannot identify their licensing status; 24% ([0.18,
0.32]) of the mentioned software was proprietary while more was open source (42% of
the mentioned software; [0.34, 0.50]); in-between is non-commercial software (31% of
the mentioned software; [0.24, 0.39]). In Howison & Bullard’s sample, the corresponding
proportion of proprietary, non-commercial, and open source software were 32% ([0.24,
0.40]), 27% ([0.21, 0.36]), and 20% ([0.14, 0.27]). Therefore, we observe a larger portion
of open source software mentioned in this sample.

Overall, 30% ([0.23, 0.38]) of the mentioned software had at least one archived
copy within Zenodo, Figshare, or Software Heritage (Fig. 11). While archiving in these

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 17/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-10
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 11 Software archiving status, metadata availability, and persistent identification status in the
sample (error bars show 95%CI).

Full-size DOI: 10.7717/peerjcs.1022/fig-11

repositories generates interoperable metadata for the archived item, slightly more software
in the sample had publicly available metadata (31% of the mentioned software; [0.24,
0.39]), implying some software had metadata created elsewhere. 25% ([0.19, 0.33]) of
the mentioned software had at least one unique and persistent identifier found among
possibilities of DOI, ARK, PURL, and NBN; the most found identifier is DOI.

When examining across software with different kinds of property rights, we found
that 68% ([0.55, 0.78]) of the open source software in the sample was archived in one of
those aforementioned repositories (Fig. 12). During annotation, we noticed that this is
largely driven by those software projects with a GitHub repository archived in the Software
Heritage. Some non-commercial software in our sample with a source code repository on
GitHub was also found archived by the Software Heritage. Only 4% of the non-commercial
software was archived while no proprietary software in the sample was found archived.
Although it is in theory possible to archive proprietary software in a closed source archive
and only expose the unique identifier and metadata for discoverable records.

We have found publicly available metadata for 16% ([0.07, 0.33]) of the proprietary
software in our sample, mostly stored in a public registry (e.g., bio.tools). 17% ([0.08, 0.31])
of the non-commercial software had publicly accessible metadata, so as 52% ([0.40, 0.65])
of the open source software. But these available metadata are not oriented to citation. We
found no CITATION.cff or CodeMeta in our sample.

Open source software was more likely than non-commercial software to have a unique
and persistent identifier (58%, [0.46, 0.70] vs. 2%, [0.001, 0.12]); proprietary software had
none at all.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 18/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-11
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 12 The archiving, metadata, and persistent identification status of software with different
property rights in the sample (error bars show 95%CI).More than half of the open source software was
archived and had available metadata and a persistent identifier. Proprietary software in the sample did not
have any identified archival copies or persistent identifiers.

Full-size DOI: 10.7717/peerjcs.1022/fig-12

Taken together, slightly more than half of the open source software in our sample
met advocacy recommendations for citation. Closed source software, including non-
commercial software without open source code available and proprietary software, indeed
rarely have a unique and persistent identifier neither being frequently archived. It is not
surprising given that archiving a piece of software is the primary way to obtain a unique
and persistent identifier. The lack of the persistent identifier perhaps chiefly reduces the
indexing potential of the closed source software. It is still valuable to reference proprietary
software used for research in manuscripts especially when its routines constitute part of
the research procedures.

How citation is requested
Past research has shown that software creators and publishers seek scholarly credit by
having their software cited (Howison & Herbsleb, 2011). Howison & Bullard (2016) found
18% ([0.13, 0.30]) of the mentioned software in their sample made a specific request for
their software work to be cited, usually in the online presences of the software such as on
a project web page. Bouquin et al. (2020) also looked for the preferred citations requested
by software projects in their sample, motivated by examining the quality of these sources
of citation information. Findings by these studies suggest that public citation requests do
not necessarily prioritize the software artifact itself. Instead, software authors may request
citations reference a software publication because those publications are more immediately
compatible with the current system of scholarly citation, reputation, and impact.

We are interested in understanding how common citation requests are, how software
projects make specific citation requests, to what extent they orient researchers’ citation
behavior, and whether they conform to the best practices recommended by the software

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 19/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-12
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 13 Locations of software citation request in the sample (error bars show 95%CI). Citation
metadata includes formats like CITATION file and domain-specific citation metadata such as R CITA-
TION/DESCRIPTION. No CITATION.cff or CodeMeta was found.

Full-size DOI: 10.7717/peerjcs.1022/fig-13

citation advocacy. We therefore annotated the format and location of citation requests and
what citation target was requested by searching for specific software’s citation request and
looking through the online presence(s) of the software in our sample. Overall, we found
87 out of the 155 pieces of software (56%, [0.48, 0.64]) had at least one citation request
findable online (Fig. 13); but only 13% ([0.09, 0.19]) of the sampled mentions followed
these citation requests.Howison & Bullard (2016), in comparison, found 18% ([0.13, 0.30])
of the software in their sample made citation requests and 7%([0.04, 0.11]) of the software
mentions followed these citation requests.

While we found an increase in citation requests and citations that follow them over
Howison and Bullard’s findings, citations that follow recommendations were still fairly
limited, varying by the type of software in question. 46% ([0.30, 0.63]) of the proprietary
software in our sample had at least one citation request while 2% ([0.004, 0.09]) of the
proprietary software mentions matched the requested citation. Half of the non-commercial
software (50%, [0.36, 0.64]) in the sample requested software citation; 13% ([0.06, 0,.26])
of the non-commercial software mentions matched the actual citation request. 70% ([0.58,
0.81]) of the open source software made citation request and 26% ([0.17, 0.38]) of their
mentions matched the request (see Fig. 14). In general, open source software projects made
more citation requests, and their requests were more followed.

Locations of citation requests
Half of the software in the sample (50%, [0.42, 0.58]) had a preferred citation
specified on a web page, mostly located on a software project website. Occasionally,
we found a software catalog online suggesting a citation for its software entries (e.g.,
Bioconductor (https://www.bioconductor.org/) and ASCL (Nemiroff & Wallin, 1999) do
so). 7% ([0.04, 0.13]) of the software requested software citation in the README file
of a source code repository. Another 7% ([0.04, 0.13]) had a metadata file available

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 20/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-13
https://www.bioconductor.org/
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 14 (A) Proportion of the mentioned software with different property rights in the sample that
had citation request(s). (B) Proportion of the mentions of software with different property rights that
matched the citation request (Error bars show 95%CI).

Full-size DOI: 10.7717/peerjcs.1022/fig-14

providing needed information for citation, especially the domain-specific format R
CITATION/DESCRIPTION was found to specify a citation request (Fig. 13).

Formats of citation requests
Software projects in our sample use different formats to make citation requests. It was
most common (54%, [0.45, 0.62]) to give a suggested citation in plain text format so
that users can copy and paste it into their manuscript (Fig. 15). The next most popular
format was a BibTeX formatted citation entry that can be used in the LaTeX document
preparation system; but, at 7% ([0.04, 0.13]) of our sample, even this second-most-poplar
citation request format was rare. Domain-specific citation metadata format, exclusively
the R CITATION/DESCRIPTION file, was used by 6% ([0.03, 0.11]) of the cases in our
sample; considering that it is a common expectation of the R language community, it
may be a convenient choice for software developers to make a citation request. Finally,
two pieces of software in our sample (1%, [0.002, 0.05]) used a CITATION file. These
were initially embraced by advocates for crediting research software work (Wilson, 2013);
because CITATION files are not machine-readable, advocates now prefer structured
citation metadata like Citation File Format (CFF) and CodeMeta (Katz et al., 2019). We
did not find any CITATION.cff or CodeMeta.json files, indicating these newer approaches
have yet to replace older ones.

Objects of citation requests
If a request was made, it was the most common to ask that users cite a software publication
(32%, [0.25, 0.4]). 20% ([0.14, 0.27]) of the software in our sample requested to cite the
software artifact itself, in accordance with advocates’ recommendations (Smith, Katz &
Niemeyer, 2016). 12% ([0.07, 0.18]) of the software in the sample requested that a domain
science publication be cited. Two software projects requested the project itself be cited. One

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 21/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-14
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 15 Formats of software citation requests in the sample (error bars show 95%CI).
Full-size DOI: 10.7717/peerjcs.1022/fig-15

project requested that a dataset be cited; in this specific case, the software is the byproduct
of the dataset.

It is worthwhile to look closely at these citation requests with respect to different software
property rights because citation preferences vary (Fig. 16A). Non-commercial and open
source software seemed to prefer a publication citation the most: 38% ([0.24, 0.53]) of
the non-commercial software in the sample requested to cite a software publication while
46% ([0.34, 0.59]) of the open source software requested so; 17% ([0.08, 0.30]) of the
non-commercial software and 15% ([0.08, 0.27]) of the open source software requested
that users cite a domain science publication. 4% ([0.007, 0.15]) of the non-commercial
software and 20% ([0.11, 0.32]) of the open source software requested that the software
itself be the target of the citation.

In contrast, only one proprietary software project in our sample requested that users cite
a software publication (2%, [0.001, 0.16]); 43% ([0.28, 0.60]) of the proprietary software
requested that authors cite the software itself; and the remaining 46% ([0.30, 0.63]) of
the proprietary software in the sample did not have a citation request available. This
is likely because proprietary software publishers have more incentives to promote their
software product but have less motive to engage in publishing about the science relevant to
their software. Meanwhile, for open source and non-commercial software projects, citing
their publication can more effectively demonstrate their scientific impact in the way most
relevant to those evaluating their careers.

We accordingly examine how the software with different kinds of property rights in our
sample is actuallymentioned in publications (Fig. 16B).None of thementions of proprietary
software in our sample came with any bibliographic references. Most commonly they were
referenced in the ‘‘like instrument’’ style (52%, [0.41, 0.63]), following the practices
of referring to scientific instruments and their vendors. Yet, both informal and ‘‘like
instrument’’ mentions ensure that the actual software artifact is referenced in publications.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 22/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-15
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 16 (A)What software projects with different property rights request to cite in the sample. (B)
How software with different property rights is mentioned in the sample (Error bars show 95%CI).

Full-size DOI: 10.7717/peerjcs.1022/fig-16

17% ([0.09, 0.30]) of the non-commercial software mentions and 33% ([0.23, 0.46]) of
the open source software mentions cited a publication; both were rarely mentioned like
instruments in our sample: Only 4% ([0.006, 0.14]) of non-commercial software mentions
and 3% ([0.004, 0.10]) of open source software mentions were instrument-like. Despite
frequent requests to cite publications, 78% ([0.63, 0.87]) of the non-commercial software
mentions and 61% ([0.49, 0.72]) of the open source software mentions were informal.
Although 20% ([0.11, 0.32]) of the open source software in our sample requested that users
cite the software artifact, only 3% of the open source mentions did so.

Comparison with prior findings
Finally, in Fig. 17 (on page 24), our annotation results are summarized in comparison
with results fromHowison & Bullard (2016). Given that the two sets of findings come from
two independent samples, we conducted a two-sample significance test to compare the
proportions calculated from annotations, using the prop.test function (Newcombe, 1998)
in base R. When the difference between the proportion values across the two samples is
tested as significant with p < .05, we have more statistical support to conclude a notable
change. These statistically significant changes are highlighted in Fig. 17. The In-text URL
and Cite to software categories have too few positive results (both under ten) to be an
adequate sample for such significance testing.

Overall, we found more informal mentions and less citations to publications for
referencing software in our sample. The mentioned software were more findable and more
frequently referenced with a specific version, and these versions were also more accessible.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 23/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-16
http://dx.doi.org/10.7717/peerj-cs.1022


Figure 17 Comparing current results with previous findings byHowison & Bullard (2016). Statistically
significant differences are highlighted in colors, with orange denoting an increase and blue denoting a de-
crease, correspondingly.

Full-size DOI: 10.7717/peerjcs.1022/fig-17

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 24/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-17
http://dx.doi.org/10.7717/peerj-cs.1022


However, proper crediting of software contributors did not seem to have improved. We
see that mentioned software were more accessible; more mentioned software followed
standard open source practices and provided modifiable source code. An increasing
amount of software requested a preferred citation, but the actual mentions found did not
always follow these requests.

DISCUSSION
In this section, we assess the limitations of our findings, discuss explanations for why we
found the changes that we found, and discuss challenges for advocacy we perceived through
our study.

Limitations
In this paper, we compare our findings with those from previous publications, but our
ability to compare and ascribe differences to changes in practices over time is subject to
limitations. The sample in Howison & Bullard (2016) was taken from articles published
between 2001 and 2010 in journals indexed in biology-related subject headings by the
Web of Science; the sample in this study was constructed from papers published since
2016 from the CORD-19 corpus, covering perhaps more diverse venues that include many
biology journals but only including content topically relevant to coronaviruses. Further,
Howison and Bullard randomly selected articles assessing all mentions within those articles,
whereas this study first usedmachine learning to identify mentions, then randomly selected
mentions for annotation. Both approaches work and shed light on our understanding of
how software is cited and citable in scholarly communication.

We also compare our findings with recommendations from software citation advocates.
We report these findings as a baseline for future comparison, rather than an assessment
of advocacy success, because it is likely that the time frame of publications chosen is
insufficient for assessing the impact of advocacy. While we chose publication dates that
came after advocacy recommendations, publication timelines can be long and we do not
knowwhen these articles were drafted; somemay have been drafted prior to the publication
of advocacy guidelines. Second, we do not know whether the authors, editors, or venues
were exposed to advocacy at all; publishing and promoting articles and principles about
software citation does not mean they are widely read. Our results should be understood as
relatively contemporaneouswith the emergence of new software citation recommendations.

Finally, our findings about citation requests only reflect the moment of data collection
and annotation. These online records are subject to constant change; this means that the
citation request may have not been present when a publication that cited software was
authored. Nonetheless, earlier findings were subject to this same limitation so we think the
comparison between studies is useful.

Possible explanations of changes observed
We found that mentioned software were more available and accessible, included mention
of specific versions, and their source code was more frequently available, particularly as
standard open source. We reason that the increase of open source and accessible source

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 25/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


code has followed the overall rise of open source and particularly the availability of hosted
platforms for software development such as GitHub. Additional pressure may also have
come from funders, which increasingly signal support for open source code.

We also reason that the observed increase in the mention of software version numbers
could result from both the developers’ practice and the paper authors’ practice. On the
development side, more software has been produced and shared for research use. Software
production in general has also increasingly followed the practices of versioning, including
semantic versioning (e.g., Decan & Mens, 2021) as a well established open source practice
that is reinforced by code hosting platforms (e.g., GitHub ‘‘releases’’ and git tags). On the
paper author side, it seems likely that the increased prevalence of software means that
authors of research papers have more awareness, and versioning may be more visible when
researchers install and update software through packaging systems (including the work of
resolving incompatibilities between versions or dependencies!). They may need to access
online help forums such as Stack Overflow and found the version could be crucial for
asking and searching for solutions. These software related practices can thus increase the
saliency of versioning experienced by authors, leaving impressions of what is important to
the scientific understanding of their work as well as reproducibility.

We were struck by the increase in software citation requests observed. We specifically
investigated whether this overall increase was consistent across types of software, suspecting
that proprietary software may make more explicit requests. However, we did not find
statistically significant differences between the proportions of proprietary, non-commercial,
and open source software that make citation requests, nor did we find differences with
respect to how well those requests are followed by paper authors. Thus, we conclude that
the practice of making citation requests is adopted by more overall. Software authors might
notice prominent requests by others and then be motivated and educated to add their own.
The presence of templates for language-specific features such as the citation() method in
R, and the prevalence and visibility of CITATION files at the top level of code repositories
may also influence software authors’ choices and behaviors. This raises hopes for software
visibility; recent promising efforts include GitHub moving citation request support to the
‘‘front page’’ of repositories (GitHub, 2021).

Challenges for advocacy
Our findings suggest that standards making and advocacy efforts should take existing
practices into account, charting a course from current practices to hoped-for futures. For
example, for researchers using software, we argue that the ‘‘like instrument’’ approach
should be taken as a starting point for recommendations, such as re-purposing the location
field for software repositories rather than a meaningless geographic location of a software
publisher.

Our results about software archiving, general metadata availability, and persistent
identification also have further clarified directions in which advocacy efforts can propose
specific changes for different classes of software in terms of their property rights. We found
over half of the open source software was archived and uniquely identified, with metadata
available to fulfill citation needs. Some open source software projects were also aware

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


of requesting citation to the software artifact directly, but largely they were still cited by
their companion publications. In such cases, citing an available publication is probably a
convenient choice, which is more compatible with a researcher’s conventional authoring
workflow. As Bouquin et al. (2020) found that citation requests could be inconsistent when
multiple online presences of software exist, recommendations can suggest concrete steps for
making them actionable communications of citation expectations. The recommendations
in Katz et al. (2021) & Katz et al. (2019) are a key step to ensuring that guidance begins at
current practices for different kinds of software.

Another challenge rests with the citation requests of proprietary software (such as
SPSS). Our observations of these requests included many that we thought almost unusable
or incompatible with reference systems, including long-winded legalistic requests filled
with R© and TM symbols and disclaimers of warranty; they seemed to be written by lawyers
rather than specialists of scholarly communication. Advocacy in this area might therefore
need to address lawyers or encourage developers to take ownership of these requests. An
alternative might be for citation style guides to provide translation principles for these sorts
of requests.

The persistence of non-machine readable citation requests (e.g., free-text CITATION
files) might also be a starting point for recommendations, such as providing migration
paths and perhaps automatic synchronization between manual and machine-readable
requests, meeting software producers where they are. Recent efforts are moving in this
direction, including highlighting built-in language features for citation and advocating for
more languages to include these (e.g., Katz et al., 2021).

Maintenance costs are a likely challenge which advocacy should address. While the first
step of adoption is not easy, as the efforts by Allen (2021) showed, making software and
its citation human- and machine-actionable in the long term requires the upkeep of these
formats and practices. One technical reason why the software artifact is recommended
over its publication(s) as a citation target is that software is a very dynamic object. A
single publication at one time cannot credit all those who contributed to it throughout
its lifecycle. However, formal citation of the software artifact in a both machine- and
human-actionable manner also raises the requirement for the upkeep of citation metadata
and persistent identifier as the software artifact keeps to evolve. Bouquin et al. (2020) also
found that the discoverable citation requests could become outdated when new releases
of the software come out. It is likely that a non-trivial amount of regular work is needed
for a software project to keep themselves citable and communicate the up-to-date citation
expectations to their users.

Advocacy around persistent identifiers could also directly address the question of
automated identifiers vs. manually created identifiers. This became clear to us as we
reasoned around how to include the Software Heritage identifier in our annotation. The
current archiving mechanism of Software Heritage is designed as a response to concerns of
computational reproducibility (Alliez et al., 2020; Cosmo, Gruenpeter & Zacchiroli, 2020).
By its endeavor to archive all software source codes (Di Cosmo, 2018), Software Heritage
archives source codes crawled from major code hosting platforms. Software Heritage
archives copies, with automatically generated identifiers and metadata, which can be cited

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 27/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


as part of the research workflow reported in publications. They are open to researchers’
citation use and technically fulfill the advocacy recommendations for software citation;
although they do not necessarily reflect the software creators’ preference. In contrast, the
manual creation of identifiers is a costly exercise that indicates that someone thinks them
worth using. Language-specific software metadata and metadata stored in third party
registries are also alternative sources of citation information, and advocacy might consider
how researchers can be guided to use these available resources to cite software. However,
in face of multiple sources, researchers need to be able to identify the appropriate record.
We found, when searching for identifiers in systems that create them automatically, it
was very difficult for users to identify the canonical archived repository for a package
as distinguished from archived repositories of end-user code that forked the canonical
repository (or even repositories that merely used the code). These issues are parallel to the
recent discussion about non-creator-instigated software identification (Katz, Bouquin &
Chue Hong, 2019), commonly concerning appropriate use of third party created software
identification information.

The absence of persistent identifiers for proprietary software, whether manually or
automatically created, also suggests a need for advocacy to address this specifically. Current
infrastructures and policies that support software archiving and identification mechanism
are designed primarily for open source code (e.g., Research Data Alliance/FORCE11
Software Source Code Identification Working Group et al., 2020). As with citation metadata
and requests, it may be easier for third parties to create and maintain these, rather than
relying on influencing commercial software publishers. Indeed, software registries have
already stored public accessible metadata and even suggested citations for proprietary
software. Nonetheless, proprietary software are closed source and reuse would depend
on purchase and be limited. The right for third-party verification and replication of the
embodied methods or any future work directly built upon them is simply not granted.
Neither do their commercial publishers need academic credit. As Alliez et al. (2020) and
Cosmo, Gruenpeter & Zacchiroli (2020) have well distinguished the need for citation from
that for reference, citation of the overall proprietary software project may be sufficient and
the aspiration of referencing the specific software artifact may be unneeded.

Finally, our experience during the data collection for this study mirrored the reality
in the age of ‘‘data deluge’’: While it is promising that a variety of software metadata are
growing, accurate and comprehensive metadata retrieval is not straightforward for either
humans or machines. Software publishers may post their citation requests across online
locations using different formats and request citations of different publications for a single
piece of software across its version history. This adds the challenge of identifying linkages
between software and publications additional to the challenges of software identification
(Hata et al., 2021).

CONCLUSION
In this study, we examined a sample of software mentions automatically extracted from
PDFs of a large corpus of coronavirus research published since 2016.Wemanually examined

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


a stratified random sample, validating the extraction infrastructure with a false positive
rate of 5%.We annotated our validated software mentions using an existing coding scheme
extended with recommendations from recent advocacy, demonstrating agreement in its
use amongmultiple annotators. In this way, we examined how software is mentioned, what
functions they realize, and to what extent they conform to advocacy recommendations for
software citation practices. In addition, we searched online to find and assess data about
software packages, including if and how they make citation requests.

We found improvements when compared with prior studies of software mentions.
We found increased mentions of software versions, increased adoption of open source
software, and improved software accessibility. We also found over half of the open source
software was archived, uniquely identified, and had metadata available, ready for citation
needs. Finally we found a greater proportion of projects made a specific citation request.

On the other hand, other practices had not improved, or even moved in the other
direction, compared to previous studies and advocates’ recommendations. We found
only a few formal citations directly to the software artifact and very little use of persistent
identifiers. Crediting the authors of software in the text was still rare, mostly due to
informal mentions. Worse, most mentions that do credit authors were of proprietary
software, which are less likely to need to receive credit in order to keep maintaining the
tool. Citation requests have potential to improve this situation, but we found these to be
followed only in few cases.

Organically established practices may provide appropriate starting points for advocacy.
For example, existing practices for software citation differ between proprietary, non-
commercial, and open source software. Our findings emphasize the long-standing practice
of ‘‘like instrument’’ mentions primarily for proprietary software, as well as divergent
practices in the identification, archiving, and metadata provision of software with different
property rights. Finally, they also differ in the common locations and widely used formats
for citation requests. Advocacy may be more effective by leveraging these existing practices
to minimize the behavioral change needed.

Future research suggests itself in three areas: publication type, decisions about software
citation, and examining change over time in relation to advocacy.

Different publication types may have different patterns of software mentions. While we
stratified the sample by impact factor and did not find any significant differences, we did
not separate by article type. For example, it is perhaps worthwhile to separate publication
venues specializing in publishing ‘‘software papers’’ that describe a software application or
an algorithm; their software mention and citation patterns could be different from other
domain science publications. Research could also separate pre-prints, or work to identify
the differences among more granular fields and sub-fields.

Future research is needed to understand decisions about software citation and their
pathway to publications. Citation requests do not yet seem effective, nor do we knowmuch
about the decisions leading to this ineffectiveness. For example, requests may not be visible
to authors, or not visible at the right time. Even efforts to follow requests in a manuscript
may be undermined by style guides, journal instructions, reviewers, or editors. Advocacy
may not align well with the pressures involved during the production and publishing of

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 29/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


4For example, in preparation of this
publication, reviewers pointed out a
missing URL in a dataset entry in our
reference list. Even with our heightened
attention given the topic of this paper, this
error made it into the PDF; inquiry showed
that the initial URL entry in the BibTeX
had become masked in the toolchain
from BibTeX through to the PeerJ LaTeX
template and citation style specified for
PDF rendering. We used a work-around in
BibTeX to make the URL reference visible.

articles. Studying collections of drafts over time through the article creation process could
create greater understanding of the manner in which mentions and reference lists are
created and open up new locations or emphases for advocacy.4

Finally, future research should examine change over time, seeking evidence about
effective advocacy. We hope that our extraction infrastructure, sampling approach, and
content analysis scheme can be useful for comparable studies. Researchers can process
future collections of PDFs produced by different groups, stratify, randomly sample
mentions, and annotate and compare results to observe change. These observations could
be focused on specific advocacy efforts, including micro efforts, such as comparing the
publications of those exposed to specific training or interventions with those unexposed.
Groups could be individuals, classes of individuals (such as software producers or early-
career scholars), or larger groups such as users of specific software, classes of software
or techniques, or specific fields. Assessments of interventions should be designed to
give sufficient time for interventions to operate; timing of citation requests can be then
compared to the period in which a study was authored and published.

Understanding patterns of software citation from research publications over time
can inform advocacy and policy-making efforts to improve the visibility and rewards of
software work in science. Our study suggests that software citation practices have not
changed substantially in the past five years. Advocating for change takes time and we
hope these results can provide a baseline against which to measure change in the future.
Nonetheless, we think it possible that the behavior change required to implement new
forms of visibility for software in publications may be too complex for quick uptake.
Automated solutions that do not require behavioral change, such as entity extraction from
PDFs to build software impact indexes, clearly have a role to play, both as a resource for
improving advocacy and as a fallback for visibility where publication practices are slow to
change.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Alfred P. Sloan Foundation (Award Number: 2016-7209)
and the Gordon and Betty Moore Foundation (Grant Number: 8622). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Alfred P. Sloan Foundation: 2016-7209.
Gordon and Betty Moore Foundation: 8622.

Competing Interests
Patrice Lopez is employed by science-miner.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 30/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022


Author Contributions
• CaifanDu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Johanna Cohoon performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
• Patrice Lopez performed the computation work, authored or reviewed drafts of the
article, built the data pipeline and extraction systems, and approved the final draft.
• James Howison conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at Zenodo: Patrice Lopez, Caifan Du, Hannah Cohoon & James
Howison. (2021). Softcite software mention extraction from the CORD-19 publications
(0.3.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5235661.

The analysis code is available at GitHub: https://github.com/caifand/cord19-sw-analysis.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1022#supplemental-information.

REFERENCES
Allen A. 2021. Citation method, please? a case study in astrophysics. ArXiv preprint.

arXiv:2111.12574.
Allen A, Schmidt J. 2014. Looking before leaping: creating a software registry. ArXiv

preprint. arXiv:1407.5378.
Allen A, Teuben PJ, Ryan PW. 2018. Schroedinger’s code: a preliminary study on re-

search source code availability and link persistence in astrophysics. The Astrophysical
Journal Supplement Series 236(1):10 DOI 10.3847/1538-4365/aab764.

Alliez P, Cosmo RD, Guedj B, Girault A, HacidM-S, Legrand A, Rougier N. 2020.
Attributing and referencing (research) software: best practices and outlook from
Inria. Computing in Science Engineering 22(1):39–52.

Article Dataset Builder. 2020–2021. Available at https://github.com/kermitt2/article-
dataset-builder .

Beltagy I, Lo K, Cohan A. 2019. Scibert: a pretrained language model for scientific text.
ArXiv preprint. arXiv:1903.10676.

Bouquin DR, Chivvis DA, Henneken E, Lockhart K, Muench A, Koch J. 2020. Credit
lost: two decades of software citation in astronomy. The Astrophysical Journal
Supplement Series 249(1):8 DOI 10.3847/1538-4365/ab7be6.

Bradford SC. 1934. Sources of information on specific subjects. Engineering 137:85–86.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 31/35

https://peerj.com
https://doi.org/10.5281/zenodo.5235661
https://github.com/caifand/cord19-sw-analysis
http://dx.doi.org/10.7717/peerj-cs.1022#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1022#supplemental-information
http://arXiv.org/abs/2111.12574
http://arXiv.org/abs/1407.5378
http://dx.doi.org/10.3847/1538-4365/aab764
https://github.com/kermitt2/article-dataset-builder
https://github.com/kermitt2/article-dataset-builder
http://arXiv.org/abs/1903.10676
http://dx.doi.org/10.3847/1538-4365/ab7be6
http://dx.doi.org/10.7717/peerj-cs.1022


Brase J, Lautenschlager M, Sens I. 2015. The tenth anniversary of assigning DOI
names to scientific data and a five year history of DataCite. D-Lib Magazine
21(1/2):01brase DOI 10.1045/january2015-brase.

Brookes B. 1985. ‘‘Sources of information on specific subjects’’ by sc bradford. Journal of
Information Science 10(4):173–175 DOI 10.1177/016555158501000406.

Chue Hong NP, Allen A, Gonzalez-Beltran A, DeWaard A, Smith AM, Robinson
C, Jones C, Bouquin D, Katz DS, Kennedy D, Ryder G, Hausman J, Hwang L,
Jones MB, HarrisonM, Crosas M,WuM, Löwe P, Haines R, Edmunds S, Stall S,
Swaminathan S, Druskat S, Crick T, Morrell T, Pollard T. 2019. Software citation
checklist for authors. Technical report. Zenodo. Available at https://zenodo.org/
record/3479199.

Conway JR, Lex A, Gehlenborg N. 2017. Upsetr: an r package for the visualiza-
tion of intersecting sets and their properties. Bioinformatics 33(18):2938–2940
DOI 10.1093/bioinformatics/btx364.

Cosmo RD, Gruenpeter M, Zacchiroli S. 2020. Referencing source code artifacts: a
separate concern in software citation. Computing in Science Engineering 22(2):33–43
DOI 10.1109/MCSE.2019.2963148.

Cosmo RD, Zacchiroli S. 2017. Software heritage: why and how to preserve software
source code. In: iPRES 2017: 14th international conference on digital preservation,
Kyoto, Japan.

Decan A, Mens T. 2021.What do package dependencies tell us about semantic
versioning? IEEE Transactions on Software Engineering 47(6):1226–1240
DOI 10.1109/TSE.2019.2918315.

Di Cosmo R. 2018. Software heritage: why and how we collect, preserve and share all the
software source code. In: 2018 IEEE/ACM 40th international conference on software
engineering: software engineering in society (ICSE-SEIS). Piscataway: IEEE, 2–2.

Druskat S, Hong C, Haines R, Baker J. 2021. Citation File Format (CFF)—Specifications.
Available at https://citation-file-format.github.io/.

Du C, Cohoon J, Lopez P, Howison J. 2021a. Softcite dataset: a dataset of software men-
tions in biomedical and economic research publications. Journal of the Association for
Information Science and Technology 72(7):870–884 DOI 10.1002/asi.24454.

Du C, Cohoon J, Priem J, Piwowar HA, Meyer C, Howison J. 2021b. CiteAs: better
software through sociotechnical change for better software citation. In: CSCW ’21
companion, virtual event.

European Organization For Nuclear Research and OpenAIRE. 2013. Zenodo. Available
at https://about.zenodo.org .

GitHub. 2021. About CITATION files. Available at https://docs.github.com/en/github/
creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-
citation-files.

GROBID. 2008–2021. GROBID. Available at https://github.com/kermitt2/grobid .
Habeas Corpus. 2021.Habeas Corpus. Available at https://github.com/softwaresaved/

habeas-corpus.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 32/35

https://peerj.com
http://dx.doi.org/10.1045/january2015-brase
http://dx.doi.org/10.1177/016555158501000406
https://zenodo.org/record/3479199
https://zenodo.org/record/3479199
http://dx.doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1109/MCSE.2019.2963148
http://dx.doi.org/10.1109/TSE.2019.2918315
https://citation-file-format.github.io/
http://dx.doi.org/10.1002/asi.24454
https://about.zenodo.org
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://github.com/kermitt2/grobid
https://github.com/softwaresaved/habeas-corpus
https://github.com/softwaresaved/habeas-corpus
http://dx.doi.org/10.7717/peerj-cs.1022


Hata H, Guo JL, Kula RG, Treude C. 2021. Science-software linkage: the challenges of
traceability between scientific knowledge and software artifacts. ArXiv preprint.
arXiv:2104.05891.

Hong NPC, Katz DS, Barker M, Lamprecht AL, Martinez C, Psomopoulos FE, Harrow
J, Castro LJ, Gruenpeter M, Martinez PA, Honeyman T, Struck A, Lee A, Loewe
A, VanWerkhoven B, Jones C, Garijo D, Plomp E, Genova F, Shanahan H, Leng
J, HellströmM, SinhaM, KuzakM, Herterich P, Zhang Q, Islam S, Sansone S-
A, Pollard T, Atmojo UD,Williams A, Czerniak A, Niehues A, Fouilloux AC,
Desinghu B, Richard C, Gray C, Erdmann C, Nüst D, Tartarini D, Anzt H, Todorov
I, McNally J, Moldon J, Burnett J, Belhajjame K, Sesink L, Hwang L, RobertoM,
WilkinsonMD, Servillat M, Liffers M, FoxM, Lynch N, Lavanchy PM, Gesing
S, Stevens S, Cuesta M, Peroni S, Soiland-Reyes S, Bakker T, Rabemanantsoa
T, Sochat V, Yehudi Y. 2021. FAIR principles for research software (FAIR4RS
Principles). Research Data Alliance DOI 10.15497/RDA00065.

Howison J, Bullard J. 2016. Software in the scientific literature: problems with see-
ing, finding, and using software mentioned in the biology literature. Journal
of the Association for Information Science and Technology 67(9):2137–2155
DOI 10.1002/asi.23538.

Howison J, Herbsleb JD. 2011. Scientific software production: incentives and collabora-
tion. In: Proceedings of the ACM 2011 conference on Computer supported cooperative
work. New York: ACM, 513–522.

Ison J, Rapacki K, Ménager H, Kalaš M, Rydza E, Chmura P, Anthon C, Beard N, Berka
K, Bolser D, Booth T, Bretaudeau A, Brezovsky J, Casadio R, Cesareni G, Coppens
F, Cornell M, Cuccuru G, Davidsen K, Vedova GD, Dogan T, Doppelt-Azeroual
O, Emery L, Gasteiger E, Gatter T, Goldberg T, GrosjeanM, Grüning B, Helmer-
CitterichM, Ienasescu H, Ioannidis V, JespersenMC, Jimenez R, Juty N, Juvan
P, KochM, Laibe C, Li J-W, Licata L, Mareuil F, Mičetić I, Friborg RM,Moretti S,
Morris C, Möller S, Nenadic A, Peterson H, Profiti G, Rice P, Romano P, Roncaglia
P, Saidi R, Schafferhans A, Schwämmle V, Smith C, Sperotto MM, Stockinger
H, Vařeková RS, Tosatto SCE, Torre VDL, Uva P, Via A, Yachdav G, Zambelli
F, Vriend G, Rost B, Parkinson H, Løngreen P, Brunak S. 2016. Tools and data
services registry: a community effort to document bioinformatics resources. Nucleic
Acids Research 44(D1):D38–D47 DOI 10.1093/nar/gkv1116.

Jones MB, Boettiger C, Mayes AC, Smith A, Slaughter P, Niemeyer K, Gil Y, Fenner
M, Nowak K, Hahnel M, Coy L, Allen A, Crosas M, Sands A, Chu. Hong N, Cruse
P, Katz DS, Goble C. 2017. Codemeta: an exchange schema for software metadata.
version 2.0. KNB Data Repository DOI 10.5063/schema/codemeta-2.0.

Kanakia A,Wang K, Dong Y, Xie B, Lo K, Shen Z,Wang LL, Huang C, Eide D,
Kohlmeier S, Wu C-H. 2020.Mitigating biases in CORD-19 for analyzing
COVID-19 literature. Frontiers in Research Metrics and Analytics 5:596624
DOI 10.3389/frma.2020.596624.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 33/35

https://peerj.com
http://arXiv.org/abs/2104.05891
http://dx.doi.org/10.15497/RDA00065
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1093/nar/gkv1116
http://dx.doi.org/10.5063/schema/codemeta-2.0
http://dx.doi.org/10.3389/frma.2020.596624
http://dx.doi.org/10.7717/peerj-cs.1022


Katz DS, Bouquin D, Chue Hong N. 2019. Towards software non-creator-instigated
identification (NCI) and citation. Available at https://danielskatzblog.wordpress.com/
2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/.

Katz DS, Bouquin D, Hong NPC, Hausman J, Jones C, Chivvis D, Clark T, Crosas M,
Druskat S, Fenner M, Gillespie T, Gonzalez-Beltran A, Gruenpeter M, Habermann
T, Haines R, HarrisonM, Henneken E, Hwang L, Jones MB, Kelly AA, Kennedy
DN, Leinweber K, Rios F, Robinson CB, Todorov I, WuM, Zhang Q. 2019.
Software citation implementation challenges. ArXiv preprint. arXiv:1905.08674.

Katz DS, Hong NPC, Clark T, Muench A, Stall S, Bouquin D, CannonM, Edmunds
S, Faez T, Feeney P, Fenner M, FriedmanM, Grenier G, HarrisonM, Heber J,
Leary A, MacCallum C, Murray H, Pastrana E, Perry K, Schuster D, Stockhause
M, Yeston J. 2021. Recognizing the value of software: a software citation guide.
F1000Research 9:1257 DOI 10.12688/f1000research.26932.2.

Katz DS, Smith AM. 2015. Transitive credit and json-ld. Journal of Open Research
Software 3(1):e7 DOI 10.5334/jors.by.

Krüger F, Schindler D. 2020. A literature review on methods for the extraction of usage
statements of software and data. Computing in Science & Engineering 22(1):26–38.

Lopez P. 2009. Grobid: combining automatic bibliographic data recognition and term
extraction for scholarship publications. In: Agosti M, Borbinha J, Kapidakis S,
Papatheodorou C, Tsakonas G, eds. Research and advanced technology for digital
libraries. ECDL 2009. Lecture notes in computer science, vol 5714. Berlin, Heidelberg:
Springer, 473–474 DOI 10.1007/978-3-642-04346-8_62.

Lopez P, Du C, Cohoon H, Howison J. 2021a. Softcite software mention extraction from
the CORD-19 publications. DOI 10.5281/zenodo.5140437.

Lopez P, Du C, Cohoon J, RamK, Howison J. 2021b.Mining software entities in
scientific literature: document-level ner for an extremely imbalance and large-scale
task. In: Proceedings of the 30th ACM international conference on information and
knowledge management (CIKM ’21). New York: ACM.

MayernikMS, Hart DL, Maull KE,Weber NM. 2017. Assessing and tracing the
outcomes and impact of research infrastructures. Journal of the Association for
Information Science and Technology 68(6):1341–1359 DOI 10.1002/asi.23721.

Monteil A, Gonzalez-Beltran A, Ioannidis A, Allen A, Lee A, Bandrowski A,Wilson BE,
Mecum B, Du CF, Robinson C, Garijo D, Katz DS, Long D, Milliken G, Ménager
H, Hausman J, Spaaks JH, Fenlon K, Vanderbilt K, Hwang L, Davis L, Fenner M,
CrusoeMR, HuckaM,WuM, Hong NC, Teuben P, Stall S, Druskat S, Carnevale T,
Morrell T. 2020. Nine best practices for research software registries and repositories:
a concise guide. ArXiv preprint. arXiv:2012.13117.

Muench A, Accomazzi A, Hol. Nielsen L, Blanco-Cuaresma S, Henneken EA, Ioannidis-
Pantopikos A, Nowak K, Steffen J. 2020. Asclepias: an infrastructure project to
improve software citation across astronomy. In: Astronomical data analysis software
and systems XXVII ADS. 522. 711.

Nemiroff R, Wallin J. 1999. The astrophysics source code library: http://www.ascl.net.
Bulletin of the American Astronomical Society 31:885.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 34/35

https://peerj.com
https://danielskatzblog.wordpress.com/2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/
https://danielskatzblog.wordpress.com/2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/
http://arXiv.org/abs/1905.08674
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.5334/jors.by
http://dx.doi.org/10.1007/978-3-642-04346-8_62
http://dx.doi.org/10.5281/zenodo.5140437
http://dx.doi.org/10.1002/asi.23721
http://arXiv.org/abs/2012.13117
http://dx.doi.org/10.7717/peerj-cs.1022


Newcombe RG. 1998. Interval estimation for the difference between independent
proportions: comparison of eleven methods. Statistics in Medicine 17(8):873–890
DOI 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I.

Pan X, Yan E, Cui M, HuaW. 2018. Examining the usage, citation, and diffusion patterns
of bibliometric mapping software: a comparative study of three tools. Journal of
Informetrics 12(2):481–493 DOI 10.1016/j.joi.2018.03.005.

Piwowar HA, Priem J. 2016.Depsy: valuing the software that powers science. GitHub.
Available at https://github.com/Impactstory/depsy-research.

R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at https://www.r-project.org .

Research Data Alliance/FORCE11 Software Source Code IdentificationWorking
Group, Allen A, Bandrowski A, Chan P, Di Cosmo R, Fenner M, Garcia L, Gru-
enpeter M, Jones CM, Katz DS, Kunze J, Schubotz M, Todorov IT. 2020. Software
source code identification use cases and identifier schemes for persistent software
source code identification. Research Data Alliance DOI 10.15497/RDA00053.

Schindler D, Bensmann F, Dietze S, Krüger F. 2021. SoMeSci—Software Mentions in
Science. Type: dataset. DOI 10.5281/zenodo.4968738.

Schindler D, Bensmann F, Dietze S, Krüger F. 2022. The role of software in science:
a knowledge graph-based analysis of software mentions in pubmed central. PeerJ
Computer Science 8:e835 DOI 10.7717/peerj-cs.835.

Smith AM, Katz DS, Niemeyer KE. 2016. Software citation principles. PeerJ Computer
Science 2:e86 DOI 10.7717/peerj-cs.86.

Softcite Software Mention Recognizer. 2018–2021. Softcite software mention recogni-
tion service. Available at https://github.com/ourresearch/software-mentions.

Software Heritage Development Documentation. 2021. SoftWare Heritage persistent
IDentifiers (SWHIDs)—Software Heritage-Development Documentation docu-
mentation. Available at https://docs.softwareheritage.org/devel/swh-model/persistent-
identifiers.html (accessed on 25 Novemeber 2021).

Wade AD,Williams I. 2021. CORD-19 Software Mentions. Zenodo. Available at https:
//zenodo.org/record/4582776 .

Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, Burdick D, Eide D, Funk K, Katsis
Y, Kinney RM, Li Y, Liu Z, Merrill W, Mooney P, Murdick DA, Rishi D, Sheehan J,
Shen Z, Stilson B,Wade AD,Wang K,Wang NXR,Wilhelm C, Xie B, Raymond
DM,Weld DS, Etzioni O, Kohlmeier S. 2020. CORD-19: the COVID-19 open
research dataset. In: Proceedings of the 1st workshop on NLP for COVID-19 at ACL
2020, online. Columbus: Association for Computational Linguistics.

Wilson R. 2013. Encouraging citation of software—introducing CITATION files.
Available at https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-
software-introducing-citation-files.

Du et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1022 35/35

https://peerj.com
http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
http://dx.doi.org/10.1016/j.joi.2018.03.005
https://github.com/Impactstory/depsy-research
https://www.r-project.org
http://dx.doi.org/10.15497/RDA00053
http://dx.doi.org/10.5281/zenodo.4968738
http://dx.doi.org/10.7717/peerj-cs.835
http://dx.doi.org/10.7717/peerj-cs.86
https://github.com/ourresearch/software-mentions
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://zenodo.org/record/4582776
https://zenodo.org/record/4582776
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
http://dx.doi.org/10.7717/peerj-cs.1022

