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ABSTRACT
The classification of multi-dimensional patterns is one of the most popular and often
most challenging problems of machine learning. That is why some new approaches are
being tried, expected to improve existing ones. The article proposes a new technique
based on the decision network called self-optimizing neural networks (SONN). The
proposed approach works on discretized data. Using a special procedure, we assign a
feature vector to each element of the real-valued dataset. Later the feature vectors are
analyzed, and decision patterns are created using so-called discriminants. We focus on
how these discriminants are used and influence the final classifier prediction.Moreover,
we also discuss the influence of the neighborhood topology. In the article, we use three
different datasets with different properties. All results obtained by derived methods are
compared with those obtained with the well-known support vector machine (SVM)
approach. The results prove that the proposed solutions give better results than SVM.
We can see that the information obtained from a training set is better generalized, and
the final accuracy of the classifier is higher.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Classification, Discretization, Machine learning, SONN, SVM

INTRODUCTION
It was has been more than 80 years ago since Tryon (1939) published the article, which
is currently often considered the first one to consider the problem of grouping data
according to some features. These problems were later more precisely formulated and
now are well-known as the problems of clustering and classification. In our article, we
concentrate on the second one—the classification. The crucial question in the classification
process is identifying the relationships between the parameters, which finally leads to the
possibility of predicting the belonging to a given class. The typical division of classification
procedures considers their belonging to the group of deep or shallow techniques. While
deep learning is usually connectedwith the existence of numerous layers, ultimately forming
the structure of an artificial neural network, the methods of shallow learning typically use
less extensive structures. We can show here such techniques as k-nearest neighbors (Fix
& Hodges, 1951), naive Bayes inference (Kononenko, 1990; Hand & Yu, 2001), random
forests (Ho, 1995; Breiman, 1996), or support vector machines (Boser, Guyon & Vapnik,
1992; Cortes & Vapnik, 1995).

A variety of applications for the classification process encompasses many scientific
areas. A quick view of the popular databases shows tens of thousands of papers where
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it is studied. Recently it has become very popular, e.g., in medical applications. We can
find different classification techniques in different fields, such as cardiology (Ali et al.,
2019), neurology (Deng et al., 2021), or oncology (Murthy & Bethala, 2021). Among other
problems studied with the use of classification techniques, we can find anomaly detection
in aerospace telemetry (Wu et al., 2020) as well as some form of return to seminal Tryon’s
paper—the sentiment analysis deduced from written texts (Wazrah & Alhumoud, 2021)
or the sophisticated topic of Fine-Grain Classification, here on the example of malware
detection (Fu et al., 2018).

Indeed, the set of several of the most famous and most popular classification techniques
mentioned earlier is only a limited selection. The propositions of new methods or new
data representations are also numerous, and their authors try to struggle with the problem
based on very different assumptions. Among the examples, we can enlist such approaches
as the use of hierarchical likelihood in connection with support vector machines applied
to the identification of fish species (Caraka et al., 2020) or the Ant Colony Optimization
for the recognition of some particular human behavior (Saba et al., 2021). The other
interesting approaches are recurrent neural networks with long short-termmemory as used
for sentiment analysis (Wazrah & Alhumoud, 2021), sparse data approach to pedestrian
motion analysis (Chen et al., 2019), or economic prediction (Karasu & Altan, 2022). The
other and one of the most interesting solutions is credit rating with hierarchical genetic
networks (Pławiak et al., 2020). Certainly, the approaches presented above belong to both
classes: deep and shallow learning.

The article presents the classification method, which belongs to the second group
(shallow learning) of presented techniques, although called historically after Neural
Networks. It is based on ideas presented in the works (Horzyk & Tadeusiewicz, 2004;
Horzyk, 2012). The crucial idea is to minimize the size of the neural network by pruning
the unnecessary connections, which is called self-optimizing neural networks (SONN). The
authors define the mechanism of this approach based on mainly two phases. In the first
one, the dataset is discretized, and then the values of so-called discriminants are calculated.
Finally, we obtain the system which deterministically classifies the items from the test set.

In the article, we present the modification of the original SONN approach. We propose
two different ways how the algorithm incorporates mentioned discriminants. These two
versions of the proposed algorithm take into account the ordering of the discriminants while
building output from the network. Additionally, we also discuss how the neighborhood
topology can influence method results. We use two well-known distance measures,
Manhattan and Chebyshev. The proposedmethod is applied to three different datasets. The
first one, the Iris Data Set (Dua & Graff, 2017; Fisher, 1936), is chosen due to its simplicity
and popularity. The other two have different properties when considering the number
of parameters and the number of classes, but both are often used in similar problems.
One of them is the binary problem of Banknote Identification Data Set (Dua & Graff,
2017; Gillich & Lohweg, 2010), the Combined Cycle Power Plant Data Set (CCPP) (Dua &
Graff, 2017). These datasets have been used in many publications, for example, in Bandić,
Hasičić & Kevrić (2020); Ferencz & Domokos (2020); Rabby et al. (2021); Afzal et al. (2021);
Ferdushi et al. (2020); Lohweg et al. (2013); Sang, Dang & Zhao (2021); Li et al. (2021); Gu,
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Angelov & Prancipe (2018); Tufekci (2014); Kaya, Tufekci & Gurgen (2012). These three
datasets allow us to analyze the effectiveness and compare it with other methods. The
comparison of results obtained with the proposed method and SVM allows verifying the
proposed approach properly. SVM is one of the most recognized methods in the family of
the shallow learning techniques and is often used as a reference solution (de Santana et al.,
2021; Katoch, Singh & Tiwary, 2022; Vukovic et al., 2022; Al-Azawi, 2022).

It should be mentioned that the proposed method starts with data discretization. It
reduces the influence of local variations in data parameters as well as the impact of the
uncertainty of the raw data. The discretization process leads to some information loss,
for example, when compared with the SVM that works on original floating-point values.
However, the results presented in the article show that the proposed method can produce
results visibly better than SVM. The uncertainty problems are discussed inmany papers, but
the authors often use more sophisticated solutions like LSTM networks (Karasu & Altan,
2022; Podlaski et al., 2021). Here we use the shallow learning approach that is much less
demanding on the resources. However, in this article, we are not discussing the influence
of the method on uncertainty reduction.

CLASSIFICATION—SELF OPTIMIZING NEURAL NETWORK
This article describes the use of the self-optimizing neural network (SONN). Its structure
is related to the adaptation process based on given learning data. The construction process
distinguishes the most general and discriminating features of the data. This network can
adapt the topology and its weights in the deterministic process (Horzyk & Tadeusiewicz,
2004).

SONN formalism
The idea of Self-Optimizing Neural Networks (SONN) was introduced in Horzyk &
Tadeusiewicz (2004); Horzyk (2012) In this subsection, we show a recapitulation of SONN
formalism introduced by Horzyk.

Let U be a set of the form:

U =
{
(un,cn)

}
, (1)

where un = [un1,u
n
2,...,u

n
F ], u

n
f is the value of the f -th feature for n-th pattern and

unf ∈ {−1,0,1}, n= 1,2,...,NP , NP is the total number of patterns, f = 1,2,...,NF , NF is
the number of features, cn is the class for the n-th pattern and cn ∈NC , whereNC is the set
of classes.

Let P c
f denote the number of patterns with values greater than 0 in f -th features in c-th

class andM c
f denote the number of patterns features with values less than 0 as noted

P c
f =

∑
uif ∈

{
uif >0,i=1,2,...,Qc

}uif ,

M c
f =

∑
uif ∈

{
uif <0,i=1,2,...,Qc

}uif , (2)
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where Qc is the number of patterns in the given c class.
Having unknown values in a particular feature in the discrete value vector (marked with

zero), we can estimate the probability of the occurrence of the feature with a value one or
−1. We use the values of this feature in other patterns from the class under consideration.
Then, a useful formula is the probabilistic determination of the value of this feature (the
middle part of each formula (3)).

xnf + =


1 unf = 1

P c
f

P c
f +M

c
f

unf = 0

0 unf =−1

,

xnf − =


1 unf =−1

M c
f

P c
f +M

c
f

unf = 0

0 unf = 1

, (3)

where xnf + , x
n
f − are the approximate values of the indeterminate features. Then the patterns

Eq. (2) are of the form

P̂ c
f =

∑
uif ∈

{
uif >0,i=1,2,...,Qc

}x if +,

M̂ c
f =

∑
uif ∈

{
uif <0,i=1,2,...,Qc

}x if − . (4)

Even though SONN allows the use of indefinite values and the special masking procedure
has been proposed, we do not deal with such data in our work, therefore

P̂ c
f = P c

f

M̂ c
f =M c

f (5)

The described theoretical basis will allow us to understand the method of calculating
the coefficient of discrimination (‘Fundamental coefficient of discrimination’).

Data preparation
Self-optimizing neural networks are adapted to operate on discrete values. Therefore, when
working on a certain set of patterns (i.e., elements contained in a data set), we considered
a vector of values representing them individually. This vector represents discrete features
of a pattern. It has values from the set {−1,0,1}, where −1 means that a feature does
not appear in a given pattern, by 0 we denote a feature that is undefined, and 1 means
that the pattern has values in a given feature. Regardless, SONN works on discrete feature
space, we can use it for real valued datasets like: Banknote Authentication dataset, Iris
dataset, and Combined Cycle Power Plant dataset (Dua & Graff, 2017). The real features
existing in dataset (i.e., petal length for Iris) we call attributes. We use a special procedure of
discretization such datasets. We adjusted each of these sets to use the self-optimizing neural
network. For instance, the Iris dataset has four attributes represented as real numbers (x ,
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Table 1 Ten selected patterns from the Iris dataset, described by real value vectors, consist of four at-
tributes (x,y,z,t ). Each pattern belongs to a specific class.

iris attributes

real values vector

pattern x y z t class

1 5.1 3.5 1.4 0.2 0
2 4.9 3 1.4 0.2 0
3 4.7 3.2 1.3 0.2 0
4 7 3.2 4.7 1.4 1
5 6.4 3.2 4.5 1.5 1
6 6.9 3.1 4.9 1.5 1
7 5.5 2.3 4 1.3 1
8 6.3 3.3 6 2.5 2
9 5.8 2.7 5.1 1.9 2
10 7.1 3 5.9 2.1 2

y , z , t ). Table 1 shows selected ten patterns from the Iris dataset (the whole dataset has 150
patterns).

Each of p-th patterns in a dataset is described by a real attributes vector

vn= [vn1 ,v
n
2 ,...,v

n
a ], (6)

where 1≤ n≤NP , NP is the total number of patterns and vna is the value of a-th attribute
for n-th pattern, a= 1,2,...,NA, NA is the total number of attributes.

In our article, we divide the range of variation of each NA attribute into r uniform parts.
Split by other division (e.g., clustering) methods are also possible. By uniformly dividing
the range of each of the four attributes into three parts, we get three subranges (Table 2).
In this way, we obtained a sequence of twelve discrete features representing the pattern
(Table 3). Those features we call a discrete feature vector or discrete value vector. We
distinguish attributes (real dataset features) from features (pattern discrete features). As
was mentioned, if the attribute value of a given pattern is an inappropriate subrange, we
put one in the corresponding place of the discrete feature vector, otherwise −1. If we have
an attribute with an undefined value, we set the appropriate elements of the feature vector
as 0. Described discrete feature vector we denote as

un= [un1,u
n
2,...,u

n
F ],

where unf is the value of the f -th feature for n-th pattern (see 1).
The described discretization procedure can be applied to any real dataset.

Fundamental coefficient of discrimination
The discrimination coefficient (discriminant) concerns statistical differences in features
quantity after their values in classes and the learning dataset. The bigger discriminant,
the more important and distinguishing the feature is in view of classification (Horzyk &
Tadeusiewicz, 2004).
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Table 2 Range of Iris attributes and subranges. Three subranges are formed by uniformly dividing the
range of each of the four attributes into three parts.

range

min max subranges

x 4.7 7.1 x [4.7,5.3) [5.3,5.9) [5.9,6.5) [6.5,7.1]
y 2.3 3.3 y [2.3,2.6) [2.6,2.9) [2.9,3.2) [3.2,3.5]
z 1.3 6 z [1.3,2.475) [2.475,3.65) [3.65,4.825) [4.825,6]
t 0.2 2.5 t [0.2,0.775) [0.775,1.35) [1.35,1.925) [1.925,2.5]

Table 3 Twelve discrete features represent one pattern. The features have values from the set {−1,0,1}, where−1 means that a feature does not
appear in a given pattern, zero indicates a feature that is undefined, and one means that the pattern has values in a given feature.

x y z t

[4.4,4.73) [4.73,5.07) [5.07,5.4] [2.9,3.23) [3.23,3.57) [3.57,3.9] [1.3,1.43) [1.43,1.57) [1.57,1.7] [0.1,0.2) [0.2,0.3) [0.3,0.4]

features vector/discrete values vector

pattern 1 2 3 4 5 6 7 8 9 10 11 12 class
1 −1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1 0

Discriminants describe how well the feature f distinguishes class c from other classes,
considering their patterns in the learning set.

Horzyk & Tadeusiewicz (2004) proposed the following formula for the discriminants

dc
+

f =
P̂ c
f

(NC−1)Qc

NC∑
h= 1
h 6= c

(
1−

P̂h
f

Qh

)
,

dc
−

f =
M̂ c

f

(NC−1)Qc

NC∑
h= 1
h 6= c

(
1−

M̂ h
f

Qh

)
, (7)

df =max{d+f ,d
−

f }, (8)

where dc
+

f and dc
−

f mean the coefficient of determination calculated for a given feature of
a pattern in the appropriate class, taking into account the values of positive or negative
features, respectively. Moreover c denotes the class, c = 1,2,...,NC and Qc is the number
of patterns in the given class c . The discrimination coefficients’ values can run across the
whole set of real numbers.

Structure of the network and the weight factor
The structure of the network is related to the described discretization procedure (‘Data
preparation’). It was mentioned that this method bases on division into subranges and
then maps the real value attributes to the discrete values vector. (see example in Tables
1–3).
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Having computed discriminants for each feature of each pattern, we have a matrix
representing these values.

The first step in constructing the network was to rank the features of each pattern
according to the chosen ordering (see 2.5). Horzyk proposed a certain method of network
construction consisting of the iterative addition of successive layers of the network based
on features that best distinguish patterns from a given class among all other patterns from
other classes (Horzyk & Tadeusiewicz, 2004).

We replaced these concepts with a set of unique (on the training set scale) pairs consisting
of the discrete values vector (features) and the corresponding class. Therefore, this pair is
of the form:

(us,c s), (9)

where us is the discrete vector and c s is the corresponding class. From now on, we will call
each such vector a path, and all paths will be a set denoted by S . We will call a neuron each
vector element used to create a path.

The resulting structure can be identified with a decision network (which shows
similarities to neural networks) or a graph. There are situations where one path is associated
with many classes and vice versa, that one class is related to several paths.

No matter how the structure was formed, the connections between neurons have a
certain weight factor. The coefficient is calculated based on the properly organized network
(in our case, identified by the set of path s S).

The weight factor for a neuron j of a given path s is calculated as follows

w s
j = uj

d sj∑
i<= j d

s
i
, (10)

where uj is the value of the feature on the basis of which the neuron j is created, d sj is
the value of the discriminant on the basis of which this neuron is created. Moreover, d si
specifies the value of the discriminant on the path under consideration s∈ S , for i<= j
neurons, i.e., all those neurons (with appropriate discriminants), which were considered
before together with the current one. Note that according to the chosen ordering features
with appropriate discriminants, there is a change to the denominator (see 10 and 2.5).

Network response
We tested some modifications of ordering features of each pattern during our work and
calculate the weight factor. For further research, we chose two methods of calculating the
response from the network for a given pattern.

Algorithm version v1. In the first one, the order of the features was consistent with the
decreasing value of the discriminants, firstly considering the feature set one, and then −1.
The chosen ordering features with appropriate discriminants are related to the fact that
we consider the value one, i.e., the existence of a given feature, to be more important.
The standard formula for calculating the response (the output of a given path s) from the
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network is as follows

outs= f (
NF−1∑
i=0

w s
i ci), (11)

where w s
i stands for the weight factor for the given neuron i on path s, s∈S and f is the

activation function.

Algorithm version v2. In the second approach, we used the decreasing ordering of
discriminants. The response from the network for a given pattern is given by

outs= f (d smax

NF−1∑
i=0

w s
i ci), (12)

where d smax is the highest value of the discriminant on path s, s∈S , w s
i is the weight factor

for a given neuron i on the s path and f is the linear function. As we already know (see 2.3)
coefficient of discrimination measures the relationship between features and path. High
values of the discriminant mean that a given feature is important for a given path (perhaps
only for this one) The use of d smax may change the relative strength of the individual paths
depending on the discriminants. The low value of the discriminants shows that there is
little impact. The greater the value, we can assume that it becomes a certain component
that allows strengthening the impact of the result for a given path.

The path introduced in Eq. (9) joins the feature vector with the corresponding class. We
want to identify the vector us with a hypercube. The well-known method of presenting the
multi-dimensional data is its placing in theNA-dimensional space, whereNA is the number
of attributes. In such an approach, the feature vector us identifies unambiguously one of
the NA-dimensional hypercubes, defined, in this space, by the real attributes division into
subranges.

For an exemplary illustration, we show Fig. 1 and Table 4. In this figure, blue points are
the learning patterns, whereas red ones are the test patterns we want to assign to a certain
class. Furthermore, the shape of the blue markers indicates the distinction between classes.
For simplicity, in this article, hypercubes in two dimensions are rectangles. The considered
us is graphically represented as a rectangle in two-dimensional space. As can be noticed, in
the rectangle (marked us), there are filled markers in two shapes. It means they have the
same features vector us, i.e., they belong to the same hypercube. Moreover, there are two
path with different classes.

When calculating the answer from the network for a certain test pattern, we use a
defined neighborhood describing path s located at a certain distance from the test pattern
and having an impact on the obtained result (Fig. 1). We used two different metrics:
Chebyshev and Manhattan. Each of them is responsible for determining which paths
contribute to the network’s response.

outs= outs ∗2−µ(u
i
−us), (13)

where µManhattan and µChebyshev are the well known metrics to calculate distance between
hypercubes, NA is the number of real attributes, ui and us are the feature vectors form the
i pattern and the path s, respectively.
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Figure 1 The example of a 2D defined neighborhood for computing the network response for a given
pattern ui. The blue points represent the learning patterns (i.e., uj), whereas the red ones (ui, ug ) are the
test patterns. The shape of the blue markers indicates the distinction between classes. Vector us is graphi-
cally represented as a rectangle in two-dimensional space. The detailed description of the feature vectors is
in Table 4.

Full-size DOI: 10.7717/peerjcs.1020/fig-1

Table 4 Two exemplary patterns are ui and uj , together with us they are the feature vectors represent-
ing the ith pattern, jth pattern and the path s. Due to the fact that there are only two real features (x , y),
the considered us is graphically represented as a rectangle in two-dimensional space.

feature vector

x y

pattern 1 2 3 4 5 6

ui
−1 1 −1 −1 1 −1

uj
−1 −1 1 1 −1 −1

us
−1 −1 1 1 −1 −1

Regardless of the usedmodification, the evaluation of the winning class, for each element
in the test set, is as follows:

outσ =max
s∈S
{outs} for σ ∈S. (14)

The finding path σ gives the highest network response, and its class is the winning one.
The important information concerning the method is its computation complexity. It is

ruled by Eq. (2), which assumes the analysis of all pattern vectors and all features inside
these vectors. We can estimate the complexity of the learning phase as O(NP ∗NF ) where
NP is the number of patterns in the training set and, defined earlier, NF - the number of
features. For the classification process, Eq. (11) gives us direct estimation of single pattern
recognition as O(NF ).
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EXPERIMENT AND RESULTS
In Fig. 1, two exemplary test patterns ui and ug (red markers) are shown. One of them
(ui) is placed in the rectangle without the training patterns, and the other uj has in the
nearest neighborhood the training patterns. When one or more patterns from the training
set are in the same rectangle and belong to different classes, as the answer, to the given
test pattern, we choose the class that gives the highest response from our network (see
‘Network response’). In case there is no learning class in a given rectangle, we consider the
influence of the neighbors; by taking into account appropriate metrics Eq. (13).

In our work, for research, we focus only on test patterns that do not have learning
patterns in their rectangle (like ui in Fig. 1). Therefore, we use only such test patterns in
our results, and they are selected for statistics.

We compare the results of our method with one of the most important classification
approaches and the most known method for general application—the SVM method.

Data
As was mentioned before, we show how our procedure works for the data from the
Machine Learning Repository (Dua & Graff, 2017). We choose the Iris dataset, Banknote
Authentication dataset and Combined Cycle Power Plant dataset.

The Iris dataset (Dua & Graff, 2017; Fisher, 1936) is one of the most popular collections
used for machine learning problems. It is used as the first and simplest dataset to verify
clustering methods. This small dataset comprises 150 patterns representing three uniform
classes (Iris Setosa, Iris Versicolor, and Iris Virginica). Each pattern is represented by a
vector of four attributes (sepal length, sepal width, petal length, and petal width).

The next is the Banknote Authentication dataset (Dua & Graff, 2017; Gillich & Lohweg,
2010), which was prepared according to a special procedure. The banknotes images were
analyzed using the wavelet transform, and several characteristics were collected from such
transformed data. The set comprises 1,372 patterns belonging to two classes(binary classes).
The values of five attributes describe patterns, and the statistical moments like variance,
kurtosis or skewness, and also the entropy of the image. There are many references in the
literature to the classification issue related to these data, i.e., Kumar & Nagamani (2018)
and Shrivas & Gupta (2017).

Themost complicated of investigated datasets is the CombinedCycle Power Plant dataset
(CCPP) (Dua & Graff, 2017;Tufekci, 2014;Kaya, Tufekci & Gurgen, 2012). It contains 9,568
patterns gained from a combined-cycle power plant over six years (2006–2011). While
collecting, the power plant was set to work with a full load. Patterns are described by
attributes: hourly average ambient variables temperature (T), ambient pressure (AP),
relative humidity (RH), and exhaust vacuum (V) to predict the net hourly electrical energy
output (EP) of the plant. As we can see, all data have floating-point values. Contrary to
the above datasets (CCPP), we do not have an explicit class division. The authors of this
dataset do not define the number of classes, but we do it through our actions. Using the
recursive k-means tool (Miniak-Gorecka, Podlaski & Gwizdalla, submitted), we divide the
response set (EP) into three classes. There are many references to the classification issue
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Table 5 Datasets. Iris, banknote authentication, and combined-cycle power plant are the original
datasets from the Machine Learning Repository (Dua & Graff, 2017). The remaining CCPP1 and CCPP2
are created from the original CCPP with a different, specific selection of its elements.

marking Dataset nr of instances nr of attributes

A Iris 150 3
B Banknote Authentication 1372 5
C Combined Cycle Power Plant (CCPP) 9568 4
D CCPP1 450 4
E CCPP2 450 4

related to these data in the literature i.e., (Saleel, 2021; Santarisi & Faouri, 2021; Alketbi et
al., 2020; Siidiqui et al., 2021).

In Table 5, the datasets based on which we perform the research are listed briefly. In
the visualization (see ‘Results’), we used the labeling from the first column. The first three
rows contain the information about original datasets from Machine Learning Repository
(Dua & Graff, 2017). The remaining CCPP1, CCPP2 were created from the original CCPP
by reducing the number of elements and using specific selection procedures. The resulting
datasets contain 450 elements selected as follows:

CCPP1 –elements are selected randomly from the entire CCPP,
CCPP2 –each of three classes is represented uniformly by selected 150 random

instances.

We are aware that different selection methods may affect the results obtained; however,
as we mentioned, we try to omit the ordering of the dataset.

The differences between the datasets used in experiments are presented in Fig. 2. We
show the data projection onto a two-dimensional space with the t-SNE method (Hinton
& Roweis, 2002). The t-distributed stochastic neighbor embedding (t-SNE) is based on the
minimization of Kulback-Leibler divergence. The divergence is calculated between two
distributions in the original and two-dimensional target space. As shown in this figure,
the distances are usually calculated with the Euclidean metric, but arbitrary metrics can
be used. We can observe that classes are well separated for Iris and Banknote datasets. It
is impossible for the CCPP dataset to separate classes, especially patterns belonging to
class 2, covering a whole range of working parameters. It suggests that for this dataset, the
prediction can be most challenging.

Experiment setup
In the further descriptions of tests and the discussion of the obtained results, we use the
terminology presented in Table 6. The differences between two approaches (algorithm
versions) considered is clarified in ‘Network response’, where the self-optimizing neural
network is described. The division specifies the number of {5,6,...,15} uniform subranges
for each real attributes (Tables 1–3). When calculating the answer from the network for
a certain test pattern, we use defined neighborhood pointing path s located at a certain
distance from the test pattern that has an impact on the obtained result (‘Network response’
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Figure 2 (A–C) Two-dimensional projections of datasets used in classification obtained with the t-
SNEmethod (Hinton & Roweis, 2002). The images shows clearly the possibility of separation of particu-
lar classes for the Iris and Banknote datasets while for CCPP it is impossible.

Full-size DOI: 10.7717/peerjcs.1020/fig-2

Table 6 Set of parameters. The differences between two approaches (algorithm versions) is clarified
in subsection 2.5. The division specifies the number of {5,6,...,15} uniform subranges for each real at-
tributes (Tables 1–3). Two metrics: Chebyshev and Manhattan determine which paths contribute to the
network’s best response. The term ratio specify what percentage of all patterns in dataset is in the training
(80,70,60,50) and test (20,30,40,50) set. Therefore a tuple (called the set of parameters) (v,d , µ, r) i.e.,
(v1,d5, µ1, r20) gives us the unambiguous description of the process.

marking description

algorithm version (v) see section 2.5 for versions v1 and v2
division (d) division of the parameter range on uniform subranges in

number from 5 to 15
metric (µ) µ1 - Chebyshev, µ2 -Manhattan
ratio (r) percentage 20,30,40,50 of all patterns in test set
average (avgSONN) average of good answers for 30 tests each with a given

configuration of parameters
average (avgSVM) average of good answers for 30 tests
improvement (avgSONN−avgSVM)

and Fig. 1). We use two different metrics: Chebyshev and Manhattan. They are responsible
for determining which path s contribute to the network’s best response. The next term
ratio specify what percentage of all patterns in dataset enters the training (80,70,60,50)
and test (20,30,40,50) set, respectively.
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Figure 3 The dependence of the improvement on the division d among all datasets for ratio r = 20, for
the set of parameters: version v andmetricµ (see Table 6). (A–E) present results for one of the datasets
described in Table 5. The positive value of the improvement indicates that compared method gives better
results than the classic SVM.

Full-size DOI: 10.7717/peerjcs.1020/fig-3

All presented results of the recognition of test patterns are based only on those test
patterns that do not have an equivalent among the training patterns. It means that in our
approach, no us, s∈S from path s can efficiently classify a given test pattern (see (9) and Fig.

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 13/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1020/fig-3
http://dx.doi.org/10.7717/peerj-cs.1020


1). By the good answers we mean those answers that match the expected output (expected
class). In addition, for each of the possible configurations of parameters (version, division,
metric, ratio) we perform thirty tests. We denote as avgSONN the average of good SONN
answers for thirty of those tests for each given configuration of parameters. As avgSVM we
mark the average of good SVM answers for those thirty tests (applied parameters do not
affect the operation of the SVMmethod). The scale of improvement determines howmuch
our method is better (worse) than the considered classic SVM and it is calculated as follows

(avgSONN−avgSVM).

We also point out that the classic SVM works on real values (attributes), while our
method is based on their discrete forms (in the form of discrete vectors) and our method
has the possibility of setting a combination of parameter values (version, division, metric,
ratio) to improve the network response.

All figures included have a uniform format for presenting data. The shapes of markers
(diamonds and crosses) correspond to differentmetrics. The color (red and blue) indicates
the version of approach. Filling the shape gives us a distinction in terms of ratio. For all
pictures, we use the naming entered in the Table 6.

Results
In our experiments, we focused only on test patterns that do not have learning patterns in
their hypercube (like ui in Fig. 1). We establish that more than five of these test patterns
must be in the set. For each configuration of parameters (version, division, metric, ratio)
we perform thirty tests. The results presented in this section are the average results of the
tests performed.

Figure 3 shows the dependence of the improvement on the division for all datasets.
The ratio is set to twenty. In this case, the variable parameters are version and metric.
Each of Figs. 3A–3E presents results for a separate dataset (Table 5). The positive value
of the improvement indicates that compared method gives better results than the classic
SVM. In our work, we use the python version of SVM(with the following parameters:
kernel=’poly’, C = 1, gamma=’scale’, degree=3) (Pedregosa et al., 2011), and we provide
the results of this tool so that we do not have to go into other research on this method.
The higher the value of improvement, the more suitable our method is. Figures 3A and
3B show how the tested methods behave in the case of well-known and small datasets
Iris and Banknote Authentication, respectively. We note that the SVM method works
well for Iris. Currently, it is possible to find research carried out with the use of Iris
dataset in various sources, in which, after numerous changes, even one hundred percent
effectiveness was obtained. The SVM version is also specially modified for this dataset
there. It should be noted that SVM uses more information than the proposed SONN
method. The discretization procedure is responsible for this difference; the real-valued
attributes have more information than the discrete value vector. With the increase of the
division parameter, the values of the improvement become negative, and the difference
between SVM and our results increases. SVM seems to be more suitable in that case. For
the Banknote dataset, while increasing the partition density, we get the highest number of
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empty hypercubes. The average number of paths per cube decreases as the split is denser.
For test patterns falling into empty hypercubes, we calculate the network response based
on the responses of adjacent cubes. The influence of adjacent hypercubes increases when
patterns are more sparsely distributed. For partition density above ten, our results and
SVM results are practically the same. Although, for both so far discussed datasets, the
results are unsatisfactory. We can observe the differences in the plots (Figs. 3A and 3B)
presented. For one of the datasets (Iris) the performance of our method is visibly worse
than SVM, but for Banknote we can notice the similarity of the results for both techniques.
We want to test our method using more demanding data; that is why we also use the CCPP
set containing almost ten thousand patterns. With the increase of the complexity of the
studied data (Figs. 3C–3E), our method looks more efficient. All four Figs. 3C–3E show
the results for CCPP. The results in Fig. 3C present the different behavior than the former
ones (Figs. 3A and 3B). To better understand the behavior of average improvement, we
also present its standard deviation (Table 7). We can see that with the growth of division
parameter, it does not only increase the improvement but also its deviation decrease. It
suggests that the proposed methods with both metrics give statistically better results than
SVM. In order to assess the dependence of total datasets size, we create two subsets of
CCPP dataset. These subsets preserve the complexity of the total CCPP dataset and are
even more sparse distributed. For these subsets, we select the number of patterns settled
between sizes of Iris and Banknote datasets. Figures 3D–3E are created, for the needs of
research, excluding the ordering source data (Table 5). An interesting effect (especially Fig.
3E) is that for small sets we get a significant improvement. For some divisions, our method
turns out to be much better than SVM used on the same data. Even for denser divisions
(more than ten subranges), our method seems to be statistically better than SVM. As it is
shown in Table 7 the average improvement exceeds the standard deviation for the higher
value of the division. The Manhattan metric gives better results for small values of division,
but when we go towards tighter divisions, it is surpassed by Chebyshev metric. Almost
always, except for the crosses in Fig. 3E (symbolized Manhattan metric), our results are
better. The amount of improvement is significant because it oscillates between 0.2−0.4,
and it is more closely related to the metric than to the version.

In Fig. 3, we show the differences between the average of good responses from thirty
tests for SONN and SVM, whereas in Fig. 4, we present absolute accuracy for both methods
on selected datasets and configuration of parameters. These results allow us to determine
whether the result is the effect of SONN method improvement or deterioration of both
methods in the entire range of parameters and for all datasets. Figures 4A and 4B (related to
relatively simple Iris and Banknote Authentication datasets) indicate that, regardless of the
version and metric selection, SVM gives better results. Considering the more numerous,
more complicated datasets, we indicate that our method gives significantly better results
than the classic SVM approach for the datasets Figs. 4D–4E. Also, we show that the average
number of good answers among tests achieves the best results for the set Fig. 4E).

Choosing only one from the attributes subranges (d10) from all presented in Figs. 3 and
4, in Fig. 5 we show the dependence the improvement of the ratio among all datasets for
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Table 7 Average improvement and its standard deviation obtained in thirty tests for each configuration of parameters on CCPP dataset. The
visualization of the average improvement value is shown in Fig. 3C.

version v ,metric µ and ratio r = 20

(v1,µ1) (v1,µ2) (v2,µ1) (v2,µ2)

division d improvement deviation improvement deviation improvement deviation improvement deviation

5 −0.1020 0.2546 0.0412 0.1506 −0.0285 0.2166 0.0253 0.1824
6 0.0482 0.3143 0.2349 0.2153 0.1350 0.2975 0.2181 0.2739
7 0.1583 0.1825 0.2165 0.1625 0.1064 0.1619 0.2015 0.1573
8 0.0494 0.1172 0.1490 0.0950 0.0806 0.0735 0.1337 0.0786
9 0.0127 0.0847 0.0839 0.0570 0.0044 0.0626 0.0696 0.0569
10 0.0620 0.0712 0.1093 0.0673 0.0380 0.0683 0.0913 0.0585
11 0.0532 0.0358 0.0596 0.0417 0.0323 0.0409 0.0578 0.0445
12 0.0766 0.0280 0.0859 0.0345 0.0755 0.0327 0.0877 0.0327
13 0.0610 0.0321 0.0726 0.0227 0.0359 0.0345 0.0505 0.0342
14 0.0812 0.0269 0.0764 0.0224 0.0581 0.0293 0.0698 0.0277
15 0.0656 0.0224 0.0612 0.0227 0.0528 0.0268 0.0553 0.0244

the set of parameters: version and metric. Presenting the test results in this form, we also
observe an improvement for the aforementioned sets (Figs. 5D and 5E).

One of our goals is to show that the method we created can be successfully used for
various types of datasets. Even though we examine several datasets (among them were
the simple, standard ones), we want to focus on the more complicated ones, namely the
Combined Cycle Power Plant Dataset. Figure 6C, for CCPP shows the dependence the
comparison of the average response from thirty tests for SONN and for SVM approach. The
parameters for SONN are: the whole range of ratio, division (only d6, d10, d15), version
and metric. In Fig. 4C we only observed the test results for ratio 20, now we have a broader
look at the behavior of CCPP. In the case of dividing the range of parameters variability
into six uniform subranges (Fig. 6C1), in the case of two sets of parameters ((v1,µ1),
(v2,µ1)) we observe a decline in the correctness of our method. For the remaining Figs.
6C2 and 7C3, the approach we propose gives much better results.

Figure 7 gives us a look at how the CCPP behaves in the case of different partitions
of the parameters into uniform subranges. In more detail, it shows the dependence the
improvement of the division for the set of parameters: ratio, version andmetric. Comparing
all Figs. 7C1–7C4 at the same time, it seems that for division d7 we get the best results,
while the division d5 gives the worst effectiveness. However, on closer inspection, we can
also indicate that the selection of the µ2metric gives a satisfactory result for more than one
subrange division.

CONCLUSION
In the article, we presented the applicability of the self-optimizing neural network in
classifying real-valued data. When summarizing the approach, we have to point out some
properties which significantly influence the computational procedure.
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Figure 4 (A–E) The comparison of the average accuracy for SONN and for SVM. The average is taken
over thirty independent divisions into training and test sets with a ratio r = 20. The parameters (version v
and metric µ) for the particular dependence of SONN results on the division type are presented in the leg-
end. This kind of plot allows for analyzing the absolute result for a particular set of parameters and, there-
fore, finding a source of dependence shown in Fig. 3.

Full-size DOI: 10.7717/peerjcs.1020/fig-4
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Figure 5 (A–E) Dependence of the improvement on the ratio r among all datasets (see Table 5) for di-
vision d = 10 (see other divisions in Fig. 3), for the set of parameters: version v andmetricµ (described
in the legend).

Full-size DOI: 10.7717/peerjcs.1020/fig-5

First of all, unlike in many other methods, we have to prepare data by some form
of preprocessing; discretization is the crucial process. The discretization parameters: the
method of division and the number of intervals into which the entire variable area is
divided can significantly affect results. Therefore, we carefully studied these dependencies.
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Figure 6 (C1–C3) The comparison of the average accuracy for SONN and for SVM. The average is
taken over thirty independent CCPP (C) tests for SONN on the whole range of ratio r . The parameters
are: division (only d6, d10, d15), version (v1,v2) and metric (µ1, µ2).

Full-size DOI: 10.7717/peerjcs.1020/fig-6

It should also be mentioned that we do not use the typical multi-dimensional clustering
techniques here to distinguish the subspaces of whole variable space into subareas with
similar properties. Indeed, the clustering process can be used only for each dimension
separately. The approach presented in the article made it possible to avoid some basic,
difficult-to-answer questions concerning, e.g., the number of clusters or the metric used to
define the distance between particular instances.

The proposed method is, for historical reasons, related to neural networks. In fact, we
do not observe the typical learning process concerning the strength of particular bonds in
the system of defined topology. The learning process is related to analyzing the strength of
particular branches defined by the vectors obtained by the discretization, performed with
the described earlier scheme. We introduced several modifications to the original method.
In particular, they are designed to weaken the importance of two factors: less decisive values
of variables (see Eq. (12)) and the role of the more distant neighborhood (see Eq. (13)).

In order to test our method, we selected three datasets that differ from each other
in dimensionalities and number of classes. We started from the small and well-known
Iris dataset with four parameters and three classes, through Banknote Identification (five
parameters, binary) to CCPP (four parameters, without direct division into classes).

We can concentrate on different issues when estimating the prediction accuracy related
to multi-dimensional classification problems. The typical way is to show the results for
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Figure 7 (C1–C4) The dependence of the improvement on the division d of CCPP (C) for the set of pa-
rameters: the whole range of ration r , version (v1,v2) andmetric (µ1,µ2).

Full-size DOI: 10.7717/peerjcs.1020/fig-7

the whole test set, but we decided to present them differently. By dividing every variable
into some number of intervals, we create a multi-dimensional grid of hypercubes. The
distribution of points from the training as well as testing sets is not uniform among these
hypercubes. So, we can identify the points for which the decision path is not determined
after analyzing the training set. We think that the analysis of results concentrated on these
points better reproduces the ability of the system to generalize the data during the learning
process.

For the data mentioned above, our classification results were compared with those
obtained with the Support Vector Machine. SVM is a popular and widely accepted
technique for solving classification problems. The comparison confirms the high quality
of results obtained using our modification of the SONN method. Although the details
may depend on some parameters used in the procedure (version, metric), we can generally
say that the accuracy obtained using SONN is higher than for SVM. Only for the most
straightforward dataset, IRIS, the results are different. For other ones, the effects of SONN
can outperform SVM even by 20–30%. Considering the comparison of absolute values,
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the improvement still is about a few percent for the worse cases. It can be noticed that for
these cases, SONN improves the SVM result being already close to 100% (see Fig. 4). When
taking into account that we concentrate on the points which are outside the determined
paths, we can expect the better behavior of the proposed method for the outliers.

When going into some general remarks commenting on the efficiency of the SONN
method, we canmention several features. SONN seems to behave better with the increase in
the density of divisions. Except for the Iris dataset, the accuracy increased significantly when
dividing all the variables into smaller intervals. It may be related to the observation that
with such an increase, we create a higher number of paths with better-defined classes, so
the influence on the neighborhood is also better defined. The comparison between datasets
shows that we get better results with the increasing complexity of the dataset. This effect is
visible when looking, e.g., at the t-SNE diagrams. The first impression about discretization
leads to the impoverishment of information. Despite it, however, the localization of cases
in particular discretized areas can improve classification accuracy.

The method seems to be promising, and as the main directions of further development,
we can enlist: the effect of the method on uncertainty reduction and the reconstruction of
experimental data (Podlaski et al., 2021).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the University of Lodz (Grant no. B2111501000004.07). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The University of Lodz: B2111501000004.07.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Alicja Miniak-Górecka conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Krzysztof Podlaski conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
• Tomasz Gwizdałła conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 21/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1020


The datasets, code and results obtained in the modelling process are available at
http://ksi.fis.uni.lodz.pl/works_repo/sonn_and_datasets/.

REFERENCES
Afzal A, Alshahrani S, Alrobaian A, Buradi A, Khan SA. 2021. Power plant energy

predictions based on thermal factors using ridge and support vector regressor
algorithms. Energies 14(21):7254 DOI 10.3390/en14217254.

Al-Azawi M. 2022. Symmetry-based brain abnormality detection using machine learning.
Inteligencia Artificial 24(68):138–150 DOI 10.4114/intartif.vol24iss68pp138-150.

Ali L, Niamat A, Khan JA, Golilarz NA, Xingzhong X, Noor A, Nour R, Bukhari
SAC. 2019. An optimized stacked support vector machines based expert sys-
tem for the effective prediction of heart failure. IEEE Access 7:54007–54014
DOI 10.1109/ACCESS.2019.2909969.

Alketbi S, Shahin I, Nassif A, Elnagar A, EddinM. 2020. Predicting the power of a com-
bined cycle power plant using machine learning methods. In: 2020 International con-
ference on communications, computing, cybersecurity, and informatics (CCCI). Sharjah,
United Arab Emirates: IEEE Conference DOI 10.1109/CCCI49893.2020.9256742.

Bandić L, Hasičić M, Kevrić J. 2020. Prediction of power output for combined cycle
power plant using random decision tree algorithms and ANFIS. In: Avdaković S,
Mujčić A, Mujezinović A, Uzunović T, Volić I, eds. Advanced technologies, systems,
and applications IV -proceedings of the international symposium on innovative and
interdisciplinary applications of advanced technologies (IAT 2019). Cham: Springer
International Publishing, 406–416.

Boser BE, Guyon IM, Vapnik VN. 1992. A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory - COLT’92. ACM Press.

Breiman L. 1996.Machine Learning 24(2):123–140.
Caraka RE, Lee Y, Chen R-C, Toharudin T. 2020. Using hierarchical likelihood towards

support vector machine: theory and its application. IEEE Access 8:194795–194807
DOI 10.1109/ACCESS.2020.3033796.

Chen Z, Cai H, Zhang Y,Wu C, MuM, Li Z, Sotelo MA. 2019. A novel sparse represen-
tation model for pedestrian abnormal trajectory understanding. Expert Systems with
Applications 138:112753 DOI 10.1016/j.eswa.2019.06.041.

Cortes C, Vapnik V. 1995. Support-vector networks.Machine Learning 20(3):273–297.
De Santana FB, Otani SK, De Souza AM, Poppi RJ. 2021. Comparison of PLS and SVM

models for soil organic matter and particle size using vis-NIR spectral libraries.
Geoderma Regional 27:e00436 DOI 10.1016/j.geodrs.2021.e00436.

Deng X, Yang P, Lv X, Liu K, Sun K. 2021. EEG analysis of working memory
between sober state and intoxicated state. IEEE Access 9:145900–145911
DOI 10.1109/ACCESS.2021.3123336.

Dua D, Graff C. 2017. UCI machine learning repository. Available at http://archive.ics.uci.
edu/ml .

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 22/25

https://peerj.com
http://ksi.fis.uni.lodz.pl/works_repo/sonn_and_datasets/
http://dx.doi.org/10.3390/en14217254
http://dx.doi.org/10.4114/intartif.vol24iss68pp138-150
http://dx.doi.org/10.1109/ACCESS.2019.2909969
http://dx.doi.org/10.1109/CCCI49893.2020.9256742
http://dx.doi.org/10.1109/ACCESS.2020.3033796
http://dx.doi.org/10.1016/j.eswa.2019.06.041
http://dx.doi.org/10.1016/j.geodrs.2021.e00436
http://dx.doi.org/10.1109/ACCESS.2021.3123336
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.7717/peerj-cs.1020


Ferdushi K, Kamil A, Ahmed S, Kawsar L. 2020. The measures of efficiency of power
generation plants in Sylhet of Bangladesh. International Journal of Mathematics and
Mathematical Sciences 2020:9308174.

Ferencz K, Domokos J. 2020. Rapid prototyping of IoT applications for the industry.
In: 2020 IEEE international conference on automation, quality and testing, robotics
(AQTR). 1–6 DOI 10.1109/AQTR49680.2020.9129934.

Fisher R. 1936. The use of multiple measurements in taxonomic problems. Annual
Eugenics Part II:179–188.

Fix E, Hodges JJ. 1951. Discriminatory analysis, nonparametric discrimination. Techni-
cal report. USAF School of Aviation Medicine, Randolph Field, Tex., Project 21-49-
004, Rept. 4, Contract AF41(128)-31.

Fu J, Xue J, Wang Y, Liu Z, Shan C. 2018.Malware visualization for fine-grained
classification. IEEE Access 6:14510–14523 DOI 10.1109/ACCESS.2018.2805301.

Gillich E, Lohweg V. 2010. Banknote Authentication. BVAu 2010 - Bildverarbeitung in
Der Automation 1:1–8.

Gu X, Angelov P, Prancipe J. 2018. A method for autonomous data partitioning.
Information Sciences 460–461:65–82.

Hand DJ, Yu K. 2001. Idiot’s Bayes? Not so stupid after all? International Statistical
Review 69(3):385–398.

Hinton G, Roweis S. 2002. Stochastic neighbor embedding. In: Proceedings of the
15th international conference on neural information processing systems. NIPS’02.
Cambridge, MA, USA: MIT Press, 857–864.

Ho TK. 1995. Random decision forests. In: Proceedings of 3rd international conference on
document analysis and recognition. IEEE Comput. Soc. Press,.

Horzyk A. 2012. Information freedom and associative artificial intelligence. Lecture Notes
in Computer Science 7267:81–89.

Horzyk A, Tadeusiewicz R. 2004. Self-optimizing neural networks. In: Lecture notes in
computer science, advances in neural networks. Vol. 3173. 150–155.

Karasu S, Altan A. 2022. Crude oil time series prediction model based on LSTM
network with chaotic Henry gas solubility optimization. Energy 242:122964
DOI 10.1016/j.energy.2021.122964.

Katoch S, Singh V, Tiwary US. 2022. Indian Sign Language recognition system using
SURF with SVM and CNN. Array 14:100141 DOI 10.1016/j.array.2022.100141.

Kaya H, Tufekci P, Gurgen S. 2012. Local and global learning methods for predicting
power of a combined gas and steam turbine. In: Proceedings of the international
conference on emerging trends in computer and electronics engineering ICETCEE 2012.
13–18.

Kononenko I. 1990. Current trends in knowledge acquisition. In: Volume 331, chapter
Comparison of inductive and naive Bayesian learning approaches to automaticknowl-
edge acquisition. Washington, D.C.: IOS Press Inc.

Kumar G, Nagamani K. 2018. Banknote authentication system utilizing deep neural
network with PCA and LDA machine learning techniques. International Journal of
Recent Scientific Research 9(12):30036–30038.

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 23/25

https://peerj.com
http://dx.doi.org/10.1109/AQTR49680.2020.9129934
http://dx.doi.org/10.1109/ACCESS.2018.2805301
http://dx.doi.org/10.1016/j.energy.2021.122964
http://dx.doi.org/10.1016/j.array.2022.100141
http://dx.doi.org/10.7717/peerj-cs.1020


Li Q,Wang S, Zhao C, Zhao B, Yue X, Geng J. 2021.HIBOG: improving the clustering
accuracy by ameliorating dataset with gravitation. Information Sciences 550:41–56
DOI 10.1016/j.ins.2020.10.046.

Lohweg V, Hoffmann J, Drksen H, Hildebrand R, Gillich E, Hofmann J, Schaede J.
2013. Banknote authentication with mobile devices. In: Proceedings of SPIE - the
international society for optical engineering, vol. 8665.

Miniak-Gorecka A, Podlaski K, Gwizdalla T. submitted. Recursive clustering of
experimental data. The Knowledge Engineering Review.

Murthy N, Bethala C. 2021. Review paper on research direction towards cancer predic-
tion and prognosis using machine learning and deep learning models. Journal of Am-
bient Intelligence and Humanized Computing 1–19 DOI 10.1007/s12652-021-03147-3.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn: machine Learning in
Python. Journal of Machine Learning Research 12:2825–2830.

Pławiak P, Abdar M, Pławiak J, Makarenkov V, Acharya UR. 2020. DGHNL: a new deep
genetic hierarchical network of learners for prediction of credit scoring. Information
Sciences 516:401–418 DOI 10.1016/j.ins.2019.12.045.

Podlaski K, DurkaM, Gwizdałła T, Miniak-Górecka A, Fortuniak K, PawlakW. 2021.
LSTM processing of experimental time series with varied quality. In: Paszynski M,
Kranzlmüller D, Krzhizhanovskaya VV, Dongarra JJ, Sloot PMA, eds. Computational
science –ICCS 2021. Cham: Springer International Publishing, 581–593.

Rabby G, Sultana N, Motin L, IslamM. 2021. Prediction of hourly total energy in
combined cycle power plant using machine learning techniques. In: 2021 1st
international conference on artificial intelligence and data analytics (CAIDA). 170–175
DOI 10.1109/CAIDA51941.2021.9425308.

Saba T, Rehman A, Latif R, Fati SM, RazaM, Sharif M. 2021. Suspicious activity recogni-
tion using proposed deep L4-branched-actionnet with entropy coded ant colony sys-
tem optimization. IEEE Access 9:89181–89197 DOI 10.1109/ACCESS.2021.3091081.

Saleel A. 2021. Forecasting the energy output from a combined cycle thermal power
plant using deep learning models. Case Studies in Thermal Engineering 28:101693
DOI 10.1016/j.csite.2021.101693.

Sang Y, Dang X, Zhao Y. 2021. A Jackknife empirical likelihood approach for K-sample
Tests. Canadian Journal of Statistics 49(4):1115–1135 DOI 10.1002/cjs.11611.

Santarisi N, Faouri S. 2021. Prediction of combined cycle power plant electrical output
power using machine learning regression algorithms. Eastern-European Journal of
Enterprise Technologies 6(8 (114)):1626 DOI 10.15587/1729-4061.2021.245663.

Shrivas A, Gupta P. 2017. Analysis and comparison of data mining tools and techniques
for classification of banknote authentication. International Journal of Advanced
Research in Computer Science 8(5).

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 24/25

https://peerj.com
http://dx.doi.org/10.1016/j.ins.2020.10.046
http://dx.doi.org/10.1007/s12652-021-03147-3
http://dx.doi.org/10.1016/j.ins.2019.12.045
http://dx.doi.org/10.1109/CAIDA51941.2021.9425308
http://dx.doi.org/10.1109/ACCESS.2021.3091081
http://dx.doi.org/10.1016/j.csite.2021.101693
http://dx.doi.org/10.1002/cjs.11611
http://dx.doi.org/10.15587/1729-4061.2021.245663
http://dx.doi.org/10.7717/peerj-cs.1020


Siidiqui R, Anwar H, Ullah F, Ullah R, RehmanM, Jan N, Zaman F. 2021. Power pre-
diction of combined cycle power plant (CCPP) using machine learning algorithm-
based paradigm.Wireless Communications and Mobile Computing 2021:1–13
DOI 10.1155/2021/9966395.

Tryon RC. 1939. Cluster analysis; correlation profile and orthometric (factor) analysis for
the isolation of unities in mind and personality. Ann Arbor, Mich: Edwards Brother,
Inc., lithoprinters and Publishers.

Tufekci P. 2014. Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. International Journal
of Electrical Power and Energy Systems 60:126–140 DOI 10.1016/j.ijepes.2014.02.027.

Vukovic DB, Romanyuk K, Ivashchenko S, Grigorieva EM. 2022. Are CDS spreads
predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH,
LSTM and Markov switching autoregression. Expert Systems with Applications
194:116553 DOI 10.1016/j.eswa.2022.116553.

Wazrah AA, Alhumoud S. 2021. Sentiment analysis using stacked gated recurrent unit
for arabic tweets. IEEE Access 9:137176–137187 DOI 10.1109/ACCESS.2021.3114313.

Wu J, Yao L, Liu B, Ding Z, Zhang L. 2020. Combining OC-SVMs with LSTM
for detecting anomalies in telemetry data with irregular intervals. IEEE Access
8:106648–106659 DOI 10.1109/ACCESS.2020.3000859.

Miniak-Górecka et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1020 25/25

https://peerj.com
http://dx.doi.org/10.1155/2021/9966395
http://dx.doi.org/10.1016/j.ijepes.2014.02.027
http://dx.doi.org/10.1016/j.eswa.2022.116553
http://dx.doi.org/10.1109/ACCESS.2021.3114313
http://dx.doi.org/10.1109/ACCESS.2020.3000859
http://dx.doi.org/10.7717/peerj-cs.1020

