Submitted 12 July 2016
Accepted 15 November 2016
Published 19 December 2016

Corresponding author
Juan Vicente Dura-Gil,
juan.dura@ibv.upv.es

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.102

© Copyright
2016 Baydal-Bertomeu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A PCA-based bio-motion generator
to synthesize new patterns of human
running

José Maria Baydal-Bertomeu', Juan Vicente Dura-Gil’, Ana Piérola-Orcero,
Eduardo Parrilla Bernabé', Alfredo Ballester and Sandra Alemany-Munt

Instituto de Biomecdnica de Valencia, Universitat Politecnica de Valéncia, Valencia, Spain

" These authors contributed equally to this work.

ABSTRACT

Synthesizing human movement is useful for most applications where the use of avatars
is required. These movements should be as realistic as possible and thus must take
into account anthropometric characteristics (weight, height, etc.), gender, and the
performance of the activity being developed. The aim of this study is to develop a
new methodology based on the combination of principal component analysis and
partial least squares regression model that can generate realistic motion from a set of
data (gender, anthropometry and performance). A total of 18 volunteer runners have
participated in the study. The joint angles of the main body joints were recorded in an
experimental study using 3D motion tracking technology. A five-step methodology
has been employed to develop a model capable of generating a realistic running
motion. The described model has been validated for running motion, showing a highly
realistic motion which fits properly with the real movements measured. The described
methodology could be applied to synthesize any type of motion: walking, going up
and down stairs, etc. In future work, we want to integrate the motion in realistic body
shapes, generated with a similar methodology and from the same simple original data.

Subjects Data Mining and Machine Learning, Graphics, Scientific Computing and Simulation
Keywords Synthesizing motion, Motion analysis, PLS, Running, PCA

INTRODUCTION

It is well known that there is a large degree of information contained in the kinematics of a
moving body which is influenced by parameters such as: gender, age, anthropometrical fea-
tures, emotional state, personality traits, etc. (Troje, 2008). A number of studies demonstrate
the capability of the human visual system to detect, recognize and interpret the information
encoded in the biological motion (Johansson, 1973). There are also many attempts to
analyse this information encrypted in human motion. Some researchers use discrete
kinematics parameters such as ranges, speed, etc. (Dvorak et al., 1992). Others focus their
studies on the sequence of movement along time instead of recording simple parameters.
In these cases, they analyse the complete function of time f(t) (Feipel et al., 1999). A
number of kinematical models are based on frequency domain manipulations (Davis,
Bobick ¢ Richards, 2000) and multiresolution filtering (Bruderlin ¢ Williams, 1995).
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Nevertheless, the most common objective of these studies is to model and to classify the
movement pattern of the person being measured, rather than creating new motions from
the extracted information.

In this regard, motion synthesis is currently attracting a great deal of attention within
the computer graphics community as a means of animating three dimensional realistic
characters and avatars; and in the robotic field to provide controlled real-time dynamic
motion for the locomotion and other activities (Kajita et al., 2002). With the computational
resources available today, large-scale models of the body (i.e., models that have many
degrees of freedom and are actuated by many muscles) may be used to perform realistic
simulations (Pandy, 2001). Nevertheless, it is necessary to perform lab experiments to track
the positions and orientations of body segments executing the task aimed to be synthesized.
Recording motion data directly from real actors and mapping them to computer characters
is a common technique used to generate high quality motion (Li, Wang & Shum, 2002).
However, this technique requires a high effort in experimental work. Besides, new measures
are needed to include changes in the pattern of movement, such as age, weight, gender or
speed. In this sense, it would be useful to create a methodology based on biomechanical
models constructed from a database of motions, instead of a single actor, able to generate
realistic motions of individuals with different anthropometrical characteristics, with
sufficient accuracy and without the need to perform laboratory measurements.

Several authors have addressed the motion modelling and synthesis for biped walking,
jumping, pedalling (Troje, 2002), or even stair-ascending (Vasilescu, 2002). Classically the
mathematical approach of the synthesis of movement has been the dynamic optimization of
biomechanical body structures (Pandy, 2001). These models provide detailed information
of the functioning of some structures, such as the description of muscle function during
normal gait. However, this approach becomes an unworkable problem when a greater
number of body structures are included in the model. A new approach based on Principal
Components Analysis (PCA) can facilitate the understanding of the information contained
in the kinematics of a moving human body and avoids the inclusion of the dynamics in
the model. PCA can extract depth information contained in the mathematical function
and its derivatives not normally available through traditional statistical methods (Ullah ¢
Finch, 2013). In this way PCA can be used on different levels. For instance, Troje (2002)
used PCA in two steps for the purpose of analysing and synthesizing human gait patterns.
In the first one, they extracted the main components from the entire database, in order
to eliminate redundancy and to reduce the dimensionality. In the second step, PCA was
applied particularly for each walker in order to retain the encoded information of each
walker-specific variation. In our research, we will also use a model (based on PCA) to
extract the most relevant information from the pattern of running. This information
will be used to develop a bio-motion generator which will solve the opposite problem of
synthesizing new realistic movements.

In addition, existing literature focused on synthesizing motion does not correlate
the generated movement to age, gender, performance parameters such as velocity or
anthropometrical features. In this sense our research has three goals. The first one is
to generate a database of running movements of a full human model. The second is to
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extract the signature of each motion, by means of PCA technique and to correlate the
distinctive styles of each runner with their anthropometrical characteristics, age, gender,
and performance parameters such as the velocity of the action. The third is to develop
a bio-motion generator based on a statistical model capable of synthesizing new realistic
running motion from a set of desired data: age, gender, height, body mass index (BMI)
and velocity.

Nowadays there exists a line of research developed in the field of anthropometry for the
purpose of obtaining a model of human body shape from a database of processed raw scans
(Vinué et al., 2014). The methodology followed in that line of research provides sufficient
resolution to synthesize accurate realistic representations of body shapes from a set of
simple anthropometrical parameters. Ballester et al. (2014) describe a method based on the
harmonization of body scan data followed by a Shape Analysis procedure using Principal
Component Analysis. The combination of these techniques allows the generation of human
3D shape models from anthropometric measurement data (age, height, weight, BMI, waist
girth, hip girth, bust/chest girth, etc.). Our hypothesis is that the use of a similarly based
methodology to generate human motion instead of human body shapes is possible, valid
and reliable. The novelty in our approach is the generation of running data from a set of
easily measurable anthropometric parameters and a desired value of running speed.

MATERIALS AND METHODS
Data gathering

An experimental phase was carried out with the aim of gathering a database of the running
movements that we needed to include in the biomechanical model. The data consisted of
the 3D joint angles of the main body joints.

The articulated human body model used in our study comprised 21 segments and 20
joints distributed throughout the body. Lower limb: hip, knee, ankle and metatarsopha-
langeal joint; upper limb: shoulder, elbow and wrist; trunk: pelvis, L5, L3, T12, T8 and Neck.

The positions of the joints of the human body model were defined in a recursive mode
with respect to the origin joint (father) of the related segment. This methodology is based
on the BioVision Hierarchical data (BVH) format (Meredith ¢ Maddock, 2001).

Each subject was kinematically characterised by means of 64 variables, defined as follows:

1. Vertical (Z) position of the root segment, in our case the hips.
2. Tri-dimensional orientation (X, Y, Z) of the total amount of segments with respect the
root. 21 x 3 =63 variables.

Study sample

Eighteen people composed the study sample, with the same number of male and female.
Their ages ranged from 21 to 44 years (average age: 31 years). They were selected according to
some specific parameters, trying to cover a wide range in the anthropometric characteristics
of height and body mass index (Table 1). Ethical approval was obtained from the
ethics committee of the Universitat Politecnica Valencia. All participants gave written
informed consent.
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Table 1 Description of the anthropometrical parameters.

Gender Parameter Mean Std. Max. Min.
Age 32.0 5.1 40 26

Male Weight 86.712 16.813 118.000 59.000
Height 1.779 .086 1.910 1.630
BMI 27.263 4.118 33.412 21914
Age 30.5 8.472 44 21

Female Weight 74.596 17.535 108.000 50.000
Height 1.675 .087 1.780 1.550
BMI 26.362 4.747 34.473 19.257

Measurement and protocol

The measurements were performed using commercial equipment based on 17 inertial
sensors: MOVEN studio. The commercial system has been validated by previous studies
(Zhang et al., 2013; Thies et al., 2007). A sampling frequency of 120 Hz was used. This system
showed a very high sensitivity to electromagnetic fields. For this reason, the measurements
of running trials were done outdoors in a location free of electromagnetic pollution.

Experimental procedure

For the purpose of controlling the pace of running, a 20-metre-long corridor, delimited with
cones every 5 m was set up. Thus, we obtained four areas, one area of acceleration, two of
constant speed and a final deceleration area. Running at constant speed presents a periodic
timing in which the period depends on the velocity (Novacheck, 1998). Nevertheless,
acceleration and deceleration periods are out of phase and the duration of cycles is variable.
Therefore, the running cycles used to create our model were selected within the area of
constant speed.

In the case of running, the pattern of the movement changes with velocity (e.g., stride
length, maximum joint angles, etc.). For this reason, each runner completed six running
trials at different speeds. Initially, subjects started running at normal speed. In the second
measurement subjects ran at their maximum speed. The third and fourth trial were
performed at a pace between normal and maximum speed. The fifth trial was performed
at the minimum speed at which each runner was able to run, on the edge between walking
and running. Running defined in this case as when there is no phase of bipodal support
(Biewener et al., 2004). The last trial was performed at an average speed between the lower
and the normal speed.

This procedure allowed us to obtain six observations representing the whole range of
speeds that each subject could execute.

Mathematical procedure
The methodology used in our study comprised five steps:

1-Reduction of intra-personal variability: joint angles are periodic by nature. We took
the most representative single stride for the purpose of reducing variability and dismiss the
phases with no consistent speed, such as acceleration and deceleration steps. The selected
stride was picked in the middle of the running sequence, guaranteeing constant speed.
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Figure 1 Knee angle vs % of the cycle.

2-Time normalization: time normalization is usually employed for the temporal
alignment of cyclic data obtained from different trials with different duration. In our
approach, the number of samples for each stride depended on the velocity of the running.

At this point we normalised the variable “time” applying an interpolation technique based

on cubic splines through the measured values of the whole sequence of samples. This
technique enables the normalization of all the measurements to the percentage of the
running cycle. The cubic spline was applied to normalize at 50 equispaced time intervals

per each variable (see the example in Fig. 1). The application of the cubic spline to the 64

kinematical variables makes a total amount of 50 x 64 (3,200) data per each subject.

3-Data cleaning: at this point a detailed checking and cleaning of inaccuracies of the
kinematical data was conducted. These type of inaccuracies were caused mostly by the
measurement system. The prevention of errors at this point is preferable to their later
correction once the model has been created. All the measurements have been manually
analysed thoroughly by an experienced examiner. The identified inaccuracies were treated
as follows:

(a) Angular offsets: this common error usually appears during the standing posture and
can affect the later joint angles registers during the trial (running) (Mills et al., 2007).
Offsets have been corrected manually eliminating (adding or subtracting) the difference
between the initial angle observed and the expected angle of the body segment at this
position.

(b) Positioning error: due to the fact that our measurement system, based on inertial
sensors, uses the earth’s magnetic field to determine the reference position of each
subject, it is quite common to find subjects with slight differences in their initial
reference positions. In this case, we have proceeded by correcting the reference system
aligning it with the direction of running forward. Thus, we can guarantee that all

measurements are equally oriented.
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(c) Non-physiological angles: some errors in the registration of joint angles were detected
in the database. These inaccuracies came from errors of the inertial sensors. In this
case, it was not possible to correct the error effectively, thus we proceed by eliminating
these observations from the database and repeating the measurement.

4-Dimensionality reduction: the database of all measurements was combined in a single
matrix W. The initial number of observations is 108 (18 subjects x 6 velocities = 108). But

three measurements fail, therefore W has 105 rows (observations) and 3,200 columns (50

equispaced time intervals x 64 kinematical variables). Motion data of each observation is

enclosed in the rows of the matrix W = (w;),i=1,...,105.

Before the creation of the bio-motion generator, by means of a regression model, it was
needed to reduce the dimensionality of the motion data. Computing a PCA on the running
data (contained in matrix W), resulted in a decomposition of the data matrix W into an
average running vector wy and 3,200 weighed components, arranged in a 3,200 x 3,200
matrix V:

W=Wy+a-V (1)

where Wy is a 105 x 3,200 matrix with all rows equal to wy and o = (o;) withi=1,...,105
is a 105 x 3,200 matrix of PCA scores. Each observation w; was thus expressed by a linear
combination of scores «; and PCA components (columns of matrix V). Components
represented factors related to gender, anthropometrical traits and running speed. And
scores represented individual characteristics of each runner and performance of the
running trial related to the previous factors. PCA components are arranged in descendent
order of explained variance of the original matrix data. Thus the first columns in matrix V
retained most of the information in the data sample and it was possible to select a reduced
number of components c.

Wic =wp+ajc - V. (2)

Above wy denoted the average of all the running samples. The matrix V. contained the
first components. o represents the ¢ scores of each observation of the database in the
reduced dimension space formed by the selected components. As score values change from
negative to positive values, the movement of the runner changes from men to women; high
BMI to low BMI; high speed to low speed, etc.

The decision of how many components to retain was a critical issue in the exploratory
factor analysis. To perform this decision we used the methodology of Parallel Analysis
(PA) (Hayton, Allen & Scarpello, 2004). PA is a Monte-Carlo based simulation method that
compares the observed eigenvalues (components) with those obtained from randomized
normal variables. A component is retained if its explained variance or information is higher
than the information provided by the eigenvectors derived from the random data.

5-Regression model: one of the objectives of our work was to generate a statistical
model capable of synthetizing new realistic running motion from a set of desired data:
age, gender, height, weight and velocity, also called 1D data. Accordingly, to devise the
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bio-motion generator, we needed to establish the correlation between the 1D data and
PCA scores, which provide the signature of each motion.

The correlation was obtained as a regression model, combining a partial least squares
(PLS) regression model as a first step and a linear regression model (LRM) as a second step.

PLS methodology is explained in Wold (2006) and Geladi ¢ Kowalski (1986). This type
of regression model is suitable for the kind of data involved in the bio-motion generator
since the input data of the model is strongly correlated (anthropometrical information).

The PLS regression model takes the 1D data—age, height, weight and velocity—as input
information and produces a set of PCA scores as output. The LRM model was applied to
these output PCA scores to reflect the influence of gender in the PCA scores.

In the first step, we estimated a PLS model considering anthropometrical data and
velocity of the movement as independent variables and the PCA scores as dependent
variables. The general formula of a PLS model is:

Y—Yy=B-(X—Xy,)+E (3)

where Y is the matrix of dependent variables, X is the matrix of independent variables, X,
and Y| are the matrices of mean data, B is the coefficient matrix of the PLS model and E is
the prediction error matrix.

Having four different 1D measurements for each subject x; = [age, height , weight , velocity],
we built a 105 x 4 matrix X formed by the concatenation of the vectors x;. Notice that
since matrix = o , it is constituted by PCA scores and the mean matrix Yy is the zero
matrix. Finally, we estimated the coefficient matrix B from sample data X and a with the
PLS algorithm and substituted in the equation above, obtaining the following model:

a=B-(X—Xy)+E. (4)

Where Xj is the matrix of mean anthropometrical data and velocity, and E is the prediction
error matrix. PLS decomposes the independent and dependent variables in component
spaces in order to obtain their correlation. The number of significant PLS components
in the model was selected in a leave-one-out procedure and according to the explained
variance (R?) criteria.

Secondly, the influence of gender was modelled with a LRM of the prediction error
matrix E with coefficients a= (a1,...,a.) and b= (by, ..., b.), where ¢ is the number of
retained PCA components:

E:a-l—b-gender (5)

where gender =0 for men and gender = 1 for women.

This way, the motion information related to gender which is part of the PLS error matrix
E, and uncorrelated with the prediction derived from the PLS regression, was modelled.
Notice that a; and b; were considered zero whenever their F-value was below a desired level
of statistical significance of 95%.

Once we have obtained B, a and b, whenever we want to synthesize a running motion
from new anthropometrical data and velocity, we obtain the corresponding scores & of the
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new realistic running motion by the following formula:

B
a=[a—B -Xy]+ |:bj| . [X gender] (6)
where Xj is the matrix of mean anthropometrical data and velocity.

Validation methodology of the bio-motion generator

To validate the five-step methodology described to develop the bio-motion generator we
propose a comparison between each recorded observation and the prediction of running
motion generated by the model by means of the ‘leave-one-out’ procedure. The recorded
observation is considered the true angle curve of the running motion. The predicted
motion is estimated using the ‘leave-one-out’ validation technique; that is, not including
that observation in the bio-motion generator. We wish to determine if both curves are
reproducible and sufficiently similar to consider that they represent the same motion. For
this purpose, we use the Intraclass Correlation Coefficient (ICC) as a measurement of the
reliability, and the Standard Error of Measurement (SEM) as a direct measurement of the
global error between true and predicted angles. Theoretically, the ICC is defined as the
ratio between the true variance and the predicted variance. The ICC varies between 0 and
1 and can be interpreted as the proportion of variance due to the methodology (true versus
predicted data) in the total variance. An ICC greater than 0.8 is generally considered to be
good (Fleiss, 1999). The ICC is determined between the measured or true curve (T) and
the estimated curve (E.) provided by the bio-motion generator. The ICC is determined
from the variance of both curves (T.) and (E.) following the next equation:

2
Of.

ICC=————;
(0f. +0%)

(7)

On the other hand, SEM represents the existent difference between observed (T )
and estimated curves (E.) determined with the bio-motion generator, and provide an
indication of the real magnitude of the error.

SEM =0, -1/(1—1CC); (8)

Where o. is the combined standard deviation of the true scores (T'.) and observed scores
(E.). And Sg is the combined standard deviation of the true scores and observed scores.

We have obtained the SEM for each pair of true and predicted angles for the three spatial
directions in all the joints that form the human model. For that reason, we have represented
the SEM by its descriptive statistics (mean, std., 5-percentile and 95-percentile).

RESULTS

Parallel analysis
The results of the PA (Fig. 2) have been obtained with the explained variance of the main
components extracted from the original data and the same obtained from randomized
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Figure 2 Relation between the explained variance and the number of principal components extracted
from the database and from randomized data.

data. The intersection point of both curves indicates the optimal number of components
to extract from the PCA. The original number of dimensions was 72 (3 related to the
pelvis translation 4 69 related to the body segments orientation). The results of the PA
recommend retaining the first 12 eigenvalues, which explain the 88.16% of the total
variance. Thus, the PCA allowed a percentage of data reduction of 83%, from 72 variables
to 12 weighed components.

Regression model

As it has been explained in the methodology, the regression model consists of two parts,
the first including the anthropometrical data (PLS) and the second the gender (LRM).
The dependent variables of the PLS are the scores of the first 12 principal components
(PC) of the kinematical running motion. Therefore, they are uncorrelated and the optimal
number of PLS components are separately determined for each PC score (PC 1... PC 12)
according to its adjusted R? plot (Fig. 3). PLS components are retained until their R? curve
exhibits a decrease or a non-significant increase. Thus, for instance, two PLS components
are retained for PC 1, whereas no components are considered for PC 7 and PC 9. Notice
that for those PC with 0 retained components, the PLS model provides their mean value
as output. This way, the motion information associated to those PC which is provided by
the PLS model is the average motion.

With regard to the LRM, which analyses the influence of gender in the kinematics of
running, the PCA scores which are significantly affected by gender are PC3, PC7, PC8, PC9
and PC11 (Table 2). The prediction obtained in the first step of the model is improved by
the influence of gender on these PC. PC 7 and PC 9 are only affected by gender, since their
number of retained PLS components was 0.
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Figure 3 Leave-one-out R? estimation plots for the PLS model.

Validation of the bio-motion generator

The results of the reliability study, computed from the 90 observations and the same
calculated by means of the leave-one-out technique, showed that the mean and standard
deviation of ICC, was 0.91(0.04) with a 5 percentile of 0.829 and 95 percentile of 0.971.
Only one subject exhibit an ICC lower than 0.8 in two observations (Fig. 4).

The SEM between the real and the predicted angles determined with the leave-one-out
model showed a mean (std.) of 4.16° (6.80°), with a 5 percentile of 0.41° and 95 percentile
of 14.23° (Fig. 5).

DISCUSSION

In this paper we have demonstrated that the five-step methodology on which the bio-motion
generator is based provides running motion models closely resembling the measurements
obtained with real subjects. However, while the SEM study shows that the vast majority
of errors detected between actual and predicted data of the bio-motion generator are
less than 10°, there are a percentage of observations (8%) in which greater errors are
observed. This can be explained because the model has been obtained from a small number
of subjects—only 18—and therefore the bio-motion generator is not able to adjust the
running specific characteristics of each corridor. Future work in this line of research
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Table 2 ANOVA table for the linear models.

Df Sum Sq Mean Sq F-value Pr (>F)

PCl Gender 1 214117 214117 1.092 0.298
Residuals 103 20188135 196001

PC2 Gender 1 140256 140256 2.687 0.104
Residuals 103 5377216 52206

PC3 Gender 1 259962 259962 5.592 0.0199 *
Residuals 103 4788029 46486

PC4 Gender 1 6242 6242 0.14 0.709
Residuals 103 4591853 44581

PC5 Gender 1 79045 79045 3.434 0.0667
Residuals 103 2370796 23017

PC6 Gender 1 2470 2470 0.125 0.724
Residuals 103 2028601 19695

PC7 Gender 1 81973 81973 4.361 0.0392 *
Residuals 103 1935909 18795

PCS Gender 1 88710 88710 7.979 0.00568 o
Residuals 103 1145086 11117

PCY Gender 1 62331 62331 4.962 0.0281 *
Residuals 103 1293890 12562

PC10 Gender 1 3246 3246 0.355 0.552
Residuals 103 940560 9132

PCl1 Gender 1 111297 111297 13.31 0.000417 ek
Residuals 103 861467 8364

PC12 Gender 1 1373 1373 0.29 0.591
Residuals 103 487860 4737

Notes.

Signification codes 0.001 ***’; 0.01 **’; 0.05 .

must be done to increase the database of real subjects measured and incorporate greater
variability in anthropometric and performance characteristics.

The bio-motion generator is based on a methodology which comprises five steps. In
the fourth step we tackle a dimensionality reduction based on PCA. This step is similar to
that performed by Troje (2002). However, there are some differences, as he obtained four
main components that explain more than 98% of the variance and we have obtained 12
components explaining 88.16% of variance. The greater variability of our study is explained
partly by the greater variability of the running against walking and on the other hand by the
greater speed range in our study in relation to Troje, in which each subject could select a
single comfortable walking speed. On the other hand, Troje made a second reduction of the
dimensionality based on the simplicity of temporal behaviour of the walking components
which could be modelled with pure sine functions with a scaled fundamental frequency.
This approach was not valid for the motion of running, due to the fact that the 12 PCs of
running cannot be modelled with a proportional frequency. This suggests that running is
a more complex motion than walking in the sense that there does not exist a proportion
between the frequency of oscillation of the different body segments.
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The fifth step of the methodology consists of a two-step linear regression which correlates

a given list of 1D measurements with the PCA scores of movement. A linear regression

technique has been used before to approximate motion models from a reduced marker set

and estimate the remaining markers (Liu ef al., 2005) or to model the motion-style and

the spatio-temporal movement (Torresani, Hackney ¢ Bregler, 2006). However, it has not

been used before to synthesize new human motion directly from a set of anthropometrical

and performance data. In this sense, it can be considered a real breakthrough in the field

of synthesis of human motion.
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Figure 6 Reconstructed virtual biomechanical model (skeleton+motion).

CONCLUSIONS

The major contribution of this paper is a novel statiscal methodology for modelling human
movements. The method described in this article has been developed and validated for
running motion, but this same methodology could be used to synthesize other types of
motion: walking, going up and down stairs, or even for sport movements such as: jumping,
pedalling, golf swing and putting, etc.

Our work aims to provide a realistic motion to body shapes that can be developed with
the methodology described in the work of Ballester et al. (2014). Those body shapes could
include an adjusted skeleton formed by a hierarchical set of interconnected joints and
can be used to move the body shape with the required or desired motion provided by
our methodology (Fig. 6). The integration of both methods will allow generating realistic
avatars supplied with realistic motion from a set of adjustable and simple anthropometrical
and performance data and without the need of the realization of new measurements.

A limitation of this study is the sample size. Further work needs to be done in order to
validate with a broader sample of people. Notwithstanding this limitations, the findings
suggest that the model is valid.
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