
Submitted 12 April 2022
Accepted 6 June 2022
Published 20 June 2022

Corresponding author
Weiqiang Di, diweiqiang@bjtu.edu.cn

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1019

Copyright
2022 Di

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

LightFIG: simplifying and powering
feature interactions via graph for
recommendation
Weiqiang Di
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, Beijing, China

ABSTRACT
The attributes of users and items contain key information for recommendation. The
latest advances demonstrate that better representations can be learned by performing
graph convolutions on attribute graph of the user-item pair. Recently proposed
models construct graphs that not only connect edges between user attributes and item
attributes, but also within user (item) attributes. However, to determine whether a user
is interested in an item, the relationships between user attributes and item attributes
are what we really need to mine. In many cases, due to the low correlation between
relationships within user (item) attributes and preference of the user, the artificially
connected edges within user (item) attributes contribute little to the recommendation.
Even worse, including them will not only drastically increase the training time, but
may also introduce noise and lead to degraded performance. In addition, the use of
the optimizer is also relatively simple. One single optimizer is the default configuration
for recommendation models. This may not be the best way to exploit it in many cases
however. To solve these problems, we propose an enhanced model named LightFIG
in this work. The key idea of LightFIG is twofold: First, we simplify the construction
of attribute graph which focuses on mining relationships cross user attributes and
item attributes, not between user (item) attributes. Second, we propose the idea of
relay optimization, which employs two different optimizers to continuously optimize
model parameters. Comprehensive experiments on three public datasets demonstrate
the effectiveness of our proposed model.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Graphics, Neural Networks
Keywords Recommender systems, Attribute interactions, Graph neural networks, Collaborative
filtering

INTRODUCTION
With the explosive growth of online information, recommender systems have become
indispensable tools for many businesses like online e-commerce platforms (e.g., Amazon
and Taobao) and information streaming medias (e.g., YouTube and TikTok). Users
rely on recommender systems to alleviate information overload and find what they are
interested in from the huge pool of items. In common recommendation systems, users’
behavior sequence, e.g., clicks and purchases, are leveraged to predict whether a user will
show interest to an item. Collaborative filtering (CF) is a fundamental technique that can
produce effective recommendations from implicit feedback. By assuming users that share
common interacted items tend to have similar interests, CF predicts users’ preferences

How to cite this article Di W. 2022. LightFIG: simplifying and powering feature interactions via graph for recommendation. PeerJ Com-
put. Sci. 8:e1019 http://doi.org/10.7717/peerj-cs.1019

https://peerj.com/computer-science
mailto:diweiqiang@bjtu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1019

through similarity patterns found across users with user profiles and item attributes as
input features. Using raw features directly can hardly get satisfying results; thus, feature
interactions modeling continues to attract lots of attention from both academia and
industry (Guo et al., 2017; Qu et al., 2016; Song et al., 2019; Beutel et al., 2018; Cheng et al.,
2016; Naumov et al., 2019). The common paradigm for these models is to learn latent
embeddings to represent input features, and then transformed into more abstract fixed-
length vectors via feature interactions, finally fed into fully connected layers to perform
prediction.

Effective feature interactions are critical to the success of many methods, which provide
supernumerary interaction information beyond individual features. For instance, the
combination of features ‘‘gender’’ and ‘‘age’’ is more informative than either one of them
when recommending movies. Traditional methods implicitly capture the collaborative
signals which use recorded interactions as the supervised signals. Factorization machine
(FM) (Rendle, 2010) embeds each feature into a vector representation, and constructs
pairwise feature interactions via the inner product. Due to its simplicity and effectiveness,
Attentional Factorization Machine (AFM) (Xiao et al., 2017) further extends FM by
capturing the weight of each feature interactions using attention mechanism. Neural
FactorizationMachine (NFM) (He & Chua, 2017) then captures the complex and nonlinear
relationships between users and items by using multi-layer perceptron (MLP). People
generally consider MLP as a universal function approximator, which means almost any
form of feature interactions can be learnt (Mhaskar, 1996). However, recent study (Beutel et
al., 2018) found that deep neural networks (DNNs) are inefficient to simulate even second-
order or third-order feature interactions. Wide&Deep (Cheng et al., 2016) combines the
strength of both the linear model and MLP. DeepFM (Guo et al., 2017) replaces the ‘‘wide’’
module in Wide&Deep with a factorization machine. Due to the limited expressiveness of
MLP, AutoInt (Song et al., 2019) uses a self-attentive neural network to learn high-order
feature interactions. Despite their effectiveness, most existing methods do not explicitly
consider the attribute interactions, which may limit models’ ability in capturing the crucial
collaborative signals. Different from traditional models that only implicitly mine the
collaborative signals, graph neural networks (GNN) (Gori, Monfardini & Scarselli, 2005)
naturally and explicitly encode them via topological structure and perform information
propagation on the graph to learn the user and item representations (Zhang & Chen, 2019;
Huang et al., 2019; Wang et al., 2019; Wang et al., 2020; Sun et al., 2020). In this scenario,
the behavior sequence recorded in datasets can be represented by a bipartite graph between
user and item nodes, with observed interactions represented by edges. However, they only
model interaction behaviors into the graph structure. An issue in directly using GNN on
the bipartite graph is that such graph structure may not be sufficient enough for learning
user/item representations, especially when we have attribute information. Fi-GNN (Li et
al., 2019b), L0-SIGN (Su et al., 2021a) and GMCF (Su et al., 2021b) are then proposed to
construct graphs using attributes of the user-item interaction pair to model relationships
among attributes and enhance recommendation.

Although they have shown promising results, we argue that the graph construction in
their models are rather heavy and burdensome. They build a complete attribute graph for

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

each user-item pair, where each attribute belonging to the user or item is a node and every
pair of distinct nodes is connected by a unique edge. Since both users and items are fully
characterized by their attributes, if a user shows preference for an item, some attributes of
the user must have strong relationships with some attributes of the item. For example, we
can access three user attributes in a book recommendation task: ID, nationality and age.
The information in item attributes are richer such as ISBN, language, category, publication
date, author, title, etc. If the nationality of a user is China, the recommended books for
that one are best written in Chinese. If this user is a teenager, he/she is likely to prefer
some storybooks to other genres. We can see that for each useful attribute belonging to
the user, the suitable attributes of the recommended item should be restricted accordingly.
Such kinds of correlations crossing user attributes and item attributes directly affect the
effectiveness of recommendation which we should focus on capturing, not the internal
relationships within user (item) attributes themselves. However, they are forced to be
related via a complete graph in current models since there is no supervision signal in the
attributes level. These massively increased redundant edges not only greatly increase the
computational complexity, and may even have a negative impact on the model training
which will be illustrated in the ablation study. Next we look at another aspect that can be
improved. In the recommendation field, the usual practice is to select a commonly used
optimizer such as Adam and then configure the required parameters. This single-optimizer
mode has long been followed with good results. However, sometimes the commonly used
optimizers do not fit the characteristics of experimental datasets, leading to a quickly
ended optimization process. At this moment, it is worth combining multiple optimizers
to co-optimize model parameters since different optimizers have their own characteristics
and advantages. They can collaborate to find a better optimization path. While it is not
considered by the mainstream before.

In this article, we propose a novel model LightFIG, which is designed with two
considerations to address the above two challenges in existing methods. Specifically,
we construct a simplified graph which gets rid of traditionally connected edges between
the user (item) attributes themselves and improve the message propagation mechanism.
Further more, we evolve the traditional single-optimizer mode to the dual-optimizer mode,
which divides the optimization of model parameters into two stages. Each optimizer is
responsible for one stage, and two stages relay the optimization process continuously.

To summarize, The main contributions of the article are three fold:

• We highlight the limitation of the graph construction scheme in previous models and
focus on mining relationships only between user attributes and item attributes, not
within themselves.
• To the best of our knowledge, our work is the first one to introduce the dual-optimizer
mode to relay optimize the model parameters, which is useful in the scenario where the
optimizer converges too quickly.
• We perform extensive experiments on three public datasets, demonstrating significant
improvements of our model over state-of-the-art methods. The necessity of the two
kinds of improvements is verified empirically.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

RELATED WORK
We reviewed existing work on attribute-aware CF, graph-based CF and optimization
methods, which are most relevant to our article.

Attribute-aware recommendation
Extensive studies on CF recommendation have been carried out and achieved great success.
Attributes of users/items are important information for preferences, and their proper use
plays a central role in improving the recommendation performance. It is essential to extract
informative representations from the user-item interactions and attributes. Embedding
techniques have been widely used to project features from high-dimensional sparse vectors
to low-dimensional dense vectors. Factorization machine (FM) (Rendle, 2010) is an early
popular model which projects both users and items into a low latent space and utilizes
inner product to learn pairwise interactions between every two attributes. It gained a huge
impact due to its simplicity and effectiveness and is followed by many work. However,
FM can not obtain the complex interactions of different features. AFM (Xiao et al., 2017)
further strengthened FM by learning the influence of each cross feature using the attention
mechanism. The linearity of inner product makes it insufficient to learn the complex
and nonlinear relationships between users and items. To make up for this shortcoming,
NFM (He & Chua, 2017), Wide&Deep (Cheng et al., 2016) and DeepFM (Guo et al., 2017)
are then proposed to use various kinds of linear and nonlinear multi-layer perceptron
(MLP) to enhance their capability. Instead of feature interactions generated by a single
model, multi-interaction ensembles are employed to take advantages of different models.
In Wide&Deep, it combines LR and MLP and in DeepFM, it combines FM and MLP.
For tasks with high-order features, MLP is not sufficiently expressive to capture such
information. AutoInt (Song et al., 2019) takes a different approach and makes use of the
latest techniques, self-attention mechanism and residual networks, to generate non-linear
features. Despite good performance, we argue that the above works are insufficient to
yield optimal embeddings for CF, since the collaborative signals are only implicitly learned
and forgoing their relationships. Hence, we pay attention to mining relationships among
attributes in this work.

Graph neural networks for recommendation
Another relevant research line is to leverage graph neural networks(GNN) (Gori,
Monfardini & Scarselli, 2005; Scarselli et al., 2008), which consider information from the
perspective of graphs for recommendation since many datasets have a graph structure
essentially (Bruna et al., 2013; Henaff, Bruna & LeCun, 2015). The core operation in GNN
is the embedding propagationmechanism, which aggregates the representation of neighbor
nodes to update the central node’s representation. GraphSAGE (Hamilton, Ying & Leskovec,
2017) proposes three types of aggregators: LSTM aggregator, Pooling aggregator and Mean
aggregator. The attention mechanism is introduced in the propagation process at the
graph attention network (GAT) (Veličković et al., 2017). GNN models have been widely
adopted in many fields for their outstanding representation ability (Gong & Cheng, 2019;
Zhang & Chen, 2018; Xu et al., 2019). The advantage of GNN is that it provides a powerful

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 4/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

mechanism to explore multi-hop relationships which have been proven beneficial for
recommendation tasks (Wang et al., 2019; Ying et al., 2018). Motivated by the strength
of GNN, some works adapt GNN to the user-item interaction graph to better capture
the collaborative signals, where users and items act as nodes while an interaction like
purchase or click constitutes an edge between them Huang et al. (2019); Wang et al.
(2020); Sun et al. (2020). However, they only convert users’ behaviors into the graph.
Fi-GNN (Li et al., 2019b), L0-SIGN (Su et al., 2021a) and GMCF (Su et al., 2021b) are
models proposed to explore the attribute graph of the user-item pair to learn relationships
among attributes and improve recommendation. However, in these models of attribute
graph, the construction of graphs is still dominated by the complete graph, where every
pair of distinct nodes are linked. This way is rather heavy and burdensome. In the attribute
graph, relationships within user (item) attributes themselves are not important for the
recommendation task in the context of our problem. The preservation of these edges will
not only greatly increase the overhead of training time, but may also introduce noise and
lead to performance degradation. In addition, in the message propagation mechanism of
GNN, they employ element-wise multiplication between every two neighbors to model the
attribute relationships. However, more effective feature crosses can be exploited to provide
additional interaction information. In this article, we propose to construct a simplified
attribute graph which only links nodes between the user attributes and item attributes.
We then improve the message propagation mechanism by designing multiple informative
feature crosses, such as concatenation, element-wise product and element-wise addition,
and then integrating them. Finally, following the residual connections of Resnet (He et al.,
2016), we propose a graph-level gating layer, which integrates the original embedding and
updated representation of users/items after graph convolutions using gating mechanism,
to help with training.

Optimization methods
The goal of many machine learning methods is to update model parameters by optimizing
their objective functions. An iterative process is involved which applies incremental
modifications to the trainable parameters. Training a large deep neural network can
be painfully slow. Using a faster optimizer than the regular stochastic gradient descent
(SGD) can get huge speed boost. There are some improved algorithms to the primitive
gradient descent. One method of speeding up training per-dimension is the Momentum
method (Rumelhart, Hinton & Williams, 1986). The Momentum’s key operation is to
accelerate progress along dimensions in which gradient consistently point in the same
direction and to slow progress along dimensions where the sign of the gradient continues
to change. AdaGrad (Duchi, Hazan & Singer, 2011) performs well for sparse gradients on
large scale learning tasks, which uses only first order information but has some properties of
second order methods. RMSprop (Tieleman & Hinton, 2012) is an optimization algorithm
that generates its parameter updates using a momentum on the rescaled gradient. It has
a close relation with Adam (Kingma & Ba, 2015), which will be stated later. In particular,
RMSprop is essentially a special case of Adam with β1= 0. Adam, A prominent first-order
optimization algorithm, is very popular and often used as the default optimizer. It is derived

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

from the above two well-behaved optimizers: an exponential moving mean value of past
gradients and squared gradients are taken as done in AdaGrad and RMSprop respectively.
The current recommendation models basically use a single Adam optimizer to optimize
network parameters by default (Li et al., 2019b; Su et al., 2021a; Su et al., 2021b; Huang
et al., 2019; Wang et al., 2020; Sun et al., 2020). This certainly reflects people’s trust in it,
but more diverse ways of using optimizers still need to be developed to deal with some
challenging scenarios. For example, when commonly used optimizers stop quickly due
to the mismatched characteristics on some datasets, combining the strengths of multiple
optimizers to co-optimize is an attractive and profitable option, which may find a better
way to optimize parameters. This is exactly what we propose in this article.

METHODOLOGY
In this section, we introduce the design of the proposed model LightFIG. The
recommendation problem is first formulated. We then elaborate on the details of LightFIG.

Problem definition
We formulate the recommendation task with necessary notations here. Let U and V
denote the sets of users and items, and YM×N denotes the interaction matrix where M
and N are the number of users and items. Here, an observed interaction yuv = 1 in Y
means user u has interacted with item v in history, otherwise yuv = 0. There are a set of
J user attributes A=

{
a1,a2,...,aJ

}
and K item attributes B= {b1,b2,...,bK }. Each user

and item is associated with a list of attributes Au⊂A and Bv ⊂ B. It should be noted here
that the identification index of each user/item is also treated as one of the attributes. After
concatenating all the features, one input example can be represented as:

x = [Au,Bv]. (1)

The purpose of the task is to design a predictive model so that given an input x , the model
can output the probability y that the target user u interacts with the candidate item v .

Overall architecture
We summarize the general workflow of the proposed LightFIG in Fig. 1, which roughly
includes three parts: (1) the embedding layer that projects all attributes into a low-
dimensional space; (2) the embedding propagation layer that refines embeddings by
injecting connectivity relations between attributes; and (3) the prediction layer that
aggregates the refined representations and outputs the matching score of a user-item pair.
We next describe each component in detail.

Embedding layer
The multi-field categorical feature x is usually sparse and of huge dimension. Following
mainstream recommendation models, we associate each attribute with an embedding
vector, resulting in a set of embeddings to describe the input user and item, respectively.
For example, the embedding vector of a m-field input can be obtained:

E= [e1,e2,e3,...,em] (2)

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

U
se

r
Ite

m

…

…

…

…

… …

Attribute Embedding

Attribute Interaction Graph
Correlation learning

through Graph Convolution

At
te

nt
io

n
La

ye
r

At
te

nt
io

n
La

ye
r

Figure 1 An overview of the LightFIGmodel.
Full-size DOI: 10.7717/peerjcs.1019/fig-1

where ei ∈Rd denotes the embedding vector of attribute i and d is the embedding size.
We include the identification index into the user and item attributes for that it helps to
distinguish users (items) when their other features are the same.

Graph convolution layer
In our model, the embedding vectors were refined by propagating them on the attribute
graph. This can lead to more effective representations as it will augment embeddings
with explicit collaborative signals by aggregating a node’s neighbors. In general, a user’s
preference is reflected among the interacted items. As a user or item is completely
characterized by their attributes, we can reason that a strong co-occurrence pattern
exists between some attributes of the user and some attributes of the item if the user is
interested in that item.

Graph construction
Graph structure is essential for the scope and type of information to propagate. Given the
attributes of the user and item, we then consider how to construct a graph connecting
them. We represented each input of multi-field features as an attribute graph, where each
node corresponds to an attribute. The attribute can be in multiple users or items, serving as
a bridge to improve its representation. The construction of edges is critical. Unfortunately,
there is no supervision signal to tell us which attributes are strongly correlated and should be
linked. In previous models, a complete graph is constructed among the attributes included
in each interaction sample, where any two attributes are connected by an edge. However,
we propose to link nodes only between user attributes and item attributes and there is no
edge within the user (item) attributes. This is because in many cases, whether a user is
interested in an item depends on the matching degrees between the user attributes and the
item attributes, not the relationships within user (item) attributes themselves. Formally,
the input interaction x can be represented by an undirected attribute graph G= (V ,L).
The nodes in V consist of the user attributes ai ∈Au and item attributes bj ∈Bv . The edges
in L are denoted as est = (s,t) with s∈Au and t ∈Bv (or s∈Bv and t ∈Au alternatively for
the sake of undirected edges). The attribute graph establishes link relations to better mine
correlations and co-occurrence between attributes.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 7/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1019/fig-1
http://dx.doi.org/10.7717/peerj-cs.1019

Embedding propagation layer
With the attribute graph at hand, it is now time to improve feature embeddings with the
graph convolution. We will build upon the message-passing mechanism of common GNNs
and make certain changes. The graph convolution on the attribute graph is formulated as
follows:

a(l+1)u =

∑
v∈Nu

g (a(l)u ,b
(l)
v)

b(l+1)v =

∑
u∈Nv

g (b(l)v ,a
(l)
u) (3)

where a(l)u and b(l)v denote the attribute representation of the user and item at the l-th graph
convolution layer, and g (·) is a self-defined function. One layer of graph convolution will
explore first-order relationships between linked attributes and co-interacted attributes for
second-order connectivity. More layers can be stacked to mine the high-order correlations.

Message Propagation In graph convolutional networks, the representation for each node
is updated by integrating the embedding of the node itself with the node embeddings in its
local neighborhood. The message propagation layer receives the information transferred
from directly connected nodes to prepare for the later neighborhood aggregation. For a
pair of linked nodes (s,t), we define the message transferred from t to s as:

mst = g (et ,es) (4)

wheremst is the propagatedmessage fromnode t to s.g (·) is amessage propagation function,
which takes representations of both the central node es and one directly connected node
et as input. The propagation step is of the vital importance for graph convolution, which
decides how neighbors’ information is propagated. We implement g (·) in our work as
follows:

mst =ReLU
(
(et ||es)W1+ (ei�eu)W2+ (ei+eu)W3

)
W4 (5)

where W1 ∈R2d×h, W2,W3 ∈Rd×h, W4 ∈Rh×d are trainable transformation matrices to
learn multiple feature crosses. h is the hidden size of transformation, || is the concatenation
operation,� denotes the element-wise product and+ represents the element-wise addition.
Operation� can passes more messages from the similar attributes. The addition operation
+ can highlight features with large accumulated values. The concatenation operation ||
is more flexible and can capture the influence between features of different dimensions.
These three feature crosses can effectively enrich model’s feature quality and finally lead to
better performance for recommendation.

Neighbor aggregation Now we need to aggregate the neighbors information of the central
node. Sum-pooling is one of the most straightforward aggregation operations. We generate
the updated representation of a node by aggregating its neighbors’ representations through
the following way:

ms=
∑
t∈Ns

mst (6)

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 8/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

wherems ∈Rd is the message passing result of node s and Ns is a set containing items that
node s links with.

In many cases, the representation of attributes can be refined by their multi-hop
neighbors, which can be captured by stacking more such graph convolution layers. The
suitable layer number varies with datasets.

User/Item Representation Since a user (item) is composed of multiple attributes, we
use both the mean and max pooling to pool all nodes constituting them and obtain
their representations. This can characterize user (item) representations from different
perspectives. Formally, the pooling function is:

u=
1
|Au|

∑
i∈Au

mi+max
j∈Au

mj

v=
1
|Bv |

∑
i∈Bv

mi+max
j∈Bv

mj (7)

where |Au| is the size of set Au, u and v are the refined representations of the user and item
respectively.

Prediction layer
The output of the graph convolution layer encodes structural information of attributes
connections into embeddings. With this information at hand, the role of the prediction
layer is to output a prediction by synthesizing existing useful information.

Graph-level gating layer
At this stage, we can obtain two representations of the user (item). One is the original
embedding representation before the graph convolution layer, which is got by applying
the sum pooling on all attribute embeddings belonging to the user (item). The second
is the representation u (v) learned after the graph convolution layer, which can be got
by applying the same pooling method on all the updated attribute representations. We
re-denote the two representations of the user (item) as z0 and z1 for notation unity, where
z0,z1 ∈Rd . Due to the good performance of Resnet (He et al., 2016)’s residual connections,
we follow it and add the original embedding and updated representation of users/items
to help with training. Slightly different from the original method, we fuse them through a
gating mechanism. This is done as follows:

λ= σ ((mean(z0)||mean(z1))W)

z= λ[0] ·z0+λ[1] ·z1 (8)

where mean(z0),mean(z1)∈R1 is the mean pooling of vectors z0 and z1, we concatenate
the two pooling values and put them through a linear transformation layer with a trainable
matrixW∈R2×2.σ is the sigmoid function to limit the coefficients between 0 and 1.

User-item matching
After the integration of Eq. (8), we can get final representations of the user and item and
denote them with zu and zv respectively. It is important to explicitly model interactions

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

between the target user and item for preference prediction. Considering the simplicity and
effectiveness of the dot product, we select it to estimate the user’s preference towards the
target item as follows.

y
′

= zu>zv . (9)

Model training
To optimize model parameters, we opt for the binary cross-entropy loss, which has been
intensively used in recommender systems. L2 regularization is also employed to prevent
overfitting. Then we minimize the following objective function:

L=−
1
N

N∑
j=1

(yj log (y
′

j)+ (1−yj)log (1−y
′

j))+λ(||θ||2) (10)

where yj and y
′

j are ground truth of user clicks and estimated prediction respectively, N is
the total number of training samples, θ represents all trainable parameters in our model
and λ controls the strength of penalty.

Dual optimizer relay mechanism
Stochastic gradient-based optimization is very important in many fields of today’s
machine learning. Many problems can be transformed as the optimization of an objective
requiring minimization with respect to its parameters. These objective functions can have
some sources of noise such as data subsampling and dropout regularization. Efficient
optimization techniques are required to overcome the noisy objective function. Adaptive
optimization methods like AdaGrad (Duchi, Hazan & Singer, 2011), RMSprop (Tieleman
& Hinton, 2012) and Adam (Kingma & Ba, 2015) have been proposed to learn fast with an
element-wise scaling term on learning rates.

In recent recommender systems, there is little improvement in the application of
optimizers. Summarizing existing models, a common process is to choose a single
mainstream optimizer like Adam and set the corresponding learning rate. While each
optimizer has its own unique design philosophy and advantage. For example, AdaGrad
works well with sparse gradients and RMSprop has good performance in on-line and
non-stationary settings. In some scenarios, The common optimizers do not match the data
characteristics, causing the optimization to end quickly in the traditional single-optimizer
mode. At this time, it is worth combining multiple optimizers to co-optimize model
parameters as it may find a better evolutionary path for parameter optimization. Sadly,
this kind of work has not been seen so far.

To improve this situation, we propose a dual optimizer relay mechanism. The core idea
of this mechanism is to divide the optimization of model parameters into two stages. In the
first stage, we used one selected optimizer to optimize parameters to the best of its ability.
We then switch to the second optimizer and continue to optimize upon the optimized
parameters in the first stage. Our dual optimizer relay mechanism fixes Adam as the first
optimizer since it is a commonly used optimizer with good effect. We only selected the
second appropriate optimizer for each dataset. Our experience shows that the optimal
combination of optimizers vary for different datasets.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 10/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

Model complexity analyses
Let us now analyze the complexity of our model from the following two aspects: the
parameter number and the time complexity. Although there are MLP parameters in the
graph convolution layer, the embedding layer provides most trainable parameters since
the attributes number in dataset is usually much larger than the embedding dimension.
We denote the attributes number for users and items as J and K , respectively, and the
embedding size be d . Then the embedding layer occupies (J +K)×d parameters. From
the perspective of parameter number, the complexity of our model is at a low level for that
the number of trainable parameters is similar to FM.

For model training, compared with previous GNN-based models such as Fi-GNN,
L0-SIGN and GMCF, the difference of time complexity was mainly caused by the graph
construction since the more edges, the more computations in the graph convolution layer.
Given a dataset, suppose each user has P attributes and each item has Q attributes in
average, then the time taken when performing one graph convolution layer using previous
models is approximately O((P ∗Q+P2

+Q2)d). However, the time complexity for our
proposed model is approximately O((P ∗Q)d). It is worth noting that usually Q is larger
than P . In many cases, nearly half of the training time can be saved, which will be shown
in the ablation study. We can also find that the time complexity can be reduced from
approximately the power order O(Q2d) to linear order O(Qd) when Q is much larger than
P , which makes the training process much faster.

EVALUATION
In this section, we first introduce the datasets, baseline methods, and experimental settings
used in our experiments. Then, we investigate the performance of our proposed LightFIG
compared with existing baselines to verify its effectiveness. Finally, wemake further analysis
of our model under different experimental settings.

Dataset description
To evaluate the performance of our proposed method, we conduct experiments on three
datasets from MovieLens 1M, Book-Crossing and Taobao, which vary in domain and size.
All datasets can be accessed at GitHub (https://github.com/diweiqiang/LightFIG/tree/master/
data). We summarize the statistics of them in Table 1. The ratio of attributes number of
users to that of items in average for the constructed attribute graph is shown in the last
column. This can be helpful in estimating the time complexity of the model. Below are
descriptions of the used datasets:

• MovieLens 1M (Harper & Konstan, 2015): A widely adopted dataset in movie
recommendation. It contains movie ratings and corresponding side information about
users and movies.
• Book-Crossing (Ziegler et al., 2005): A dataset about users’ ratings of books. Besides,
more information about the user and consumed book can be found in their attributes.
• Taobao (Zhou et al., 2018): A collected traffic logs of clicks on displayed advertisements
showed on the shopping site of Taobao. Each data record contains a user, a displayed
advertisement and other side information useful for recommendation.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 11/21

https://peerj.com
https://github.com/diweiqiang/LightFIG/tree/master/data
https://github.com/diweiqiang/LightFIG/tree/master/data
http://dx.doi.org/10.7717/peerj-cs.1019

Table 1 Dataset statistics. The attr refers to ‘‘attributes’’.

Dataset #Data #User #Item #User attr #Item attr Attr ratio

MovieLens 1M 1,149,238 5,950 3,514 30 6,944 4:9.5
Book-Crossing 1,050,834 4,873 53,168 87 43,157 3:7.7
Taobao 2,599,463 4,532 371,760 36 434,254 6:6.1

In order to be consistent with previous models when preparing data samples, we keep
those with ratings no less than four as positive ratings for MovieLens 1M and treat all
ratings for Book-Crossing as positive ratings for that not much data is available. The same
number of negative samples are chosen to pair the positive samples. To filter noisy data,
we only keep users with at least 10 positive ratings for MovieLens 1M and have at least 20
positive ratings for Book-Crossing and Taobao.

For each dataset, we randomly selected 60% of the total samples as the training set,
another 20% as the validation set, and the last 20% as the test set. The validation set was
used to search for better parameter settings, and the test set is used to evaluate the final
performance.

Baselines
To demonstrate the effectiveness of LightFIG, we compare it with several methods as
follows:

• FM (Rendle, 2010): A competitive model which applies a sum of pairwise dot product
of features to obtain the prediction score.
• AFM (Xiao et al., 2017): Attention mechanism is used to adjust the weight of each
interaction in FM.
• NFM (He & Chua, 2017): A model leverageing aMLP to learn nonlinear and high-order
interaction among features.
• W&D (Cheng et al., 2016): It is a deep neural network joined with a linear model.
• DeepFM (Guo et al., 2017): DeepFM shares the feature embedding between the FM and
the deep neural network.
• AutoInt (Song et al., 2019): It learns high-order feature interactions by applying a
multi-head self-attentive neural network.
• DGCF (Wang et al., 2020): It considers user-item relationships at the intents level and
generates disentangled representations.
• Fi-GNN (Li et al., 2019b): It proposes to represent the multi-field features in a graph
structure for the first time.
• L0-SIGN (Su et al., 2021a): It detects the beneficial feature interactions via a graph
neural network approach and L0 regularization.
• NIA-GNNl0: We utilize the two neighbor aggregation mechanisms proposed in NIA-
GNN (Sun et al., 2020). Since the mechanisms used in NIA-GNN are for incomplete
graph, we therefore apply them upon the learned graph by L0-SIGN.
• GMCF (Su et al., 2021b): It highlights the different impacts of attribute interactions and
treats them differently when doing predictions.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

Parameter settings
We implemented our model in Pytorch. The embedding size d was fixed to 64 and the
hidden size h in Eq. (5) was 4d for fair comparison. The coefficient λ for parameter
regularization in Eq. (10) was set as 1×10−5. The batch size chosen was 128. In our dual
optimizer relay mechanism, the optimizer for the first stage was Adam for all datasets,
with learning rates denoted as lr1 set to 0.001. RMSprop was selected as the optimizer
in the second stage for datasets MovieLens 1M and Book-Crossing with learning rates
denoted as lr2 set to 0.0008 and 0.0005 respectively, AdaGrad was used as the optimizer
in the second stage for dataset Taobao with learning rate lr2 of 0.1. For parameter settings
of most baseline methods, we follow the configuration as in the article on GMCF. For
NIA-GNNl0, the number of layers k = 2. We adopted three widely-used protocols to
evaluate the quality of prediction: Area Under ROC (AUC), Logloss, and Normalized
Discounted Cumulative Gain (NDCG). AUC and Logloss are widely used metric in binary
classification and NDCG@k is a common metric to evaluate the top-k recommendation.
We set k to 5 and 10. All experiments were repeated five times and the average results was
taken.

Performance comparison
We first compared results of all methods on the three datasets. Table 2 presents the overall
performance and we have the following observations:

• FM and AFM achieve the worst performance on all three datasets, indicating that only
dot product itself is not good to extract information from attribute interactions. NFM
and DeepFM achieve better performance than FM and AFM by a large margin. This is
because they can model more complex feature interactions through the MLP to capture
nonlinear relationships. The performance of AutoInt is also good, which demonstrates
the potential of the self-attention mechanism, and verifies that simply using MLP might
limit the representation learning and interaction modeling.
• From the results, DGCF performs relatively poor on three datasets. This may be due
to that attributes are not as decomposable as items DGCF was originally applied.
NIA-GNNl0’s performance is decent, but the improvement upon L0-SIGN isn’t huge.
This may be attributed to the edges in the graph, which are learned by L0-GNN, since
the accuracy of these connections is not so reliable, leading to limited performance
improvement. Attribute graph based methods like LightFIG and GMCF achieve better
results. This provides evidence that modeling the connectivity information among
attributes is beneficial to obtain better embeddings in learning the collaborative signals.
GNN can learn more meaningful representations by performing message propagation
on the attribute graph.
• Our proposed model consistently outperforms all baselines with respect to all measures.
Regarding the t -test, the improvements LightFIG achieved are statistically significant
with the p-value on all metrics less than 0.05. We attribute the performance boost
to: (1) LightFIG constructs a more efficient attribute graph which gets rid of lots of
redundant or even interfering edges, and focuses on mining relationships only between
user attributes and item attributes. Better embedding propagation over the attribute

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

Table 2 Overall Performance Comparison. The bold indicates the best result, while the second-best performance is underlined.

Methods MovieLens 1M Book-Crossing Taobao

AUC Logloss NDCG@5 NDCG@10 AUC Logloss NDCG@5 NDCG@10 AUC Logloss NDCG@5 NDCG@10

FM 0.8761 0.4409 0.8143 0.8431 0.7417 0.5771 0.7616 0.8029 0.6171 0.2375 0.0812 0.1120
AFM 0.8837 0.4323 0.8270 0.8676 0.7541 0.5686 0.7820 0.8258 0.6282 0.2205 0.0872 0.1240
NFM 0.8985 0.3996 0.8486 0.8832 0.7988 0.5432 0.7989 0.8326 0.6550 0.2122 0.0997 0.1251
W&D 0.9043 0.3878 0.8538 0.8869 0.8105 0.5366 0.8048 0.8381 0.6531 0.2124 0.0959 0.1242
DeepFM 0.9049 0.3856 0.8510 0.8848 0.8127 0.5379 0.8088 0.8400 0.6550 0.2115 0.0974 0.1243
AutoInt 0.9034 0.3883 0.8619 0.8931 0.8130 0.5355 0.8127 0.8472 0.6434 0.2146 0.0924 0.1206
DGCF 0.9011 0.3899 0.8602 0.8907 0.8109 0.5357 0.8111 0.8453 0.6388 0.2187 0.0893 0.1202
Fi-GNN 0.9063 0.3871 0.8705 0.9029 0.8136 0.5338 0.8094 0.8522 0.6462 0.2131 0.0986 0.1241
L0-SIGN 0.9072 0.3846 0.8849 0.9094 0.8163 0.5274 0.8148 0.8629 0.6547 0.2124 0.1006 0.1259
NIA-GNNl0 0.9099 0.3803 0.9021 0.9204 0.8189 0.5259 0.8322 0.8793 0.6632 0.1981 0.1083 0.1361
GMCF 0.9127 0.3789 0.9374 0.9436 0.8228 0.5233 0.8671 0.8951 0.6679 0.1960 0.1112 0.1467
LightFIG 0.9238 0.3622 0.9457 0.9523 0.8457 0.5018 0.8870 0.9131 0.6810 0.1944 0.1253 0.1612
Improv 1.22% 4.41% 0.89% 0.92% 2.78% 4.10% 2.29% 2.01% 1.96% 0.82% 12.7% 9.88%
p-value 8.4e−5 9.3e−4 2.5e−5 3.9e−5 5.7e−5 8.4e−4 2.2e−5 1.7e−5 2.9e−4 6.4e−3 3.4e−3 1.8e−3

graph and information fusion mechanism are designed to distill informative features
from neighbors; (2) The dual optimizer relay mechanism upgrades the traditional single-
optimizer process to a dual-optimizer process. Two different properly chosen optimizers
can leverage their respective strengths and coordinate to continuously optimize model
parameters.

Ablation study
In this section, we conduct experiments to analyze different components in our model.
Several variants are developed to verify the rationality of some designs. Results are illustrated
in Table 3.

LightFIG(+FS) is LightFIG with additional edges between user (item) attributes. These
added edges do not obviously improve performance on datasets MovieLens 1M and
Book-Crossing, which means they are redundant here. Not only that, they also carry a lot
of extra computations. Figure 2 demonstrates the time cost of different methods. We can
see that the training time of our model is greatly reduced on both datasets MovieLens 1M
and Book-Crossing. The advantage of time cost on dataset Taobao is not obvious. This is
because in the first two datasets, the average attributes number of items is larger than that
of users, but this is not the case in Taobao, which can be seen in the last column of Table 1.
To make matters worse, these extra edges can even interfere with the model performance
on dataset Taobao with a non-negligible performance drop in NDCG@10. This fully shows
the necessity of removing redundant edges as done in our method.

LightFIG(-D) is LightFIG removing the dual optimizer relay mechanism. From the
results we can address that incorporating this dual-optimizer co-optimization approach
brings significant improvements in the recommendation accuracy. Besides, Our empirical
experiments show that in MovieLens 1M and Book-Crossing, better results can be achieved

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

Table 3 Ablation study with different variants of our model.

Methods MovieLens 1M Book-Crossing Taobao

AUC NDCG@10 AUC NDCG@10 AUC NDCG@10

LightFIG(+FS) 0.9240 0.9510 0.8462 0.9112 0.6814 0.1590
LightFIG(-D) 0.9186 0.9484 0.8406 0.9077 0.6683 0.1466
LightFIG(-G) 0.9158 0.9465 0.8227 0.8976 0.6793 0.1584
LightFIG(-CA) 0.9133 0.9454 0.8030 0.8820 0.6772 0.1593
LightFIG(-C) 0.9175 0.9482 0.8365 0.9050 0.6735 0.1581
LightFIG(-ME) 0.9225 0.9509 0.8417 0.9095 0.6818 0.1590
LightFIG(-MA) 0.9213 0.9501 0.8421 0.9076 0.6803 0.1579
LightFIG 0.9238 0.9523 0.8457 0.9131 0.6810 0.1612

MovieLens 1M Book-Crossing Taobao
0

20

40

60

80

100

120

140

m
in

ut
es

49

35

148

73

57

150DORec
DORec(+FS)

Figure 2 The comparison of average training time.
Full-size DOI: 10.7717/peerjcs.1019/fig-2

using Adam and RMSprop. While Adam and AdaGrad is a more suitable combination on
dataset Taobao, which will be further explained later.

LightFIG(-G) is LightFIG without the gating mechanism demonstrated in Eq. (8), they
are directly added instead. We can see from the results that removing this mechanism
causes a consistent drop in performance, which demonstrates its effectiveness. Moreover,
the gating mechanism works much better on datasets MovieLens 1M and Book-Crossing
than the third Taobao.We speculate this is because Taobao ismore sparse, only embeddings
updated through GNN structure can capture useful information for the recommendation
task in this scenario.

In the message propagation part with Eq. (5), LightFIG use three cross-feature
interactions to construct useful input for subsequent MLP. They are concatenation,

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 15/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1019/fig-2
http://dx.doi.org/10.7717/peerj-cs.1019

Table 4 The impact of depth in graph convolution.

Methods MovieLens 1M Book-Crossing Taobao

AUC NDCG@10 AUC NDCG@10 AUC NDCG@10

LightFIG-2 0.9187 0.9487 0.8367 0.9041 0.6736 0.1590
LightFIG-3 0.9180 0.9484 0.8362 0.9046 0.6738 0.1591
LightFIG 0.9238 0.9523 0.8457 0.9131 0.6810 0.1612

element-wise product and element-wise addition. To test their validity, we remain
only element-wise product in variant LightFIG(-CA), remain element-wise product and
element-wise addition in variant LightFIG(-C). The results show that concatenation and
element-wise addition can stack on top of element-wise product and gain positive benefits
continuously, which proves the necessity of some artificial cross features when propagating
message.

We now examine the impact of global average pooling andmax pooling when integrating
the attribute representations of a user (item) done in Eq. (7) (since this worked well, we did
not consider other more sophisticated alternatives). LightFIG(-ME) is LightFIG without
the global mean pooling and LightFIG(-MA) is LightFIG without the global max pooling.
The results show that both max and mean pooling are effective, justifying their selection as
the feature fusion scheme.

Impact of high-order connectivity
We now attempt to understand whether stacking more graph convolution layers will
facilitate the representation learning with information propagated from multi-hop
neighbors.

We used LightFIG-2 to denote the model with two graph convolution layers, and similar
notations for others. It is worth emphasizing here that our LightFIG has only one graph
convolution layer. The performance is reported in Table 4. A key observation we can
find is that adding more layers does not get the expected stronger performance. Instead,
there is a non-negligible performance drop. Experimental results here show that messages
from multi-hop neighbors help little or even harm, as the benefits of stacking more layers
mainly comes from fusing information of multi-hop neighbors. Taking a random node
of user attributes in the attribute graph as an example, its one-hop neighbors are nodes
of item attributes and its two-hop neighbors are nodes of user attributes. This shows that
for embedding representations of user attributes, the first-order interactions with item
attributes are the key for recommendation, and the attribute interactions within the user
attributes do not help. The same is true for item attributes. This just proves one core point
of our article: the correlation between user attributes and item attributes is what we need
to pay more attention to, not that within user attributes or item attributes themselves.

Impact of optimizer combinations
In this section, we conduct experiments to analyze the influence of different optimizer
combinations. We developed several variants to better understand their effectiveness. It is

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 16/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
lr_2

0.154

0.156

0.158

0.160

0.162

0.164

ND
CG

@
10

Performance of Adagrad on Taobao

5e-5 1e-4 5e-4 1e-3 5e-3 0.01 0.05 0.1
lr_2

0.1450

0.1455

0.1460

0.1465

0.1470

0.1475

ND
CG

@
10

Performance of RMSprop on Taobao

9e-5 1e-4 3e-4 5e-4 7e-4 9e-4 0.0011 0.0013
lr_2

0.9025

0.9050

0.9075

0.9100

0.9125

0.9150

0.9175

0.9200

ND
CG

@
10

Performance of RMSprop on Book-Crossing

0.01 0.012 0.014 0.016 0.018 0.020 0.022 0.024
lr_2

0.909

0.910

0.911

0.912

0.913

ND
CG

@
10

Performance of Adagrad on Book-Crossing

8e-5 3e-4 8e-4 1e-3 5e-3 9e-3 0.06 0.1
lr_2

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

ND
CG

@
10

Performance of dual Adam on Taobao

1e-5 8e-05 3e-4 8e-4 1e-3 5e-3 8e-3 0.03
lr_2

0.900

0.902

0.904

0.906

0.908

0.910

0.912

0.914
ND

CG
@

10
Performance of dual Adam on Taobao

Figure 3 The effect of different optimizer combinations.
Full-size DOI: 10.7717/peerjcs.1019/fig-3

worth noting that the dual optimizer relay mechanism fixes Adam as the first optimizer
and only select the appropriate second optimizer for different datasets.

Let’s first take the Taobao dataset as an example. The first row in Fig. 3 shows the
prediction performance with Adagrad and RMSprop as the second optimizer respectively
and x-axis represents different learning rate of the second optimizer. The sub-figure about
Adagrad shows the dynamics around the optimal value we searched for, and note that
this optimizer was also finally adopted by LightFIG for this dataset. The sub-figure about
RMSprop shows what performance looks like on part of nodes we have searched. Clearly,
despite our extensive search on RMSprop, Adagrad outperforms RMSprop with a large

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 17/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1019/fig-3
http://dx.doi.org/10.7717/peerj-cs.1019

margin. This shows that different optimizer combinations can have a significant impact on
performance.

Different combination of optimizers can sometimes achieve the same effect. We now
look at the influence on dataset Book-Crossing. The second row in Fig. 3 shows the results
with RMSprop and Adagrad as the second optimizer respectively. We can find that the
best performance they can achieve is very close. This shows that the optimal optimizer
combination may not be unique.

Usually two optimizers of the same type do not achieve better results, on the contrary
they are likely to cause performance degradation. Let’s take Adam’s performance on the
Taobao dataset as an example. The results are shown in the last row of Fig. 3. We did a
wide-ranging search on the learning rate to ensure the reliability of results and the graph
shows part of values we have searched for. The red dashed line at the top is the optimal value
LightFIG has achieved, and the yellow dashed line is the optimal value that can be achieved
using a single Adam optimizer. The results show that using the same type of optimizer
does not help optimize parameters any better, but is more likely to rapidly deteriorate the
learned values. It is difficult to find a better optimization path from the perspective of the
same type of optimizer. We only show results on the Taobao dataset, but there are similar
conclusions on other datasets.

We did not just test the combined effects of the above three optimizers, but they did not
work well, and considering the limitation of space, we will not show them here.

CONCLUSION
In this work, our improvements are mainly carried out in two aspects. The first one is
that we propose to simplify the unnecessarily complicated attribute graph for collaborative
filtering and focusing on mining relationships between user attributes and item attributes.
By constructing an efficient attribute graph and better embedding propagationmechanism,
we can not only save lots of training time but may also boost the recommendation
performance. The second one is that we propose a dual optimizer relay mechanism,
which changes the traditional single-optimizer pattern and employs two different types of
optimizers to coordinate optimizing network parameters. The extensive experiments on
three real-world datasets have demonstrated the superiority of our proposed LightFIG over
the state-of-the-art methods.

For future work, we are interested in designing a simple yet effective method to calculate
attribute correlations and provide a more accurate basis for whether to link, to change the
situation of blindly linking attributes due to the less of supervision signal for associations
between user and item attributes.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 18/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Weiqiang Di conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files. The data is available at GitHub:
https://github.com/diweiqiang/LightFIG/tree/master/data.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1019#supplemental-information.

REFERENCES
Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, Chi EH. 2018. Latent cross: making

use of context in recurrent recommender systems. In: Proceedings of the 11th ACM
international conference on web search and data mining (WSDM). New York: ACM,
46–54.

Bruna J, ZarembaW, Szlam A, LeCun Y. 2013. Spectral networks and locally connected
networks on graphs. ArXiv preprint. arXiv:1312.6203.

Cheng H, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado
G, ChaiW, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H. 2016.Wide &
deep learning for recommender systems. In: Proceedings of the 1st workshop on deep
learning for recommender systems (RecSys). 7–10.

Duchi J, Hazan E, Singer Y. 2011. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research (JMLR)
12(Jul):2121–2159.

Gong L, Cheng Q. 2019. Exploiting edge features for graph neural networks. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
Piscataway: IEEE, 9211–9219.

Gori M, Monfardini G, Scarselli F. 2005. A new model for learning in graph domains. In:
Proceedings. 2005 IEEE international joint conference on neural networks, 2005, vol. 2.
Piscataway: IEEE, 729–734.

GuoH, Tang R, Ye Y, Li Z, He X. 2017. DeepFM: a factorization-machine based neural
network for CTR prediction. In: Proceedings of the 26th international joint conference
on artificial intelligence (IJCAI). 1725–1731.

HamiltonW, Ying Z, Leskovec J. 2017. Inductive representation learning on large
graphs. In: Advances in neural information processing systems. 1024–1034.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 19/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1019#supplemental-information
https://github.com/diweiqiang/LightFIG/tree/master/data
http://dx.doi.org/10.7717/peerj-cs.1019#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1019#supplemental-information
http://arXiv.org/abs/1312.6203
http://dx.doi.org/10.7717/peerj-cs.1019

Harper FM, Konstan JA. 2015. The movielens datasets: history and context. In: Transac-
tions on interactive intelligent systems (TIIS). 1–19.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 770–778.

He X, Chua T-S. 2017. Neural factorization machines for sparse predictive analytics. In:
Proceedings of the 40th international ACM conference on research and development in
information retrieval (SIGIR). New York: ACM, 355–364.

Henaff M, Bruna J, LeCun Y. 2015. Deep convolutional networks on graph-structured
data. ArXiv preprint. arXiv:1506.05163.

Huang X, Qi J, Sun Y, Zhang R, Zheng H-T. 2019. CARL: aggregated search with
context-aware module embedding learning. In: International joint conference on
neural networks (IJCNN). Piscataway: IEEE, 101–108.

Kingma DP, Ba J. 2015. Adam: a method for stochastic optimization. In: Proceedings of
the 4th international conference on learning representations (ICLR). 1–15.

Li Z, Cui Z,Wu S, Zhang X,Wang L. 2019b. Fi-GNN: modeling feature interactions via
graph neural networks for CTR prediction. In: Proceedings of the 28th international
conference on information and knowledge management (CIKM). 539–548.

Mhaskar HN. 1996. Neural networks for optimal approximation of smooth and analytic
functions. Neural Computation 8(1):164–177 DOI 10.1162/neco.1996.8.1.164.

NaumovM,Mudigere D, Shi H-JM, Huang J, Sundaraman N, Park J, Wang X, Gupta
U,Wu C-J, Azzolini AG, Dzhulgakov D, Mallevich A, Cherniavskii I, Lu Y,
Krishnamoorthi R, Yu A, Kondratenko V, Pereira S, Chen X, ChenW, Rao V,
Jia B, Xiong L, Smelyanskiy M. 2019. Deep learning recommendation model for
personalization and recommendation systems. ArXiv preprint. arXiv:1906.00091.

Qu Y, Cai H, Ren K, ZhangW, Yu Y,Wen Y,Wang J. 2016. Product-based neural
networks for user response prediction. In: 2016 IEEE 16th international conference
on data mining (ICDM). Piscataway: IEEE, 1149–1154.

Rendle S. 2010. Factorization machines. In: Proceedings of the 10th international IEEE
conference on data mining (ICDM). 995–1000.

Rumelhart DE, Hinton GE,Williams RJ. 1986. Learning representations by back-
propagating errors. Nature 323(6088):533–536 DOI 10.1038/323533a0.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2008. The graph neural
network model. IEEE Transactions on Neural Networks 20(1):61–80.

SongW, Shi C, Xiao Z, Duan Z, Xu Y, ZhangM, Tang J. 2019. Autoint: automatic
feature interaction learning via self-attentive neural networks. In: Proceedings of the
28th international conference on information and knowledge management (CIKM).
1161–1170.

Su Y, Zhang R, Erfani S, Xu Z. 2021a. Detecting beneficial feature interactions for
recommender systems. In: Proceedings of the conference on artificial intelligence
(AAAI).

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 20/21

https://peerj.com
http://arXiv.org/abs/1506.05163
http://dx.doi.org/10.1162/neco.1996.8.1.164
http://arXiv.org/abs/1906.00091
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.7717/peerj-cs.1019

Su Y, Zhang R, M. Erfani S, Gan J. 2021b. Neural graph matching based collaborative
filtering. In: Proceedings of the 44th international ACM SIGIR conference on research
and development in information retrieval. New York: ACM, 849–858.

Sun J, Zhang Y, GuoW, Guo H, Tang R, He X, Ma C, Coates M. 2020. Neighbor
interaction aware graph convolution networks for recommendation. In: Proceedings
of the 43rd international ACM SIGIR conference on research and development in
information retrieval. New York: ACM, 1289–1298.

Tieleman T, Hinton G. 2012. Rmsprop: divide the gradient by a running average of its
recent magnitude. coursera: neural networks for machine learning. COURSERA
Neural Networks Machine Learning.

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. 2017. Graph
attention networks. In: Proceedings of the 6th international conference on learning
representations (ICLR). 1–14.

Wang X, He X,WangM, Feng F, Chua T-S. 2019. Neural graph collaborative filtering.
In: Proceedings of the 42nd international conference on research and development in
information retrieval (SIGIR). 165–174.

Wang X, Jin H, Zhang A, He X, Xu T, Chua T-S. 2020. Disentangled graph collaborative
filtering. In: Proceedings of the 43rd international ACM SIGIR conference on research
and development in information retrieval. New York: ACM, 1001–1010.

Xiao J, Ye H, He X, Zhang H,Wu F, Chua T-S. 2017. Attentional factorization machines:
learning the weight of feature interactions via attention networks. In: Proceedings of
the 26th international joint conference on artificial intelligence (IJCAI). 3119–3125.

Xu K, HuW, Leskovec J, Jegelka S. 2019.How powerful are graph neural networks? In:
Proceedings of the 8th international conference on learning representations (ICLR).
1–17.

Ying R, He R, Chen K, Eksombatchai P, HamiltonWL, Leskovec J. 2018. Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. New York: ACM, 974–983.

ZhangM, Chen Y. 2018. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems 31:5171–5181.

ZhangM, Chen Y. 2019. Inductive matrix completion based on graph neural networks.
ArXiv preprint. arXiv:1904.12058.

Zhou G, Zhu X, Song C, Fan Y, Zhu H, Ma X, Yan Y, Jin J, Li H, Gai K. 2018. Deep
interest network for click-through rate prediction. In: Proceedings of the 24th ACM
international conference on knowledge discovery and data mining (SIGKDD). New
York: ACM, 1059–1068.

Ziegler C-N, McNee SM, Konstan JA, Lausen G. 2005. Improving recommendation lists
through topic diversification. In: Proceedings of the 14th international conference on
world wide web (WWW). 22–32.

Di (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1019 21/21

https://peerj.com
http://arXiv.org/abs/1904.12058
http://dx.doi.org/10.7717/peerj-cs.1019

