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ABSTRACT
Massive multiple-input multiple-output (massive-MIMO) is considered as the key
technology to meet the huge demands of data rates in the future wireless commu-
nications networks. However, for massive-MIMO systems to realize their maximum
potential gain, sufficiently accurate downlink (DL) channel state information (CSI)with
low overhead to meet the short coherence time (CT) is required. Therefore, this article
aims to overcome the technical challenge of DL CSI estimation in a frequency-division-
duplex (FDD) massive-MIMO with short CT considering five different physical
correlation models. To this end, the statistical structure of the massive-MIMO channel,
which is captured by the physical correlation is exploited to find sufficiently accurate
DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training
sequence is designed based on the eigenvectors of the transmit correlation matrix. To
this end, the achievable sum rate (ASR)maximization and themean square error (MSE)
of CSI estimation with short CT are investigated using the proposed training sequence
design. Furthermore, this article examines the effect of channel hardening in an FDD
massive-MIMO system. The results demonstrate that in high correlation scenarios,
a large loss in channel hardening is obtained. The results reveal that increasing the
correlation level reduces the MSE but does not increase the ASR. However, exploiting
the spatial correction structure is still very essential for the FDDmassive-MIMOsystems
under limited CT. This finding holds for all the physical correlationmodels considered.

Subjects Computer Networks and Communications, Network Science and Online Social
Networks
Keywords Massive-MIMO, Frequency-division-duplex, Correlation model

INTRODUCTION
Global wireless data-traffic has grown dramatically in the last years. According to recent
statistics, monthly data-traffic would exceed 607 Exabytes (EBs) by 2025 (IMT, 2015). To
this end, sixth-generation (6G) wireless communications networks are being developed to
accommodate the substantial growth in mobile data-traffic (Chen et al., 2020; Chowdhury
et al., 2020). Specifically, 6G wireless communication networks aim to increase the data
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rate, support 4K video streaming, exploit massive Machine-to-Machine (M2M) devices,
increase link reliability, and reduce latency (Dang et al., 2020; Agiwal, Roy & Saxena, 2016;
Aljiznawi et al., 2017). However, in order to meet these requirements, advanced physical
layer technologies are still required. Massive multiple-input multiple-output(massive-
MIMO) is to date considered as a promising technology to meet the huge requirements for
high data rates in the future the 6G networks (Han, Jornet & Akyildiz, 2018; De Carvalho
et al., 2020). Unlike traditional MIMO techniques, massive-MIMO systems allow the base
station (BS) to deploy a large number of antennas in order to increase the data rate,
enhance link reliability, and achieve energy efficiency (Rusek et al., 2013; Ngo, Larsson &
Marzetta, 2013; Malkowsky et al., 2017; Han, Jornet & Akyildiz, 2018; De Carvalho et al.,
2020). Furthermore, massive-MIMO systems have the potential to improve the array gain
and link budget. To this end, sufficiently accurate channel state information (CSI) for
downlink (DL) precoding is need to achieve the full potential gain of massive-MIMO
systems. However, deploying large arrays at the BS incurs an unacceptably large training
overhead especially when the coherence time (CT) is short. Therefore, finding a feasible
solution for achieving sufficiently accurate CSI estimation under short CT is essential. The
majority ofmassive-MIMOworks have forced on time division duplex (TDD) transmission
due to the technical challenge of CSI estimation, see e.g., Jose et al. (2011), Ngo, Larsson &
Marzetta (2013), Hoydis, Ten Brink & Debbah (2013), Yang & Marzetta (2013), Zuo et al.
(2016), Li et al. (2019). The uplink (UL) and DL channels are considered to be reciprocal
in TDD operation mode, hence allowing the UL CSI estimation to be exploited for DL
precoding without requirements for the DL CSI estimation. However, the calibration
error and hardware impairments are to date considered as severe limitations for the TDD
systems in practice (Kaltenberger et al., 2010; Bjrnson et al., 2013; Mi et al., 2017; Vieira et
al., 2017). Furthermore, most of current mobile systems operate in the frequency division
duplex (FDD) mode. Thus, there is a crucial requirement for enabling FDD operation
mode. However, the DL and UL channels in FDD systems are non-reciprocal, and hence,
CSI estimation using UL training sequence can not be achieved in FDD systems (Tse &
Viswanath, 2005). Specifically, to achieve a minimum mean-square-error (MSE) in the
FDD systems, users must estimate the DL CSI of each of the N BS antennas (Hassibi &
Hochwald, 2003; Rusek et al., 2013; Björnson, Larsson & Marzetta, 2016). Inmassive-MIMO
systems with enormous antenna arrays at the BS, the training overhead becomes excessive.
As such, CSI estimation becomes extremely difficult, especially when CT is short (Björnson,
Larsson & Marzetta, 2016; Alsabah, Vehkapera & O’Farrell, 2020; Naser et al., 2020). This
is because the DL training sequence for CSI estimation would take up most of the CT
allocated period, leaving no time for delivering useful data to the users. Therefore, finding
a practical CSI estimate design with a shorter training sequence length is critical for FDD
systems with short CT.

Several works have been proposed to address the challenge of CSI estimation overhead
in FDD massive-MIMO systems, see e.g., Adhikary et al. (2013), Nam, Caire & Ha (2017),
Rao & Lau (2014), Gao et al. (2015), Gao et al. (2016), Han, Lee & Love (2017), Choi, Love
& Bidigare (2014), Noh et al. (2014), So et al. (2015). In particular, the works in Adhikary
et al. (2013) and Nam, Caire & Ha (2017) develop a two-stage precoding method for DL
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CSI estimation, termed as joint-spatial-division-and-multiplexing (JSDM). In these works,
the users can be divided into groups where the BS can select a specific group to be served.
Then, a spatial multiplexing technique can be used to server the selected groups. The
authors found that the pilot length for CSI estimation can be increased proportionally
with the number of groups and not with N . As such, the overhead in FDD systems can
be reduced. While the works in Adhikary et al. (2013) and Nam, Caire & Ha (2017) try to
reduce the overhead of CSI estimation, advanced scheduling algorithms become essential
for grouping the users. Furthermore, the works in Adhikary et al. (2013) and Nam, Caire
& Ha (2017) are not considered the challenge of DL training with single-stage precoding.
As such, these works are not able to predict the FDD massive-MIMO performance when
a short CT is considered. The works in Rao & Lau (2014), Gao et al. (2015), Gao et al.
(2016) andHan, Lee & Love (2017) consider the compressed sensing (CS) based techniques
to reduce the CSI estimation overhead in FDD systems; while the works in Choi, Love
& Bidigare (2014) and Noh et al. (2014); So et al. (2015) exploit the temporal correlation
based on Kalman filter and spatial correlation to reduce the CSI estimation overhead
in FDD systems. Although, the aforementioned works try to address the challenge of
training sequence design for CSI estimation, the algorithms used are still computationally
complex. In addition, future wireless communications networks aim to be operated in
scenarios with high frequencies and mobilities, where both required a short CT. As such,
a sufficiently accurate CSI estimation for FDD massive-MIMO systems with limited CT
is essential. The authors in Wagner et al. (2012), Zheng et al. (2019) and Mostafa, Newagy
& Hafez (2021) investigate UL CSI estimation with TDD systems using ZF precoding.
They found that the number of UL sequences is proportional to the number of users
and independent of the number of BS antennas N that can be made as large as required.
However, there is a need to investigate the ZF precoding in FDD systems. The authors
in Amadid et al. (2022) and Boulouird et al. (2022) consider the spatially correlated channel
in TDD protocol. Therefore, there is an essential requirement to investigate the FDD
massive-MIMO systems with limited CT considering different spatial correlation models.
Furthermore, the achievable sum rate (ASR) performance in the typical wireless networks
is greatly influenced by the received signal and by the level of correlation. While much
focus is dedicated to examine the received signal effect on ASR, little consideration is given
to examine the correlation effect on ASR. Furthermore, the uncorrelated channel cases
have been investigated in the majority of massive-MIMO studies, see e.g., Jose et al. (2011),
Marzetta et al. (2016), Chen, Guevara & Pollin (2017), Liu et al. (2017), Ngo, Larsson &
Marzetta (2013). A common conclusion arising from the aforementioned works is that a
necessary condition for channel hardening can be achievedwithmassive-MIMOover which
the variance goes to zero. However, this is not the case when the channel is highly correlated.
Spatial channel correlationmodel is essential for evaluating the performance of any wireless
communications systems. This is because it can reflect the propagation characteristics of
the signals in practical radio environments. Therefore, this article aims to investigate the
massive-MIMOperformance using different channel correlationmodels namely theP-DoF,
the Weichselberger model (Weichselberger et al., 2006), the one ring (OR) developed by
Jakes in Jakes & Cox (1994), Laplacian (Lap) (Molisch, 2012), and exponential (Loyka, 2001;
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Albdran et al., 2016; Albdran, Alshammari & Matin, 2017; Croisfelt Rodrigues, Marinello &
Abrão, 2019) channel models.

Research contributions and findings:
In this article, the performance of FDD massive-MIMO systems using five different
channel correlation models is investigated. To this end, the physical structure of the spatial
correlation matrix is exploited to design an efficient sequence for CSI estimation in DL
FDD systems. A realistic scenario, where the number of BS antennas is larger than the CT,
is considered. Using the proposed training design, the overhead in FDD massive-MIMO
systems can be significantly decreased by utilizing the correlation structure in the training
sequence design. This article includes the following contributions as a result of this research:

• The majority of MIMO research has considered that the channels are simulated with
uncorrelated fading, which appears to be a rather unrealistic consideration. Therefore,
the goal of this research is to investigate the performance of massive-MIMO systems in
a practical situation with spatially correlated channels and a short CT. Specifically, this
article investigates a practical massive-MIMO setting considering five different spatial
correlation models and assumes a limited CT.
• This article addresses the challenge of designing feasible training sequence for sufficiently
accurateDLCSI estimation in FDD systemswith limitedCT. Therefore, a low-complexity
subspace MMSE CSI estimation, which utilizes the effective eigenvectors of correlation
matrix with the dominated eigenvalues, is considered. To this end, the low dimensions
subspace is exploited to reduce the DL CSI estimation overhead in FDD systems.
• This article seeks to explain how many BS antennas are required to approach channel
hardening under different correlation models.
• Unlike previous research works that have investigated the system performance using the
MSE only, this article investigates the FDD massive-MIMO systems considering both
the MSE and ASR with short CT, which are essential metrics for many wireless systems
applications.
• This article considers a zero-forcing (ZF) precoding technique because it has the ability
to suppress the interference with high SNR values in comparison to the conventional
precoding scheme such as matched filter.
• This article also develops an analytical solution for the MSE, which is valid for all the
correlation models.
• Comparisons between the ASR using the proposed DL CSI estimation design and the
perfect CSI estimation are carried our based on P-DoF, Weichselberger, one ring (OR),
laplacian, and the exponential channel models.

The results show that increasing spatial correlation is favorable to CSI estimation, as
evidenced by the MSE being minimized. This is attributed to the fact that increasing the
level correlation reduces channels dimensions, and hence reducing the MSE. Furthermore,
when the correlation level is increased, the power is concentrated in a few directions. Hence,
there is a need for low dimensions channel estimation with reduced CSI overhead. The
results also show that with perfect CSI estimation when the spatial correlation increases,
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the ASR is degraded. However, with imperfect CSI estimation considering short CT,
increasing the spatial correlation is very beneficial to the ASR. Furthermore, the results
show that, unlike the uncorrelated fading channel, in high correlation channel, it is hard
to achieve channel hardening with zero variance even with large N . Specifically, the results
demonstrate that with a strong spatial correlation, a large loss in channel hardening can be
obtained. This article also presents some important insights about the FDDmassive-MIMO
systems with various correlation models. Finally, this article makes several suggestions for
future research that could lead to new research possibilities.

Article organization: ‘System Model’ introduces the system model. Then, ‘Downlink
Csi Estimation and Training Sequence Design’ discusses the DL CSI estimation and
training sequence design. ‘Data Transmission with Linear Precoder’ introduces the ASR
and precoding design. After that, different physical correlation models are described in
‘Physical Spatial Correlation Models’. In ‘Channel Hardening in Massive-Mimo Systems’
the channel hardening effect is discussed. The experiment results are then presented in
‘Numerical Results and Performance Evaluation’. Finally, this article is concluded in
‘Concluding Remarks and Future Research Directions’.

Notations: This article uses bold upper case for matrix and a bold lower case character
for a vector. We use ||A||F for the Frobenius-norm operation and tr(A) for the trace. This
article also considers AT, AH, and (A)−1 for the operation of transpose, Hermitian, and
matrix inversion A, respectively. The (A⊗B) denotes the Kronecker product of A and B
and CN (µ,R) represents the Gaussian-distribution where µstands for the mean and R for
the covariance matrix at the BS.

SYSTEM MODEL
This present article assumes a single-cell wireless communication system. A Rayleigh fading
channel is considered in this article. However, finding an efficient training sequence design
in Rician fading channel (Amadid, Belhabib & Zeroual, 2022) can be considered in the
future. We would like to emphasis that our article discusses a uniform linear array and
not three-dimensional array. However, three-dimensional array, e.g., Amadid, Boulouird
& Riadi (2022), can be considered in the future. A time-varying channel is considered,
which is partitioned into several coherence blocks. To this end, a block-fading model
with time and frequency resources is used, over which the channels are assumed to be
frequency flat (Alsabah, 2020). The time slot, however, which is enumerated in symbols
per transmission block, corresponds to channel CT τc. The channel CT is partitioned
into the training phase to enable DL CSI estimation, and the data phase for useful data
transmission as shown in Fig. 1. The transmit power is equally distributed between the
training and data phases. We assume massive-MIMO system with a base station (BS) that
uses N antennas. The BS is communicated with K users over the same time and frequency
resources assuming N �K . Furthermore, this article considers a single-stage precoding.
Fig. 2 shows the system model considered in this article with FDD protocol.
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Figure 1 The illustration of the resource block in time and frequency.
Full-size DOI: 10.7717/peerjcs.1017/fig-1
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Figure 2 The illustration of the systemmodel considered in this article.
Full-size DOI: 10.7717/peerjcs.1017/fig-2

DOWNLINK CSI ESTIMATION AND TRAINING SEQUENCE
DESIGN
In the typical FDD systems, the BS needs to perform a precoding based on DL CSI
estimation to serve multiple users, simultaneously. During the CSI estimation phase, the
BS transmits DL sequences of length τp with training power denoted by ρp. The rest of the
time is spent on data transmission, which is given as τd= τc−τp. This article focuses on
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minimizing the training sequence length τp over a limited CT τc. To this end, this article
constructs the training sequences in the DL based on the dominant eigenvectors of the
transmit correlation matrix. To obtain the CSI estimation of the DL channel, the BS sends
training sequences of length τp. The training sequence matrix is denoted by Sp ∈CN×τp .
This training sequence must meet the energy constraint. This implies that tr

(
SHp Sp

)
= ρpτp.

This article considers a scenario where the users have common spatial correlation matrices.
In addition, this article assumes an equal power allocation between the training and
data phases, i.e., ρp= ρd. However, non-uniform power allocations across the users and
optimization with respect to different chooses of ρp and ρd could be considered in the
future. Therefore, the k-th user received training signal, yk ∈Cτp , can be expressed as

yk = SHp hk+nk, (1)

where nk ∈Cτp represents the receiver noise. The received noise is assumed to be complex
Gaussian with CN

(
0,Iτp

)
and hk ∈CN

∼ CN (0,Rk) denotes the complex baseband DL
channel vector, which can be represented using Karhunen–Loeve method as

hk =R1/2
k h̃k, (2)

where h̃k ∼ CN (0,IN) denotes the DL channel and satisfies Rk = E[hkhHk ] ∈CN×N . The
spatial correlation matrix Rk has an eigenvalue-decomposition of

Rk =Tk1kTH
k , (3)

where Tk = [tk,1,...,tk,N ] ∈CN×N represents the eigenvectors of Rk and 1k denotes the
eigenvalues of Rk , which are arranged as δk,1≥ δk,2≥ ··· ≥ δk,N . The correlation matrix is
considered as a large-scale channel statistics, which are assumed to be frequency invariant,
and hence, can be efficiently obtained at both transceivers sides (Xie et al., June-2018).
Since the channel statistics are assumed to be known, linear filter that exploits the channel
statistics is considered. Hence, an optimized CSI estimation in the DL with τp<N can be
obtained using Bayesian estimation. An example of Bayesian estimation is the minimum
mean square error (MMSE) CSI estimation Gk . The MMSE filter uses the statistics of
channel and the statistics of noise (Kay, 1993).

Gk =RkSp
(
SHp RkSp+ Iτp

)−1
. (4)

Accordingly, the resulting channel estimate ĥk ∼ CN (0,2k) is obtained as

ĥk =Gkyk . (5)

where yk is the received training signal in Eq. (1). In what follows, the MSE of the channel
estimation that can be calculated using Monte Carlo simulation is provided as

MSEsim=
K∑
k=1

E {||hk− ĥk ||2}, (6)

where (sim) refers to Monte Carlo simulation that is used to calculate the simulated MSE.
The expression of the MSE in Eq. (6) is valid due to the orthogonality principle between
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the channel estimation error ĥk and the channel estimation h̃k , where both channels are
typically considered to be uncorrelated. Accordingly, the per user channel estimation error
vector, which is independent of ĥk , can be expressed as

ek =hk− ĥk . (7)

Let define the per user error covariance matrix as Ce,k ∈CN×N , which can be expressed as

Ce,k =E
{
ekeHk

}
, (8)

=E
{(
hk− ĥk

)(
hk− ĥk

)H}
, (9)

=

(
Rk−RkSp

(
SHp RkSp+ Iτp

)−1SHp Rk

)
. (10)

The MMSE of the CSI estimation should satisfy 2=E
{
ĥk ĥHk

}
. As such, the MMSE of

the CSI estimation can be expressed as

2k =RkSp
(
SHp RkSp+ Iτp

)−1SHp Rk . (11)

The expression in Eq. (10) is minimized by maximizing Eq. (11), which represents the
MMSE of the CSI channel estimation. To this end, the MSE can be analytically expressed
as

MSEan=
K∑
k=1

tr(Ce,k), (12)

where tr stands for the trace of a matrix, which represents the sum of its eigenvalues.
The subscript (an) stands for the analytical form of the MSE. The expression in Eq. (12)
provides the output of the CSI estimator, which minimizes the MSE. The expression in Eq.
(12) implies that the overall MSE performance relies on the eigenvalues of the expression
in Eq. (10), which characterizes the overall MSE. Using the well known matrix inversion
Lemma, the formulation of the error covariance matrix in Eq. (10) can be simplified to

Ce,k =
(
R−1k +SpS

H
p

)−1
, (13)

where Sp should satisfy the energy constraint, which is given as tr(SHp Sp)= τpρp. Clearly,
the expression in Eq. (13) relies on the correlation matrix Rk , the sequence matrix Sp,
the training sequence length τp, and the training power ρp. The expression in Eq. (13)
motivates the use of the structure of the correlation matrix in the DL training design.

Training sequence design
In FDD systems, the BS sends the DL pilot sequence to the users. Then, the users quantize
the received signal and send it back to the BS to estimate the DL channels. The BS is then
performed a DL precoding based on the CSI estimation. In other instances, each user
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has the ability to estimate their DL channel. As such, the user returns the quantized CSI
estimation to the BS. In what follows, we explain the training sequence design, which is
required to achieve the highest ASR.

The massive-MIMO channels could be highly correlated. Due to this correlation most
of the eigenvalues become closed to zero. Therefore, the channels can be divided into a few
number of dimensions (the eigenvalues that are not closed to zero), which can be smaller
than N . Besides, a significant percentage of the energy would be focused in a few strong
spatial directions rather than dispersed evenly. Therefore, more power should be assigned
to those spatial directions and zero power can be allocated to the weakest directions. This
observation motivated the authors to explore the structure of the correlation matrix Rk

in the pilot design to reduce the overhead of DL CSI estimation in the FDD systems. This
article proposes a computationally efficient pilot design.

Following the approach of majorization theory, the MSE of CSI estimation can be
decreased considerably by the increasing spatial correlations. Therefore, in the presence of
correlation, the sequence length can be chosen to be less than N . This is especially crucial
for the FDD massive-MIMO systems, where the MSE must be kept to a minimum and
the ASR must be maximized with the shortest sequence length possible. In this article, the
training matrix S is designed based on the correlation matrix. Specifically, the dominated
eigenvectors the correlation matrix is used in the DL sequence construction in order to
reduce the DL CSI estimation overhead. We aim to maximize the DL ASR of an FDD
massive-MIMO system.

Let consider a scenario where each user has the same statistical denoted by the correlation
matrix, i.e., Rk =R. Based on this consideration, R can be decomposed as

R=T1TH, (14)

where T= [t1,...,tN ] ∈CN×N denotes a unitary matrix that contains the eigenvectors of
the correlation matrix R and 1 represents the eigenvalues of the the correlation matrix R
that are arranged as δ1≥ δ2≥ ··· ≥ δN . In this article, the dominate singular vectors from
left unitary matrix is extracted to reduce the CSI estimation overhead. This sequence is
designed to build the subspace projection matrix that achieves a minimum MSE with less
training sequence length. This implies that with the proposed training sequence design,
the DL channel will be estimated in the reduced dimension subspace. Specifically, training
matrix Sp ∈CN×τp is designed using the dominated eigenvectors of R as given in Eq. (15).

Sp=
[
t1,...,tτp

]
(15)

As such, the training matrix Sp should satisfy SHp Sp= Iτp . To reduce the training overhead,
the eigenvectors tτp+1,...,tN of R, is not used in the CSI estimation. Proper power
loading across the beams directions 1 can be considered in the future. We start by
substituting the training sequence design in Eq. (15) into Eq. (11). Hence, by exploiting the
eigenvalue decomposition method, the MMSE CSI estimate can be simplified with some
straightforward algebra as

8= ρpTτp12τp
(
ρp1τp+ Iτp

)−1TH
τp
, (16)
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where1τp ∈Rτp×τp is a diagonal matrix with eigenvalues that are arranged in a descending
way as δ1 ≥ δ2 ≥ ··· ≥ δτp . In what follows, an analytical solution for the MSE of CSI
estimation in the FDD systems is given. Let substitute the expression in Eq. (16), which
stands for the MMSE of CSI estimation, into Eq. (12). To this end, an analytical mean
square error MSEan can be written as

MSEan= tr
(
R−ρpTτp1

2
τp
(
ρp1τp+ Iτp

)−1TH
τp

)
. (17)

By exploiting the eigenvalue decomposition T in Eq. (14), with straightforward algebra and
matrix analysis in Petersen & Michael (2008) , the formulation of the MSE CSI estimation
can be simplified to

MSEan= tr
(
Tτp
(
1τp−ρp1τp(ρp1+ Iτp)

−11τp
)
TH
τp

)
. (18)

By exploiting the trace operation, the formulation in Eq. (18) can be expressed as

MSEan= tr
(
1τp−ρp1τp(ρp1+ Iτp)

−11τp

)
. (19)

Exploiting some algebra manipulation allows the formulation of theMSE of CSI estimation
in Eq. (19) to be simplified to

MSEan=
τp∑

m=1

δm−
ρpδ

2
m

ρpδm+1
. (20)

Thus, an analytical solution of the MSE based on the CSI estimation can be expressed in a
simplified form as

MSEan=
τp∑

m=1

δm

ρpδm+1
. (21)

The formulation in Eq. (21) holds for any correlation models. According to the
expression in Eq. (21), increasing the training power would reduce the estimation error.
Another finding from Eq. (21) is that, increasing the correlation would also reduce the
estimate error. The data transmission utilizes linear precoding at the transmitter. The
received signal is discussed in the next section.

We would like to emphasis that the accuracy of channel estimation is improved by
minimizing the estimation error, which is denoted by the MSE performance metric. In
order to understand the fundamental impact of spatial correlation on the MSE of channel
estimate, the basic concept of majorization theory is presented here.

Majorization (Marshall, Olkin & Arnold, 1979): Let x = [x1,...,xN ]T and z =
[z1,...,zN ]T be as two positive real-valued vectors, containing the elements of x and
z, respectively, which are arranged in descending order. Vector x majorizes z (x� z) if
n∑

i=1

x≥
n∑

i=1

z, (22)

for all 1≤ n<N . If vectors x and z contain eigenvalues of the channel covariance matrices,
then by the majorization property, z is less spread out than x and vector x is more
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spatially correlated than vector z. Similarly, for the MSE cost function under consideration,
Ce(x)≤Ce(z), which implies that the MSE of the stronger eigenvalues are less than the
MSE of the weakest eigenvalues. As such, high spatial correlation reduces the estimation
error and the eigendirections of the channel covariance matrix, with large eigenvalues
have a smaller estimation error variance than the eigendirections with smaller eigenvalues.
Specifically, based on the majorization theory, the MSE performance decreases with
increasing spatial channel correlations. In addition to the principle discussed above, the
expression (21) indicates that increasing the correlation would reduce the estimate error,
i.e.,MSE. The results presented in our article also confirm that the MSE of CSI estimation
is reduced when the spatial correlation is increased.

DATA TRANSMISSION WITH LINEAR PRECODER
This section presents the data transmission using linear precoding technique. To this end,
the k-th user received data signal can be expressed as

yk =
√
ρdhTkVs+nk, (23)

where the vectorhk ∈CN is theDL instantaneous channel and s= [s1,...,sK ]T ∈CK denotes
the vector of data symbols, which is considered to be an independently and identically
distributed and satisfies E[ssH] = IK , and V= [v1,...,vK ] ∈CN×K is the precoding matrix
at the BS. Parameter nk denotes the received noise, which is also considered to be an
independently and identically distributed. Therefore, the received SINR, denoted as γk ,
can be expressed as

γk =
|hTk vk |

2

1
ρd
+
∑K

l 6=k |h
T
k vl |2

. (24)

where ρd denotes the SNR, which denotes the transmit power in the data transmission. To
this end, zero forcing (ZF) precoder is considered, and hence, the normalized ZF precoding
is given as

vk =
√√√√ pk∣∣∣∣∣∣(Ĥ†

):,k∣∣∣∣∣∣2
2

(
Ĥ†):,k, (25)

where pk = ||vk ||22 is the power allocated to user k, which satisfies the transmit power
constrain

∑K
k=1pk = 1. This normalization is used to guarantee that the per user transmit

power to be constant in the data phase. The term ĤT
= [ĥ1,...,ĥK ] considers the estimate

of the downlink true channel, which is named in this article as (imperfect CSI), where
(†) corresponds to the Moore–Penrose pseudo-inverse. With perfect channel estimation,
which is named in this article as (perfect CSI), the precoder can be written as

vper,k =
√√√√ pk∣∣∣∣∣∣(H†

):,k∣∣∣∣∣∣2
2

(
H†):,k, (26)
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where the notation (per) stands for perfect CSI estimation. As such, the SINR with perfect
CSI can be written as

γper,k =
|hTk vper,k |

2

1
ρd

. (27)

Accordingly, the DL ASR with imperfect CSI estimation, denoted by Rate, is expressed
as

Rate=
(
τc−τp

τc

) K∑
k=1

E
{
log2

(
1+γk

)}
[bit/s/Hz]. (28)

In addition, the DL ASR, with perfect CSI estimation, denoted by Rateper, is written as

Rateper=
K∑
k=1

E
{
log2

(
1+γper,k

)}
[bit/s/Hz]. (29)

The above expectation operation is obtained by taking into account all sources of
randomness. A Monte Carlo simulation is used to determine the SINR. As previously
stated, this work considers a practical correlation models. To this goal, the user channel’s
elements are correlated rather than isotropically dispersed with Rayleigh fading model.
This indicates that hk has a strong spatial directionality. The received signal in Eq. (24) is
dependent on the BS’s correlation, CSI estimation, and linear precoding strategy. However,
due to the estimation error as well as the pre-log term, the CSI estimate imperfection lowers
the ASR. The ASR maximizing will be discussed more in the following section.

Formulation of the ASR maximization problem
Maximizing the DL ASR in the FDD massive-MIMO systems equates to the following
optimization problem

maximize
τp

(
τc−τp

τc

) K∑
k=1

E
{
log2

(
1+γk

)}
subject to 1≤ τp≤min

(
N ,τc

)
(30)

Future 6G networks aim to maximize the ASR to fulfill the demands for increased
data-traffic (Chen et al., 2020; Alsabah et al., 2021). Maximizing the ASR, in particular, is
regarded one of the most important performance factors for future 6G networks (Chen et
al., 2020; Alsabah et al., 2021). Hence, the goal of this research is to optimize the DL ASR
in order to meet the growing need for high data rates. The ASR formulation in Eq. (30)
illustrates that the training sequence length is important in maximizing the ASR. The SINR
has a logarithmic effect on the ASR, but the training sequence duration has a linear effect
on the ASR.
Remark 1 As previously stated, the great majority of past research on FDD massive-MIMO
systems has focused on determining the training sequence design and length that minimizes
the MSE for a given training power. As such, choosing τp = N is not problematic in the
conventional MIMO systems (Hassibi & Hochwald, 2003) since N is small. However, in
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massive-MIMO systems,N can be very large, which makes the DL CSI estimation problematic
in FDD systems. To maximize the DL ASR in a scenario where N is larger than CT τc ,the
training sequence length τp should be kept small. Noting that increasing τp minimizes the
MSE of the DL CSI estimation. However, in short CT scenarios, as considered in this article,
increasing τp reduces the DL ASR since the time remaining for transferring data to users is
reduced. This motivates the use of statistical structure of massive-MIMO channel, which is
captured by the physical correlation, for efficient DL CSI estimation with short CT τc.

The following section explains some well-known correlation models. The performance
of FDD massive-MIMO systems is evaluated using these physical correlation models.

PHYSICAL SPATIAL CORRELATION MODELS
For modelling channel variations in conventional wireless communications systems, a
random distribution is used. The channel statistics, which correspond to the random
variable distributions, are commonly assumed to be available throughout the network
(Björnson et al., 2017). As a result, Knowing the channel statistics is sufficient to design
efficient communications systems (Stein, 1987; Björnson et al., 2017).

The uncorrelatedRayleigh fadingmodel is a typical approach formodeling the covariance
matrix (Marzetta et al., 2016). In Rayleigh fading model, the channel coefficients are
considered to be independently and uniformly distributed. Besides, the signal Rayleigh
fading model can be propagated across a wide range of scattering objects. Furthermore, in
the Rayleigh fading model, the energy should be evenly distributed in all directions (Tse &
Viswanath, 2005). However, the requirement for channel to be uncorrelated appears to be
quite stringent. The channel coefficients in massive-MIMO systems are correlated because
to the usage of a large arrays at the BS, which are closely spaced. In practice, the arrays face
non uniform emission patterns and varying polarization. This makes the massive-MIMO
channels correlated (Yu et al., 2004;Wallace & Jensen, 2001; Shepard et al., 2012; Gao et al.,
2012). Besides, practical experiments in outdoor and indoor scenarios demonstrate that the
MIMO channels are correlated, see, e.g., Yu et al. (2004),Wallace & Jensen (2001), Shepard
et al. (2012),Gao et al. (2012). As a result, considering more realistic correlation models are
necessary to give a a closed to practice performance indication of massive-MIMO systems.
Because of the high size of the array in massive-MIMO systems, the antenna spacing at the
BS should be reduced, resulting in significant correlations. Due to this correlation, most
of the eigenvalues become closed to zero. In the high correlation scenario, the channel
covariance matrix would exhibit a large eigenvalue spread. In this case a large portion of the
energy in the channel can be concentrated into a few directions, rather than being spread
isotropically in all directions. Furthermore, antenna correlations are advantageous when
it comes to channel estimation because of the possibility of rejecting the contamination
in the estimates. If the contamination is reduced, then the MSE denoted can be reduced.
For further discussion about this issue please refer toHeath Jr & Lozano (2018). A measure
of the spatial correlation of channel is the eigenvalue distribution or what known as the
eigenstructure of the channel covariance matrix. This indicates which spatial directions
are statistically more likely to contain strong signal components than others. Strong spatial
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correlation is characterized by large eigenvalue variations, where the channel is confined
to a small eigensubspace. Unlike the uncorrelated channels, with strong spatial correlation,
a few eigenvalues dominate and hence the uncertainty in the channels can be significantly
reduced.

To this end, spatial correlation models that reflect the practical propagation signals
in radio environments should be considered. This is very essential for evaluating the
performances of wireless communication systems. Therefore, this article aims to investigate
the FDD massive-MIMO systems using the state-of-the-art spatial correlation models.

To reduce the systems overhead, signals can be propagated in the dominated angular
domain that contains a fewer dimensions in compared to the number of BS antennasN . In
order to reflect the spatial correlation in the massive-MIMO channels, different correlation
models will be discussed in the following subsections. These channel correlation models
will also be evaluated later in ‘Numerical Results and Performance Evaluation’.

P-DoF model
The degrees-of-freedom (DoF) provided by the channel determines the correlation level.
It can thus be represented by the P-subspace, where P can be denoted as the number
of angular directions. The angular domain is divided into P directions, hence allowing a
P-DoF to be performed. To this end, the correlation matrix R in the P-DoF model can be
expressed as Hoydis, Ten Brink & Debbah (2013)

R=

√
1
c
UAH, (31)

where the DoF is given as P/N = c ∈ (0,1]. Also, matrix U ∈CK×P is considered to be
an an independent and identically distributed (i.i.d) with CN (0,1). Matrix A ∈CN×P

can be constructed from P ≤N of an N ×N unitary matrix and satisfies AHA= IP . In
this correlation model, R has rank P . The correlation parameter c is used to control the
DoF/correlation in the massive-MIMO channel (Ngo, 2011; Payami & Tufvesson, 2012;
Ngo, Larsson & Marzetta, 2013; Hoydis, Ten Brink & Debbah, 2013). The covariance matrix
in P-DoF model is of the form R=E[hkhHk ] =

1
cAA

H.

Weichselberger model
Weichselberger model (Weichselberger et al., 2006) alleviates the deficiencies of the
Kronecker model by considering the joint correlation structure of both communication
ends. As such, the average coupling between the spatial subchannels is effectively modeled.
It is worth noting that in massive-MIMO system there is no correlation at the user’s
side where the all users have a single antenna and all users are separable. Therefore, the
matrix at the user side is considered to be an identity matrix. The covariance matrix in the
Weichselberger can be written as

R=U
(
g̃� h̃

)
, (32)

where� denotes the element-wise (Hadamard)multiplication between two vectors and h is
random channel with an independent and identically distributed (i.i.d.) distributed scaled
by the coupling matrix g̃ with αj−1, for different α that controls the degrees of correlation.
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Decreasing α means increasing spatial correlation. The coupling matrix has a full-rank
and consists of real-valued non-negative elements. The coefficients of the coupling matrix
specify the mean amount of energy that is coupled from the n-th eigenvectors in U.

One ring (OR) model
The OR model denotes a communication scenario where the scatterers are located on a
ring surrounded the user. The covariance matrix R in the one ring model is expressed as

R=
1
2ω

∫ ω+θ

−ω+θ

e−j2πD(m−n)sin(3)d3. (33)

where3 represents the intervals/ranges of the AoAs distribution, parameter D the antenna
spacing, ω denotes the angular spread, and θ represents the angle of arrival. It is worth
noting that the integration in Eq. (33) is determined numerically.

Laplacian (Lap) model
This subsection considers a local scattering model with Laplace distributed deviations. In
particular, the covariance matrix R in the Laplacian (Lap) model can be obtained as

R=
1
√
2ω

∫ θ+π

θ−π

e−
√
2
ω
(3−θ)e−j2πD(m−n)sin(3)d3. (34)

For both the OR and Lap models, when the elements of BS are closely spaced and with
limited scattering around the user, some of the eigenvalues in R become close to zero. It’s
worth noticing that the R has a low-rank structure due to the limited angular spread. This
allows a strong spatial correlation between the various pathways that manage the BS’s and
users’ communication environment. The full-rank covariance matrix is produced using
the exponential channel correlation model, which will be detailed in the following part.

Exponential model
The exponential model discussed here provides a full rank R. As such, the (m,n)th element
of R with an exponential model can be written as Loyka (2001) and Croisfelt Rodrigues,
Marinello & Abrão (2019)

R=

{
rn−m, m≤ n,
(rm−n)∗, m> n,

(35)

where r(0≤ |r | ≤ 1) represents the correlation coefficient. The eigenvalue dispersion of
the channel covariance matrix is represented by the correlation factor r . As such, in the
exponential correlation model, raising the factor r leads to stronger spatial correlations.

The channel covariancematrix’s eigenvalue distribution can be considered as ametric for
quantifying the level of correlation. For instance, a very weak or no correlation denotes an
identical eigenvalue distribution for all users, but large correlations suggest a small fraction
of eigenvalues, which can be dominated and the remainder of the eigenvalues are almost
zero. Furthermore, substantial eigenvalue changes are explained by strong correlations.
Figures 3, 4, 5, 6, and 7 are provided to illustrate the effect of spatial channel correlation.
These figures present the eigenvalues distribution in the P-DoF, Weichselberger, OR, Lap,
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Figure 3 Illustration of the correlation in the P-DoFmodel.
Full-size DOI: 10.7717/peerjcs.1017/fig-3
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Figure 4 Illustration of the correlation in theWeichselberger model.
Full-size DOI: 10.7717/peerjcs.1017/fig-4

and Exponential models, respectively. Different level of correlations are presented in each
correlation model. The results show that even with a very strong correlation, Exponential
model provide a full-rank covariance matrix since the normalized eigenvalues are not
closed to zero. In what follows, we investigate the effect of channel hardening on the
massive-MIMO systems.

CHANNEL HARDENING IN MASSIVE-MIMO SYSTEMS
Small-scale channel fading is one of the most common flaws in wireless communication
systems. Random fluctuations in the channels are generated by microscopic changes in
the propagation conditions. The oscillations render the channel gain unstable, because the
channel gain might be very small, causing the broadcast data to be received incorrectly. To
prevent small-scale fading, signal diversity can be performed. In particular, the diversity is
achieved by delivering a signal over many channels with independent realizations. Besides,
the spatial diversity can be simply achieved by deploying many antennas at the BS and/or
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Figure 5 Illustration of the correlation in the ORmodel.
Full-size DOI: 10.7717/peerjcs.1017/fig-5

0 2 4 6 8 10 12 14 16 18

Eigenvalue number in decreasing order

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

lap, =5o

lap, =15o

0 20 40 60 80 100 120 140

Eigenvalue number in decreasing order

10-10

10-8

10-6

10-4

10-2

100

102

N
or

m
al

iz
ed

 e
ig

en
va

lu
e 

[d
B

]

lap, =5o

lap, =15o

Figure 6 Illustration of the correlation in the Lapmodel.
Full-size DOI: 10.7717/peerjcs.1017/fig-6
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Figure 7 Illustration of the correlation in the Exponential model.
Full-size DOI: 10.7717/peerjcs.1017/fig-7
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Figure 8 Illustration of the variance of the channel hardening phenomenon as a function of the num-
ber of BS antennasN . Uncorrelated fading is compared with the P-DoF channel model and under differ-
ent correlation coefficients.
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at the receivers. Spatial diversity leads to channel hardening in massive-MIMO systems
with a massive number of BS antennas. In simple terms, channel hardening means that
a fading channel behaves as if it were not fading, implying that the channel gain after
beamforming is nearly constant (Hochwald, Marzetta & Tarokh, 2004). As such, we may
have a highly deterministic channel gain because the channel hardening could increase
the reliability of communication networks. A propagation channel provides hk asymptotic
channel hardening if

||hk ||2

E{||hk ||2}
−−−→
N→∞

1 (36)

The expression in Eq. (36) implies that the channel gain approaches its mean value when
the number of antennas at the BS grows very large. In this article, we consider the variance
to illustrates how the channel and its means is closed to channel hardening so that

V
{
||hk ||2

E{||hk ||2}

}
=

V{||hk ||2}
(E{||hk ||2})2

=

(
tr(R)2

)(
tr(R)

)2 , (37)

where the variance expression in Eq. (37) should be close to zero as N goes to infinity. The
expression in Eq. (37) implies that the correlation, denoted by the eigenvalue variation of
R, increases the variance and thus reduces the level of channel hardening.

Figures 8, 9, 10, 11, and 12 are provided to illustrate the effect of channel hardening in the
presence of correlation with different correlation models. The variance is obtained based
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Figure 9 Illustration of the variance of the channel hardening phenomenon as a function of the num-
ber of BS antennasN . Uncorrelated fading is compared with the Weichselberger channel model and un-
der different correlation coefficients.
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on the expression in Eq. (37) as a function of number of BS antennas. The uncorrelated
Rayleigh fading channel is compared with different correlation models. As can be observed,
the smaller the variance, the more the channel is hardened. As expected, the lowest
variance is achieved with uncorrelated Rayleigh fading channel. The results show that high
correlation leads to a large loss in the channel hardening in all the correlation models
considered.

NUMERICAL RESULTS AND PERFORMANCE EVALUATION
This section presents some of numerical results, which examine the performance of
massive-MIMO using FDD protocol. Specifically, the system performance is evaluated
in terms of the ASR considering ZF precoding and the normalized MSE. In this present
article, the results are provided for the uniform linear array configuration in different
correlation models. Table 1 summaries the simulation parameters, which are considered
in the performance evaluation. The MSE and ASR performances are averaged over 10000
independent channel realizations using a Monte-Carlo simulation. The number of training
sequence length is selected based on the effective eigenvalues that are dominated. These
effective eigenvalues for different correlationmodels are demonstrated in Figs. 3, 4, 5, 6, and
7, respectively. A short CT is considered with τ = 100 symbols. In this article, the training
power ρp is assumed to be equal to the data power. However, optimization between the
training and data powers are left to the future work, as stated earlier.
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Figure 10 Illustration of the variance of the channel hardening phenomenon as a function of the num-
ber of BS antennasN . Uncorrelated fading is compared with the one ring (OR) channel model and under
different correlation coefficients.
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Figures 13, 14, 15, 16, and 17 demonstrate plots of the normalized MSE and DL ASR
versus the SNR ρd in dB under different correlation models. The solid lines demonstrate
the numerical analysis, while the markers represent simulation. The results demonstrate
that an excellent matching between the simulated and the analytical results with various
correlation models are obtained. The results show that the MSE of CSI estimation is
reduced when the spatial correlation is increased. Besides, increasing the SNR improve
the CSI estimation significantly. This is due to the fact that increasing the transmit power
reduces the MSE performance. This is due to that fact that the error variance would
approach zero in the high power regions. In addition, the error variance is reduced with
the increasing of the spatial correlation. Specifically, when the level of correlation is
relatively increased, the power in the channel is increased and the eigendirections denoted
by the dominated eigenvalues is reduced. Consequently, this would provide a sufficient
improvement in the CSI estimation accuracy even when a reduced training sequence
length is used. Furthermore, the results indicate clearly the effect of carrying out DL CSI
estimation. This is clearly observed in the plots when comparing the perfect CSI and
imperfect CSI estimation. To this end, the results show the loss in the ASR is due the
pre-log fraction, which effects the ASR considerably. The highest ASR with imperfect CSI
estimation is obtained using the P-DoF and exponential channel models with c = o.1 and
r = 0.9, respectively. Considering the perfect CSI estimation, the results clearly show that
increasing the level of correlation reduces the ASR considerably under all the correlation
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Figure 11 Illustration of the variance of the channel hardening phenomenon as a function of the num-
ber of BS antennasN . Uncorrelated fading is compared with the laplacian (Lap) channel model and un-
der different correlation coefficients.

Full-size DOI: 10.7717/peerjcs.1017/fig-11

models considered. In summary, the results indicate that minimizing the MSE of the DL
CSI estimation does not maximizing the ASR in the limited CT. Using large arrays may
enhance the spatial resolution and provide a sufficiently accurate CSI estimation. However,
this is not necessary would enhance the ASR. Finally, the results provide an essential insight
into the performances of the massive-MIMO systems with FDD transmission protocol and
considering different spatial correlation models.

CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS
This article investigated the FDD massive-MIMO systems performance using different
correlation models. To this end, statistical structure of massive-MIMO channel captured
by the physical correlation is explored to find sufficiently accurate DL CSI estimation
considering a short CT. The training sequence in DL is constructed based on the
eigenvectors of the transmit correlation matrix. In this case, only the effective dominated
eigenvectors is exploited to reduce the DL CSI estimation overhead. In addition, this
article also examined the channel hardening phenomenon in the massive-MIMO systems
considering FDD transmission protocol. The results showed that with strong correlation, a
large loss in the channel hardening is obtained. Furthermore, the MSEminimization of CSI
estimation and ASR maximization with short CT are evaluated under different physical
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Figure 12 Illustration of the variance of the channel hardening phenomenon as a function of the num-
ber of BS antennasN . Uncorrelated fading is compared with the exponential channel model and under
different correlation coefficients.
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Table 1 Simulation parameters.

Parameters Symbol Value

Number of BS antennas N 128
Number of users K 10
Azimuth standard deviation ω 5◦,15◦

Antenna distance spacing D λ/2
CT τ 100 symbols
AoA θ 30◦

correlation models. The results demonstrated that the spatial correlation minimizes the
MSE of CSI estimation and can help in maximizing the ASR when short CT is considered.
Future work may consider the investigation of the FDD massive-MIMO systems with
high frequencies such as Millimeter waves and terahertz (THz) frequencies. Besides,
exploiting the deep learning approach for CSI estimation could be possible in the future,
see e.g., Abdulwahhab & Jergees (2016), Ali & Taha (2021). Further, A resource allocation
mechanism for future wireless communications networks (Fakhri et al., 2017) with massive
MIMO systems could also be considered in future.
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Figure 13 MSE and ASR as a function of the SNR ρd in dB using the P-DoFmodel with different corre-
lation coefficients.
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Figure 14 MSE and ASR as a function of the SNR ρd in dB using theWeichselberger model with differ-
ent correlation coefficients.
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Figure 15 MSE and ASR as a function of the SNR ρd in dB using the ORmodel with different correla-
tion coefficients.
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Figure 16 MSE and ASR as a function of the SNR ρd in dB using the Lapmodel with different correla-
tion coefficients.
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Figure 17 MSE and ASR as a function of the SNR ρd in dB using the exponential model with different
correlation coefficients.
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