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ABSTRACT
Proteins are the core of all functions pertaining to living things. They consist of an
extended amino acid chain folding into a three-dimensional shape that dictates their
behavior. Currently, convolutional neural networks (CNNs) have been pivotal in
predicting protein functions based on protein sequences. While it is a technology
crucial to the niche, the computation cost and translational invariance associated
with CNN make it impossible to detect spatial hierarchies between complex and
simpler objects. Therefore, this research utilizes capsule networks to capture spatial
information as opposed to CNNs. Since capsule networks focus on hierarchical links,
they have a lot of potential for solving structural biology challenges. In comparison to
the standard CNNs, our results exhibit an improvement in accuracy. Gene Ontology
Capsule GAN (GOCAPGAN) achieved an F1 score of 82.6%, a precision score of
90.4% and recall score of 76.1%.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords Protein function prediction, Deep learning, Capsule networks, Generative adversarial
networks, Gene ontology, Transfer learning

INTRODUCTION
Proteins play an integral role in a number of biological processes, performing many
cellular functions (Ashtiani et al., 2018). Despite protein data being produced at an
extremely high rate by different complex sequencing techniques, its functional
understanding is yet to be discovered (Rekapalli et al., 2012; Li et al., 2017). Only about 1%
of proteins have been explored and worked on experimentally, and they are manually
annotated in the UniProt database (Boutet et al., 2016). In-vitro and in-vivo investigations
can clarify and explain protein functions, but these methods have been shown to be time-
consuming, expensive, and unable to keep up with the growing volume of protein data.

This encourages the development of a precise, efficient, and time-effective
computational technique that can directly calculate protein functions from data. In this
regard, a variety of approaches have been offered. In general, researchers build a pipeline
that determines protein functions given protein sequences by performing the following
steps: selection of a useful trait to encode input proteins, constructing datasets for
experimenting and training purpose, selecting an appropriate algorithm, and evaluation of
the performance. BLAST (Altschul et al., 1990) is a well-known computational technique
which manually annotates the input sequences using the same functional sequences. As
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popular as it is, BLAST has its shortcomings: (1) For a lot of input sequences, similar and
functionally annotated sequences are hard to find; and (2) while some proteins have the
same functions, they do not have sequence similarity. Hence, the results taken from
methods like these that are based on homology are not always accurate and precise
(Pandey, Kumar & Steinbach, 2006).

One option to overcome the drawbacks of other strategies is the extraction of relevant
information from preserved subregions or input protein chain residues. Das et al. (2015),
proposed a domain-based technique for predicting protein functions, while Wang et al.
(2003) presented, a motif-based function classifier for proteins. Finally, numerous
approaches depend significantly on protein-protein interaction (PPI) information derived
to properly compute and predict protein functions (Jiang & McQuay, 2011; Peng et al.,
2015; Chatterji et al., 2008; Hou, 2017; Nguyen, Gardiner & Cios, 2011; Rahmani, Blockeel
& Bender, 2009). The key concept backing these techniques is the idea that proteins with
similar topological properties in PPI networks could also have similar functions
(Gligorijević, Barot & Bonneau, 2018).

Moreover, quite a few protein function predictors require and use other types of data
like making use of genomic context, (Konc et al., 2013; Stawiski et al., 2000; Zhang,
Freddolino & Zhang, 2017; Maghawry, Mostafa & Gharib, 2014) exploiting protein
structure, and (Li, Tan & Ng, 2006) consuming the knowledge of gene expression. We are
now focusing on two types of predictors: sequence-based techniques (Cai et al., 2003; Peng
et al., 2014) and PPI techniques (Kulmanov, Khan & Hoehndorf, 2018; Rahmani, Blockeel
& Bender, 2009). PPI techniques that depend on data collected from these networks
(Kulmanov, Khan & Hoehndorf, 2018; Rahmani, Blockeel & Bender, 2009), and sequence-
based techniques that include using motifs, protein domains and residue-level information
(Cai et al., 2003; Peng et al., 2014). Complementary data is often used by these strategies.

The proposed Gene Ontology Capsule GAN (GOCAPGAN) model is built on
improving standard GANs to handle two essential issues: predicting functions based on
sequence and annotating protein functions based on constrained categorized data.
Therefore, different GAN variants were developed, primarily for picture synthesis
challenges; whereas, just a few GAN variants are accessible for text generation problems.
We used the current Wasserstein GAN (WGAN) model (Arjovsky, Chintala & Bottou,
2017) for our proposed version. We chose the WGAN model because of its high learning
stability, ability to avoid mode collapse, and standard applicability for textual inputs, such
as protein sequences in our situation. The use of GAN to tackle the issue of protein
function prediction, as well as the originality of GOCAPGAN, are the study’s main
conceptual innovations. GAN is based on the use of unlabeled data, which is plentiful.
Features are extracted from massive unlabeled datasets, which are utilized in the case of
protein characterization. In order to generate protein sequences, the GAN is modified in
the early phases. After generating sequences, the parameters of the GAN are tweaked in the
second stage to predict protein functions based on the information gathered during
sequence generation phase. Separate from the Uniprot database, the suggested prototype is
tested on a dataset of proteins from Homo sapiens. In compared to previous techniques,
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the results of the GOCAPGANmodel show significant improvements in several evaluation
measures.

It is evident that GANs are a fascinating and a field with rapid development and that
delivers on the promise of generative models providing realistic samples in a variety of
domains. GANs are an intelligent method of preparing a generating model by putting
together a direct learning problem which has two associate models: generator, which is
trained to produce new examples, and discriminator, which attempts to predict examples
as fake (from outside the domain) or real (from the domain). In an adversarial zero-sum
game, the two models are trained until the discriminator model is dodged almost half of
the time, conveying that the generator model is producing proper samples.

GOCAPGAN framework utlizes anewly developed capsule network at the discriminator
level, which sets it part from previous models. As CNN is translational invariant, they fail
to capture relationship among features, whereas the recently introduced capsule network
(Sabour, Frosst & Hinton, 2017; Hinton, Sabour & Frosst, 2018; Hinton, Krizhevsky &
Wang, 2011) consists of capsules that are a group of neurons that encodes three-
dimensional information of an object in addition to the probability of it being present.
The capsule network is a new building element for deep learning that may be used
to model hierarchical relationships within a neural network’s internal knowledge
representation. Contrary to CNN, information is encoded in vector form in capsules for
storage of spatial data. For GOCAPGAN, the properties and features generated by the
internal capsule layer explore the internal data distribution related to biological
significance for enhanced outcome.

Capsule networks in current years have been used widely for object detection (Lin et al.,
2022), automated email spam detection (Samarthrao & Rohokale, 2022), text classification
(Zhao et al., 2018; Zhao et al., 2019; Kim et al., 2020), web blog content curation (Khatter &
Ahlawat, 2022), fault diagnosis of rotating machinery (Li et al., 2022), identifying
aggression and toxicity in comments (Srivastava, Khurana & Tewari, 2018), sentiment
classification (Chen & Qian, 2019), biometric recognition system (Jacob, 2019) and simple
classification hassles (Lukic et al., 2019; Hilton et al., 2019).

In the field of AI in biology and medicine, capsule networks have also been explored to
inspect Munro’s microabscess (Pal et al., 2022), brain tumor classification (Afshar,
Mohammadi & Plataniotis, 2018; Afshar, Plataniotis & Mohammadi, 2019), pneumonia
detection, and especially coronavirus disease 2019 (Yang, Bao &Wang, 2022; Afshar et al.,
2020).

The current study is laid out as follows: “Literature review” looks at some studies that
have been done on the problem of GO term prediction. “Methodology” goes over the
implementation specifics in great detail. The important findings of this study are
highlighted in “Results”, which is followed by a discussion in “Discussion”. Finally, in
“Conclusion”, the research is concluded with some future recommendations.

LITERATURE REVIEW
The computational and experimental methods are two main ways of calculating protein
functions. Experimental methods make use of biological experiments to confirm and
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authenticate protein functions. One of the experimental methods is yeast two-hybrid
(Y2H) used for recognizing protein functions. Y2H can examine an organism’s entire
genetic makeup for protein DNA interactions. Interactions in the worm, fly, and human
(Ghavidel, Cagney & Emili, 2005) were recently discovered using Y2H. The disadvantage of
this method is that it works on experiments, which necessitate adequate resources and
laboratories. Another drawback of experimental approaches is that the time needed to
characterize proteins cannot be predicted. Mass spectroscopy (MS) is a dynamic technique
for examining protein interactions and predicting protein function. This method generates
ions that may be detected using the mass to charge ratio, allowing for the identification of
protein sequences (Aebersold & Mann, 2003). Like conventional methods, this procedure
also has several drawbacks and limitations: it necessitates the use of qualified staff and
appropriate equipment, and it is time-consuming. MS is very expensive, and protein
complex purification limits protein characterization (Shoemaker & Panchenko, 2007). To
predict protein activities, computational approaches use various protein information such
as sequencing, structure, and other data available (Lv, Ao & Zou, 2019). These techniques
may have drawbacks, but with reference to time and resource management these
techniques are quite reasonable. Several methods, including machine learning algorithms
and methodologies based on genomic context, homology and protein network, have
proved successful in automatically predicting protein function. Machine learning advance
models, such as deep learning, have been demonstrated to be more advanced than
traditional machine learning models. Their superior performance is due to their capacity
to assess incoming data automatically and more effectively represent non-linear patterns.

Protein function prediction and other bioinformatics applications have lately been done
using deep-learning methods (Deng et al., 2003; Nauman et al., 2019). Kulmanov, Khan &
Hoehndorf (2017) used DeepGO for function prediction. Deep learning was used to extract
characteristics from protein interaction networks and sequences. One significant
disadvantage of this method is that it necessitates a big amount of training data in order to
make accurate predictions. It is also a computationally complicated model that consumes
many resources (Kulmanov, Khan & Hoehndorf, 2017). Kulmanov & Hoehndorf (2021)
also extended his work to DeepGOPlus. They created a unique technique for function
prediction based solely on sequence. They combined a deep CNN model with sequence
similarity predictions. Their CNN approach analyses the sequence for themes that predict
protein activities and combines them with related protein functionalities (if available). The
problem with this technique was that it worked better for similar sequences (Kulmanov &
Hoehndorf, 2021). Sureyya Rifaioglu et al. (2019) used DEEPred for solving the function
prediction problem. DEEPred was tuned and benchmarked utilizing three types of protein
descriptors, training datasets of various sizes, and GO keywords from various levels.
Electronically created GO annotations were also included in the training procedure to see
how training with bigger but noisy data would affect performance (Sureyya Rifaioglu et al.,
2019). Gligorijević, Barot & Bonneau (2018) used deep network fusion (deepNF) for the
solution of function prediction. DeepNF is made up of multimodal deep auto encoders that
extract proteins’ important properties from a variety of networks with diverse interactions.
To integrate STRING networks, DeepNF utilises high-level protein characteristics
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constrained in a shared low-dimensional representation. For yeast/human STRING
networks (Gligorijević, Barot & Bonneau, 2018), the results indicated that prior approaches
had outperformed deepNF. DeepNF’s main flaw is that it only uses the STRING network.
This causes issues since functions expressed by a single protein are not taken into account.
This is problematic because capabilities expressed by a single protein are not taken into
account. DeepNF was found to be the best option for a few STRING networks. Deep
learning methods have a major drawback in that they require a large amount of labelled
data, whereas protein functions have a finite amount of labelled data. There is a large gap
between protein sequences and function annotations. Furthermore, many GO keywords
have only a few protein sequences, making deep learning algorithms difficult to forecast.
GANs are used to isolate and extract patterns from unlabeled data, so they can perform
well in the function prediction situation. Researchers have started utilizing GANs for
producing biological data (Gupta & Zou, 2018). In our previous work, we also utilized
GAN for protein function prediction (Mansoor et al., 2022).

Because of their affinity for hierarchical relationships, capsule networks have a lot of
potential for solving structural biology challenges. DeepCap-Kcr (Khanal et al., 2022), a
capsule network (CapsNet) based on a convolutional neural network (CNN) and long
short-term memory (LSTM), was proposed as a deep learning model for robust prediction
of Kcr sites on histone and nonhistone proteins (mammals). de Jesus et al. (2018) describes
the implementation and application of a capsule network architecture to the classification
of RAS protein family structures. HRAS and KRAS structures were successfully classified
using a suggested capsule network trained on 2D and 3D structural encoding. In both of
these studies, however, no biological data is synthesized for further study.

Given the success of the capsule network, Upadhyay & Schrater (2018) and Jaiswal et al.
(2018) have investigated the capsule network with generative adversarial networks (GANs)
and found promising results, but they have not investigated the capsule network with
GANs for protein function prediction.

METHODOLOGY
The GOCAPGANmodel is based on the idea of modifying GOGAN (Mansoor et al., 2022)
to solve the problem of predicting protein function from sparsely labelled data. The
proposed paradigm can be divided into two stages. The first set of designs includes of the
generator and discriminator architectures, which have been improved using residual
blocks, with the last convolutional layer of a discriminator being replaced by a new and
superior capsule network to record data in vector form. This modified model in this phase
is prepared to produce protein sequences. In the second stage, after generating sequences,
the altered GAN’s parameters are utilized to forecast protein functions based on the
knowledge that GAN gained during the sequence generation stage. We first present an
introduction to classical GAN, for a more comprehensive insight, in the following
subsections. Later, the proposed GOCAPGANmodel’s first stage is discussed, highlighting
the important components of the GOCAPGAN model, namely the GOCAPGAN
generator and GOCAPGAN discriminator. As capsule network plays the crucial role in the
discriminator architecture, it has been discussed in detail prior to the explanation of
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discriminator architecture. Finally, the second stage is to be discussed, where the
GOCAPGANmodel parameters are utilized to forecast protein functions with the help of a
multi-label classifier and transfer learning.

Architecture of basic GAN
A novel framework had been given by Ian goodfellow that consisted of a system containing
two major modules, namely generator and discriminator. Figure 1 depicts the basic idea of
GAN where the generator utilizes noise vector z as input creating novel data points and the
discriminator functions as a classifier of the newly generated data points into a category of
fake or real (Goodfellow et al., 2014).

The generator’s main function is to produce realistic data points that are not classified
by the discriminator as fake. Each run includes a back-propagation move that enhances the
generator’s parameters to facilitate the production of more realistic data points. If x is an
original data point, the discriminator returns a value D(x) showing the likelihood. The goal
is to increase the likelihood of correctly detecting real data points as opposed to created
data points. Cross-entropy is used to calculate the loss: plog(q) is a mathematical
expression. The correct label for real data points is one, whereas the label for created data
points is inverted. The main function of Discriminator is given in Eq. (1):

max
D

VðDÞ ¼ ½Ex�pdataðxÞ ½logDðxÞ� þ Ez�pzðzÞ logð1� DðGðzÞÞ� (1)

On the generator side, the generator’s primary function is to create data points with the
highest value ofD(x) in order to mislead the discriminator. Equation (2) provides the main
function for the generator.

max
G

VðGÞ ¼ Ez�pzðzÞ½log 1� D G zð Þð Þð Þ� (2)

The goal functions of the generator and discriminator are learned simultaneously
through interchanging gradient descent once they have been specified. The generator
model parameters are fixed, and the discriminator undergoes a gradient descent iteration
using both original and produced data points, after which the sides are swapped. The
generator has been programmed for another cycle, and the discriminator has been

Figure 1 Working of GAN. Unpredictable noise z from pðzÞ is supplied to the generator, which pro-
duces data points. The z denotes sample whereas pðzÞ denotes probability distribution. The discriminator
receives the data generated and assigns a value to it based on real data points or the generator. The
discriminator then determines whether they are genuine or not.

Full-size DOI: 10.7717/peerj-cs.1014/fig-1
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repaired. In alternate periods, both networks are trained until the generator delivers high-
quality data points. Equation (3) depicts the GAN loss function:

min
G

max
D

VðD;GÞ ¼ ½Ex�pdataðxÞ ½logDðxÞ� þ Ez�pzðzÞ logð1� DðGðzÞÞ� (3)

V(D, G) in Eq. (3), denotes entropy, which denotes real data points being supplied to the
discriminator with the goal of increasing the entropy to one. While the second component
of Eq. (3) indicates entropy, which shows created data points sent to discriminator, with
the goal of reducing entropy to zero. Overall, the generator tries to decrease the objective
function whereas the discriminator tries to maximize it.

GANs are frequently used to reduce divergences, although they are not always
consistent with generator settings, which poses problems with GAN training. Martin
Arjovsky & Bottou (2017) advised using Wasserstein-1 or Earth Mover’s distance W(q, p)
to resolve this issue. The Wasserstein-1 or Earth Mover’s distance is the amount of effort
required to convert a q-distribution to a p-distribution with the least amount of effort. The
Kantorovich-Rubinstein duality (Villani, 2008) is used by the WGAN objective function,
which is provided by:

min
G

max
De~D

Ex�Pr ½DðxÞ� � E~x�Pg ½Dð~xÞ� (4)

We propose a new model called GOCAPGAN that is based on the notions of the
classical GAN model discussed above. The proposed GOCAPGAN model is made up of
two primary parts: the GOCAPGAN generator and the GOCAPGAN discriminator. The
generator for the proposed model consists of multiple residual blocks in which each
residual block contains dual convolutaional layers pursued by LeakuReLU, whereas for the
discriminator, the internal structure of residual blocks is the same. However, instead of the
last residual block, the capsule network is utilized. The GOCAPGAN model’s general
architecture is seen in Fig. 2.

GOCAPGAN generator
The GOCAPGAN generator network produces protein sequences after the training. The
GOCAPGAN generator’s input size is specified as (�, 128), and � represents batch size.
There were four distinct batch sizes tested: 16, 32, 48, and 64. Smaller batch sizes led to
faster training, but provided lower accuracy. Due to restricted computing resources, the
batch size for the suggested trials was set at 32. Once inputs are fed into the generator, it
generates features or representations. The input latent vector is converted to low-level
features by the generator using linear transformation. The generator network is built up of
residual blocks rather than a traditional feed forward neural network. The GOCAPGAN
generator is made up of six residual blocks. Each residual blocks uses two 1-D
convolutional layers to learn information from given data. The activation function used is
LeakyReLU. Gumbel Softmax outperforms softmax in terms of discrete text production
(Joo et al., 2020). After experimenting with various sequence lengths, it was discovered that
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sequence length 160 produced the best results. The total number of trainable parameters in
the GOCAPGAN generator architecture is 18,447,894.

Capsule network
The capsule network (CN) is an advanced neural network architecture conceptualized by
Geoffrey E Hinton (Sabour, Frosst & Hinton, 2017). The goal of CN is to remedy some of
CNN’s shortcomings. In the past, CNN has been extensively studied in the fields of
computer vision and other computer-assisted devices. They do, however, have several
fundamental flaws and limits. In the following subsection, some limitations of CNN are
discussed that motivates us to move towards CN.

Translational invariant
Translational invariance is a property of CNNs. Consider an example to clarify what
translational invariant implies, imagine that we have trained a model that can predict a
presence of boat in a picture. Even if the identical image is translated to the right, CNN will
still recognize it as a boat. However, because there is no method for CNN to predict
translational property, this prediction ignores the extra information that the boat is moved
to the right. Translational equivariance is required, indicating that the position of the
object in the image should not be fixed in order for the CNN to detect it, but the CNN
cannot identify the presence or position of one object related to others. Moreover, this
results in difficulty identifying objects that hold special spatial relationship between
features. In order to explain that, consider an example of a dissembled boat as depicted in
Fig. 3. As CNN is looking for key features only, it will identify both as boat as spatial
relationship between features is missing in case of CNN.

Figure 2 GOCAPGAN GAN working. The first step is passing the latent vector to the generator. Sequences are generated from the generator and
passed to the discriminator. The second step is classification of generated sequence into real or bogus. The discriminator and generator model are
readjusted so that the discriminator is unable to identify the generated sequences into original or fake.

Full-size DOI: 10.7717/peerj-cs.1014/fig-2
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Large data
In order to learn the features, CNN requires a lot of data to generalize the results. To
overcome these constraints, the usage of CN is employed. Capsules are a group of neurons,
where each neuron in a capsule represents various properties of a particular group of
information. For example, if we consider four neurons each will be responsible for its own
information like color, width, angle and height of particular information and the
combination of all these four neurons is called as capsule. capsule dictates existence
property, which means that there’s a capsule in correspondence to each entity, which gives:

1. What is the likelihood that the information or entity exists.

2. Instantiation parameters of said entity.

The following are the main operations carried out within capsules:
Multiplication of the matrix of the input vectors with the weight matrix is calculated to

encode the essential spatial link between low and high level features.

x̂kjj ¼ Wjkxj þ Bk (5)

The total of the weighted input vectors is used to select which higher-level capsule will
receive the current capsule’s output.

sk ¼
X
j

cjkx̂kjj (6)

After that, the squash function is used to apply non-linearity. The squashing function
reduces a vector’s length to a maximum of one and a minimum of zero, while retaining its
orientation.

vk ¼ squashðskÞ (7)

Figure 3 For CNN, both (A) and (B) are boats, as mere presence of entities indicates object existence.
However, for capsule network (A) is a boat whereas (B) is not considered to be a boat.

Full-size DOI: 10.7717/peerj-cs.1014/fig-3
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GOCAPGAN discriminator
The GOCAPGAN discriminator is divided into three sections to aid in the learning of how
to discern between actual and fake proteins. To begin, low level features are obtained using
a 1-D convolutional layer. The second part is a set of residual blocks for converting the data
into a distinguishable state or set of values. The GOCAPGAN discriminator’s third
component is a linear layer that reports the probability of the input sequence being true or
false and can be used to evaluate the discriminator’s accuracy. The GOCAPGAN
discriminator is given both the protein sequence generated by the GOCAPGAN generator
and genuine protein sequences from the dataset. By traversing six residual blocks, the
discriminator learns to distinguish between synthesised and actual protein sequences. The
GOCAPGAN discriminator is made up of six residual blocks.

Figure 2 illustrates the proposed capsule network design incorporated in discriminator
of GAN. The input data from a convolutional layer if fed to a capsule network that learns
internal representations’ essential properties. This layer’s output is transmitted to the
principal capsule layer, which creates a combination of the observed features.

The input is fed into a convolutional sub-layer in this layer, after which it is passed to a
reshaped sub-layer, which prepares the data for the squash operation before being passed
to the capsule layer. The dynamic routing operation takes three rounds in the capsule layer.
The data is then transmitted to a length layer. Finally, to verify whether the input sequence
is real or bogus, a linear transformation is applied. The GOCAPGAN discriminator
architecture has a total of 4,029,697 trainable parameters. RMSprop (Tieleman & Hinton,
2012) was used as an optimizer, with alpha set to 0.99 and eps set to 1e−08. The rate of
learning was set at 0.0001. Various optimization algorithms are available and have been
tested; RMSprop delivered the best performance and accuracy on the stated dataset.
Finally, the second stage is described in the following subsection, in which the
GOCAPGAN model’s parameters are used to predict protein functions using transfer
learning and multi-label classifiers as shown in Fig. 4.

Figure 4 GOCAPGAN transfer learning mechanism. The first step deletes the last layer of the discriminator and save the initial weights. The
upgraded discriminator then outputs features based on real protein sequences. The characteristics are then saved. Step 2 involves passing the stored
features to a multi-label classifier for protein function projection. Full-size DOI: 10.7717/peerj-cs.1014/fig-4
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Transfer learning
Transfer learning, also known as extracted features transferability, is a critical property of
applying deep learning models to any problem. Transfer learning works by detaching the
trained model’s final layer, saving the weights of the previous layers, and then attaching a
new final layer at the end. The features learned can be applied to a range of challenges if
this update is useful for other sorts of classification.

Transfer learning was carried out in the GOCAPGAN model architecture in the
following way: the discriminator contains all the traits that can be used to distinguish
among the actual and forged protein sequences. As a result, only the GOCAPGAN
discriminator was taken into account for transfer learning. This GOCAPGAN
discriminator is now given genuine protein sequences without the last layer, and it
generates features for them. These characteristics are then saved. The multi-label classifier
receives the features obtained from this GOCAPGAN discriminator minus the last layer, as
well as their functions or classifications.

Multi-label classifier
The extracted features and classes are the two inputs to the multi-label classifier. The
features extracted originate from putting genuine proteins through the upgraded
GOCAPGAN discriminator, which is missing the last linear layer. The Gene Ontology
(GO) class represents protein functions. The input is subsequently passed to the multi-
label classifier’s only dense layer. The dense layer outputs indicates the number of function
projection. The dense layer uses a sigmoid activation algorithm. The binary crossentropy
loss (Vincent et al., 2010) is used to calculate error, and it is given as:

JðhÞ ¼ � 1
m

�Xm
i¼1

yðiÞloghhðxðiÞÞ þ ð1� yðiÞÞlogð1� hhðxðiÞÞÞ
�

(8)

On the proposed model, many optimizers were tested but Adam provided the best
performance and accuracy. Adam was used to train the GOCAPGANmulti-label classifier.

RESULTS
A protein is associated in many processes whether they be biological, molecular or simple
phenotypic, this essential piece of information is acquired from its function. It also clarifies
how various molecules interact with one another. Several approaches for standardizing
protein function concepts have been presented, and we choose the most frequently used,
the Gene Ontology (GO). This model proposes the preparation and training of only all
three elements of gene ontology. One of the best strategy for mass computational studies in
GO since it has wide range of general adoption and consistency across species. The data
and code files for the proposed GOCAPGAN model is available at: https://github.com/
musadaqmansoor/gocapgan.

Details of dataset
Proteins from Homo sapiens were used in the experiment. The UniProt Consortium (2015)
database was used to acquire proteins. The system yielded a total of 72,945 proteins.
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Tremble (tr) entries that had not been evaluated and swiss-port entries that had been
reviewed were among the proteins (sp). Protein length is governed by the number of
residues, which varies amongst proteins. In Homo sapiens species, the length ranges up to
34,358 residues. A few sequences exceed 2,000 residues in length, which is the highest
residue length considered for computation. As a result, 70,956 proteins were employed in
total. It’s worth noting that our concept can be applied to different species without any
changes. Longer sequences can be trained as well, however more computational resources
and longer training time might be required.

Target classes
Homo sapiens proteins were utilized in the suggested system. A conventional archive
containing n all Homo sapiens protein sequences was used as the ground truth for the
previously mentioned dataset. The suggested method is applicable to all conceivableHomo
sapiens gene ontology classes. Because the GOCAPGAN model requires classes to have at
least 16 protein sequences, there are 421 classes that are eligible to run the model. Twenty-
five of these classes have been chosen for multi-label classification. The detail of these
classes are given in Table 1. These classes were chosen based on the fact that they occur
frequently.

Setup for experiment
The suggested model is trained, tested, and validated using Google Colab as the standard
system. CuDNN, Keras, Pytorch and Tensorflow libraries are used to implement the
GOCAPGAN model in software.

Preparation
GOCAPGAN training
RMSProp is utilised as an optimizer for the GOCAPGAN model training, while
Wasserstein loss is employed as an evaluation metric. Table 2 indicates values of hyper
parameters for GOCAPGAN model training.

GOCAPGAN classifier
Table 3 shows the various parameters and their values for multi-label classifier testing and
training.

Quantitative analysis
The system’s performance was assessed via repeated k-fold cross validation. The number
of splits (k) is three, and the number of repeats is five. The suggested model was evaluated
using many performance indicators, including F1 score, recall, precision and hamming
loss, which were stated as:

precision ¼ tp
tpþ fp

(9)

recall ¼ tp
tpþ fn

(10)
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Table 1 Classes for multi label classification.

Gene ontology Description

GO:0046872 Metal ion binding

GO:0005524 ATP binding

GO:0003677 DNA binding

GO:0008270 Zinc ion binding

GO:0044822 RNA binding

GO:0003700 DNA-binding transcription factor activity

GO:0004930 G protein-coupled receptor activity

GO:0042803 Protein homodimerization activity

GO:0005509 Calcium ion binding

GO:0004984 Olfactory receptor activity

GO:0003723 RNA binding

GO:0003682 Chromatin binding

GO:0004674 Protein serine/threonine kinase activity

GO:0043565 Sequence-specific DNA binding

GO:0000166 Nucleotide binding

GO:0005525 GTP binding

GO:0000978 RNA polymerase II cis-regulatory region sequence-specific DNA binding

GO:0042802 Identical protein binding

GO:0019899 Enzyme binding

GO:0019901 Protein kinase binding

GO:0005102 Signaling receptor binding

GO:0098641 Cadherin binding involved in cell-cell adhesion

GO:0008134 Transcription factor binding

GO:0031625 Ubiquitin protein ligase binding

GO:0003924 GTPase activity

Table 2 Parameters set for GOCAPGAN GAN training.

Parameter Value

Batch size 32

Length of sequence 160

Epochs 12

Lambda 10

Noise 128

Rate of learning 0.0001

Optimizer RMSprop

Loss function Wasserstein loss
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F1score ¼ 2� precision� recall
precisionþ recall

(11)

HammingLoss ¼ 1
NL

XL
l¼1

XN
i¼1

Yi;l �Xl;i (12)

On 421 gene ontology classes, the performance of the GOCAPGAN model was
calculated and reported in Table 4. The classes belonged to Homo sapiens only.

Comparison with other techniques
The GOCAPGAN model, which was developed in this study, is compared to DeepSeq,
BLAST and GOGAN. BLAST uses homology-based annotation transfer to predict protein
function only based on sequence information. A local alignment algorithm known as
BLAST is categorised as. BLAST searches for hits among protein sequences based on local
region similarity. For proteins from the Homo sapiens species, precision, hamming loss,
recall and F1 score of the GOCAPGAN, BLAST, GOGAN model, and DeepSeq are shown
in the Table 5. As seen in Table 5, the GOCAPGAN model has approximately twice as
many targeted classes as GOCAPGAN. In terms of precision and F1 score, the
GOCAPGAN model outperforms DeepSeq, GOGAN and BLAST.

Table 3 Parameters set for GOCAPGAN multi-label classifier training.

Parameter Value

Number of folds 3

Loss Binary cross entropy

Number of repeats 5

Epochs 40

Optimizer Adam

Table 4 Gene ontology classes results.

Method Accuracy Precision Recall F1 score

GOCAPGAN 84.1 77.4 93.2 84.5

Table 5 Evaluation metrics of the GOCAPGAN model compared to GOGAN (Mansoor et al., 2022),
DeepSeq (Nauman et al., 2019), and the BLAST (Altschul et al., 1990) method.

Method Classes Precision Recall F1 score Hamming loss

GOCAPGAN 25 0.904 0.761 0.826 0.085

GOGAN 10 0.852 0.625 0.721 0.095

DeepSeq 5 0.76 0.66 0.71 0.133

BLAST 5 0.46 0.64 0.53 0.387
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DISCUSSION
The functional annotation of proteins is critical now that the genomes of various model
species have been sequenced. In the current research, a deep learning based model
GOCAPGAN is suggested that exploits generative adversarial networks along with capsule
networks for synthesising protein sequences. As this process of synthetization enables our
model to learn optimal features, these features are utilized in predicting protein function
from sequences based on protein sequences. Unlike some methods of function prediction
that are currently accessible, this model does not need custom-built attributes; instead, the
architecture extracts information automatically from data sequences presented to the
model.

GOCAPGAN uses a convolutional layer in conjunction with a capsule layer to capture
more features. Capsules outperform standard CNN since it assimilates training and
respective temporal association among various elements in one product. Experimentation
results clearly indicate the usefulness of the suggested GOCAPGAN paradigm. For the
time being, the model has only been tested and verified on the UniPort dataset, which is
freely available. To further elaborate the importance of a capsule network, it was observed
that each function is treated separately and independently in our method. In general, a
protein’s ability to perform one function does not exclude it from doing others. As a result,
our approach predicts each protein’s function without prejudice. Despite this, there are
links between functions. Imagine a scenario in which you have highly related functions X
and Y, and having function X increases your chances of getting function Y. Our method
assumes that annotated proteins have detailed functional annotations and uses this
information to predict functions for proteins that are not annotated. These annotated
proteins could, in fact, have other activities that have yet to be found. With the passage of
time and experimental research on protein function prediction, annotation of protein
function may be on the path of further completion.

CONCLUSION
In computational biology and bio-informatics, one of the major concern is determining
functions of newly discovered proteins. Many conventional methods are still used to solve
the gap between protein structure and function annotations, however these methods have
a low accuracy. The current study proposes a novel new deep learning model for protein
categorization built on the fusion of a capsule network and a GANs architecture. It shows
how capsule networks can be applied to structural biology problems. To our knowledge,
our team is the first in the field to use capsule networks in conjunction with GANs to build
protein sequences that have also learned internal information. The results reveal that
capsule networks outperform convolutional networks that have been around for a long
time in terms of accuracy.

We intend to investigate further capsule network versions in the future, such as the
Convolutional Fully-Connected Capsule Network (CFC-CapsNet) and Prediction-Tuning
Capsule Network (PT-CapsNet). These developed architectures are unique and fast
capsule networks, and they may provide an opportunity to identify additional qualities that
could lead to higher assessment scores.
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